diff options
Diffstat (limited to 'Master/texmf-dist/doc/latex/mathdesign/mdput/mdputtest.tex')
-rw-r--r-- | Master/texmf-dist/doc/latex/mathdesign/mdput/mdputtest.tex | 506 |
1 files changed, 506 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/mathdesign/mdput/mdputtest.tex b/Master/texmf-dist/doc/latex/mathdesign/mdput/mdputtest.tex new file mode 100644 index 00000000000..b9bfd974c0a --- /dev/null +++ b/Master/texmf-dist/doc/latex/mathdesign/mdput/mdputtest.tex @@ -0,0 +1,506 @@ +\documentclass[fleqn]{article} + +\usepackage[fraktur,mdput]{mathdesign} + +\title{A \LaTeX\ math test document} +\author{for fonts created by Math Design} + +\raggedbottom + +\newcommand{\testsize}[1]{ + #1 \texttt{\string#1}: \(a_{c_e}, b_{d_f}, C_{E_G}, 0_{1_2}, + a_{0_a}, 0_{a_0}, + \sum_{i=0}^\infty\) \\ +} + +\newcommand{\testdelims}[3]{\sqrt{ + #1|#1\|#1\uparrow + #1\downarrow#1\updownarrow#1\Uparrow#1\Downarrow + #1\Updownarrow#1\lfloor#1\lceil + #1(#1\{#1[#1\langle + #3 + #2\rangle#2]#2\}#2) + #2\rceil#2\rfloor#2\Updownarrow#2\Downarrow + #2\Uparrow#2\updownarrow#2\downarrow#2\uparrow + #2\|#2| +}\\} + +\newcommand{\testglyphs}[1]{ +\begin{quote} + #1a#1b#1c#1d#1e#1f#1g#1h#1i#1j#1k#1l#1m + #1n#1o#1p#1q#1r#1s#1t#1u#1v#1w#1x#1y#1z + #1A#1B#1C#1D#1E#1F#1G#1H#1I#1J#1K#1L#1M + #1N#1O#1P#1Q#1R#1S#1T#1U#1V#1W#1X#1Y#1Z + #10#11#12#13#14#15#16#17#18#19 + #1\Gammait#1\Deltait#1\Thetait#1\Lambdait#1\Xiit + #1\Piit#1\Sigmait#1\Upsilonit#1\Phiit#1\Psiit#1\Omegait + #1\alpha#1\beta#1\gamma#1\digamma#1\delta#1\epsilon + #1\varepsilon#1\zeta#1\eta#1\theta#1\vartheta + #1\iota#1\kappa#1\varkappa#1\lambda#1\mu#1\nu#1\xi#1\omicron + #1\pi#1\varpi#1\rho#1\varrho + #1\sigma#1\varsigma#1\tau#1\upsilon#1\phi + #1\varphi#1\chi#1\psi#1\omega + #1\Gamma#1\Delta#1\Theta#1\Lambda#1\Xi + #1\Pi#1\Sigma#1\Upsilon#1\Phi#1\Psi#1\Omega + #1\alphaup#1\betaup#1\gammaup#1\digammaup#1\deltaup#1\epsilonup + #1\varepsilonup#1\zetaup#1\etaup#1\thetaup#1\varthetaup + #1\iotaup#1\kappaup#1\varkappaup#1\lambdaup#1\muup#1\nuup#1\xiup#1\omicron + #1\piup#1\varpiup#1\rhoup#1\varrhoup + #1\sigmaup#1\varsigmaup#1\tauup#1\upsilonup#1\phiup + #1\varphiup#1\chiup#1\psiup#1\omegaup + #1\partial#1\ell#1\imath#1\jmath#1\wp +\end{quote} +} + +\newcommand{\parenthesis}[1]{ $(#1)$ } +\newcommand{\sidebearings}[1]{ $|#1|$ } +\newcommand{\subscripts}[1]{ $#1_\circ$ } +\newcommand{\supscripts}[1]{ $#1^\_$ } +\newcommand{\scripts}[1]{ $#1^2_\circ$ } +\newcommand{\vecaccents}[1]{ $\vec#1$ } +\newcommand{\tildeaccents}[1]{ $\tilde#1$ } + + +\ifx\omicron\undefined + \let\omicron=o +\fi + +\parindent 0pt +\mathindent 1em + +\def\test#1{#1} + +\def\testnums{% + \test 0 \test 1 \test 2 \test 3 \test 4 \test 5 \test 6 \test 7 + \test 8 \test 9 } +\def\testupperi{% + \test A \test B \test C \test D \test E \test F \test G \test H + \test I \test J \test K \test L \test M } +\def\testupperii{% + \test N \test O \test P \test Q \test R \test S \test T \test U + \test V \test W \test X \test Y \test Z } +\def\testupper{% + \testupperi\testupperii} + +\def\testloweri{% + \test a \test b \test c \test d \test e \test f \test g \test h + \test \imath \test \jmath \test k \test l \test m } +\def\testlowerii{% + \test n \test o \test p \test q \test r \test s \test t \test u + \test v \test w \test x \test y \test z + \test\imath \test\jmath } +\def\testlower{% + \testloweri\testlowerii} + +\def\testupgreeki{% + \test A \test B \test\Gamma \test\Delta \test E \test Z \test H + \test\Theta \test I \test K \test\Lambda \test M } +\def\testupgreekii{% + \test N \test\Xi \test O \test\Pi \test P \test\Sigma \test T + \test\Upsilon \test\Phi \test X \test\Psi \test\Omega + \test\nabla } +\def\testupgreek{% + \testupgreeki\testupgreekii} + +\def\testlowgreeki{% + \test\alpha \test\beta \test\gamma \test\delta \test\epsilon + \test\zeta \test\eta \test\theta \test\iota \test\kappa \test\lambda + \test\mu } +\def\testlowgreekii{% + \test\nu \test\xi \test o \test\pi \test\rho \test\sigma \test\tau + \test\upsilon \test\phi \test\chi \test\psi \test\omega } +\def\testlowgreekiii{% + \test\varepsilon \test\vartheta \test\varpi \test\varrho + \test\varsigma \test\varphi} +\def\testlowgreek{% + \testlowgreeki\testlowgreekii\testlowgreekiii} + +\DeclareMathSymbol{\dit}{\mathord}{letters}{`d} +\DeclareMathSymbol{\dup}{\mathord}{operators}{`d} + +\newenvironment{boldface}{\bgroup\mathversion{bold}% + \def\it{\fontseries{b}\fontshape{it}\selectfont}% + \fontseries{b}\selectfont }{\egroup} + +\begin{document} + +\maketitle + +\section*{Introduction} + +This document tests the math capabilities of the mdputpackage, and is +strongly modelled after a similar document by Alan Jeffrey. + +This test exercises the {\tt MathDesign mdput} math fonts combined with the +{\tt put} text fonts. + +\section*{Math Alphabets} + +Math italic: +$$ + ABCDEFGHIJKLMNOPQRSTUVWXYZ + abcdefghijklmnopqrstuvwxyz +$$ +Text italic: +$$ + \mathit{ABCDEFGHIJKLMNOPQRSTUVWXYZ + abcdefghijklmnopqrstuvwxyz} +$$ +Roman: +$$ + \mathrm{ABCDEFGHIJKLMNOPQRSTUVWXYZ + abcdefghijklmnopqrstuvwxyz} +$$ +Bold: +$$ + \mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ + abcdefghijklmnopqrstuvwxyz} +$$ +Typewriter: +$$ + \mathtt{ABCDEFGHIJKLMNOPQRSTUVWXYZ + abcdefghijklmnopqrstuvwxyz} +$$ + +AMS like Symbol: +$$ + \yen \geqq \circeq \daleth \varkappa \leftarrowtail \because + \eqslantless \eqslantgtr \curlyeqprec +$$ + +Greek: +$$ + \Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega + \alpha\beta\gamma\delta\epsilon\varepsilon\zeta\eta\theta\vartheta + \iota\kappa\lambda\mu\nu\xi\omicron\pi\varpi\rho\varrho + \sigma\varsigma\tau\upsilon\phi\varphi\chi\psi\omega +$$ +{\mathversion{bold} +$$ + \Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega + \alpha\beta\gamma\delta\epsilon\varepsilon\zeta\eta\theta\vartheta + \iota\kappa\lambda\mu\nu\xi\omicron\pi\varpi\rho\varrho + \sigma\varsigma\tau\upsilon\phi\varphi\chi\psi\omega +$$} + +Calligraphic: +$$A\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z$$ +Sans: +$$ + A\mathsf{ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z \quad + a\mathsf{abcdefghijklmnopqrstuvwxyz}z +$$ +Fraktur: +$$ + A\mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z +$$ +$$ + a\mathfrak{abcdefghijklmnopqrstuvwxyz}z +$$ + +Blackboard Bold: +$$ + A\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z +$$ + +\section*{Symbols} + +$$ \frac{\partial f}{\partial x} $$ + +$$ + a \hookrightarrow b \hookleftarrow c \longrightarrow d + \longleftarrow e \Longrightarrow f \Longleftarrow g + \longleftrightarrow h \Longleftrightarrow i + \mapsto j +$$ +$$\textstyle + \oint \int \quad + \bigodot \bigoplus \bigotimes \sum \prod + \bigcup \bigcap \biguplus \bigwedge \bigvee \coprod +$$ +$$ + \oint \int \quad + \bigodot \bigoplus \bigotimes \sum \prod + \bigcup \bigcap \biguplus \bigwedge \bigvee \coprod +$$ +$$ \bigodot_{i=1}^n \gamma_i = \bigoplus_{i=1}^n \gamma_i +=\bigotimes_{i=1}^n \gamma_i = \sum_{i=1}^n \gamma_i = \prod_{i=1}^n +\gamma_i = \bigcup_{i=1}^n \gamma_i = \bigcap_{i=1}^n \gamma_i = +\biguplus_{i=1}^n \gamma_i = \bigwedge_{i=1}^n \gamma_i= +\bigvee_{i=1}^n \gamma_i = \coprod_{i=1}^n \gamma_i +$$ + +\clearpage + +\section*{Big operators} + +\def\testop#1{#1_{i=1}^{n} x^{n} \quad} +\begin{displaymath} + \testop\sum + \testop\prod + \testop\coprod + \testop\int + \testop\oint +\end{displaymath} +\begin{displaymath} + \testop\bigotimes + \testop\bigoplus + \testop\bigodot + \testop\bigwedge + \testop\bigvee + \testop\biguplus + \testop\bigcup + \testop\bigcap + \testop\bigsqcup +% \testop\bigsqcap +\end{displaymath} + + +\section*{Radicals} + +\begin{displaymath} + \sqrt{x+y} \qquad \sqrt{x^{2}+y^{2}} \qquad + \sqrt{x_{i}^{2}+y_{j}^{2}} \qquad + \sqrt{\left(\frac{\cos x}{2}\right)} \qquad + \sqrt{\left(\frac{\sin x}{2}\right)} +\end{displaymath} + +\begingroup +\delimitershortfall-1pt +\begin{displaymath} + \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{x+y}}}}}}} +\end{displaymath} +\endgroup % \delimitershortfall + + +\section*{Over- and underbraces} + +\begin{displaymath} + \overbrace{x} \quad + \overbrace{x+y} \quad + \overbrace{x^{2}+y^{2}} \quad + \overbrace{x_{i}^{2}+y_{j}^{2}} \quad + \underbrace{x} \quad + \underbrace{x+y} \quad + \underbrace{x_{i}+y_{j}} \quad + \underbrace{x_{i}^{2}+y_{j}^{2}} \quad +\end{displaymath} + + +\section*{Normal and wide accents} + +\begin{displaymath} + \dot{x} \quad + \ddot{x} \quad + \vec{x} \quad + \bar{x} \quad + \overline{x} \quad + \overline{xx} \quad + \tilde{x} \quad + \widetilde{x} \quad + \widetilde{xx} \quad + \widetilde{xxx} \quad + \hat{x} \quad + \widehat{x} \quad + \widehat{xx} \quad + \widehat{xxx} \quad +\end{displaymath} + +\def\testwilde#1{ + \begin{displaymath} + #1{a} \quad + #1{ab} \quad + #1{abc} \quad + #1{abcde} \quad + #1{abcdefg} \quad + #1{abcdefghi} \quad + #1{abcdefghijk} \quad + \end{displaymath}} + +\testwilde\widehat +\testwilde\widetilde +\testwilde\widetriangle +\testwilde\wideparen + + +\section*{Long arrows} + +\begin{displaymath} + \leftrightarrow \quad + \longleftarrow \quad + \longrightarrow \quad + \longleftrightarrow \quad + \Leftrightarrow \quad + \Longleftarrow \quad + \Longrightarrow \quad + \Longleftrightarrow \quad +\end{displaymath} + + +\section*{Left and right delimters} + +\def\testdelim#1#2{ - #1 f #2 - } +\begin{displaymath} + \testdelim() + \testdelim[] + \testdelim\lfloor\rfloor + \testdelim\lceil\rceil + \testdelim\langle\rangle + \testdelim\{\} +\end{displaymath} + +\clearpage +\section*{Big-g-g delimters} + +\def\testdelim#1#2{ + - + \left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1 + #1 - + #2 \right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2 -} + +\begingroup +\delimitershortfall-1pt +\begin{displaymath} + \testdelim\lfloor\rfloor + \qquad + \testdelim() +\end{displaymath} +\begin{displaymath} + \testdelim\lceil\rceil + \qquad + \testdelim\{\} +\end{displaymath} +\begin{displaymath} + \testdelim\llbracket\rrbracket + \qquad + \testdelim\lwave\rwave +\end{displaymath} +\begin{displaymath} + \testdelim[] + \qquad + \testdelim\lgroup\rgroup +\end{displaymath} +\begin{displaymath} + \testdelim\langle\rangle + \qquad + \testdelim\lmoustache\rmoustache +\end{displaymath} +\begin{displaymath} + \testdelim\uparrow\downarrow \quad + \testdelim\Uparrow\Downarrow \quad +\end{displaymath} +\endgroup % \delimitershortfall + +\section*{Delimiters} + +Each row should be a different size, but within each row the delimiters +should be the same size. First with \verb|\big|, etc: +$$\begin{array}{c} + \testdelims\relax\relax{J} + \testdelims\bigl\bigr{J} + \testdelims\Bigl\Bigr{J} + \testdelims\biggl\biggr{J} + \testdelims\Biggl\Biggr{J} +\end{array}$$ +Then with \verb|\left| and \verb|\right|: +$$\begin{array}{c} + \testdelims\left\right{\begin{array}{c} f \end{array}} + \testdelims\left\right{\begin{array}{c} a\\f \end{array}} + \testdelims\left\right{\begin{array}{c} a\\a\\f \end{array}} + \testdelims\left\right{\begin{array}{c} a\\a\\a\\f \end{array}} +\end{array}$$ + +\section*{Sizing} + +$$ + abcde + x^{abcde} + 2^{x^{abcde}} +$$ + +The subscripts should be appropriately sized: +\begin{quote} +\testsize\tiny +\testsize\scriptsize +\testsize\footnotesize +\testsize\small +\testsize\normalsize +\testsize\large +\testsize\Large +\testsize\LARGE +\testsize\huge +\testsize\Huge + +\end{quote} + +\clearpage + +\section*{Spacing} + +This paragraph should appear to be a monotone grey texture. Suppose +\(f \in \mathcal{S}_n\) and \(g(x) = (-1)^{|\alpha|}x^\alpha +f(x)\). Then \(g \in \mathcal{S}_n\); now (\emph{c}) implies +that \(\hat g = D_\alpha \hat f\) and \(P \cdot D_\alpha\hat +f = P \cdot \hat g = (P(D)g)\hat{}\), which is a bounded function, +since \(P(D)g \in L^1(R^n)\). This proves that \(\hat f \in +\mathcal S_n\). If \(f_i \rightarrow f\) in \(\mathcal S_n\), +then \(f_i \rightarrow f\) in \(L^1(R^n)\). Therefore \(\hat +f_i(t) \rightarrow \hat f(t)\) for all \(t \in R^n\). That \(f +\rightarrow \hat f\) is a \emph{continuous} mapping of +\(\mathcal S_n\) into \(\mathcal S_n\) follows now from the +closed graph theorem. And thus for \(x_1\) through \(x_i\). +\emph{Functional Analysis}, W.~Rudin, +McGraw--Hill, 1973. + +\begin{boldface} +This paragraph should appear to be a monotone dark texture. Suppose +\(f \in \mathcal{S}_n\) and \(g(x) = (-1)^{|\alpha|}x^\alpha +f(x)\). Then \(g \in \mathcal{S}_n\); now (\emph{c}) implies +that \(\hat g = D_\alpha \hat f\) and \(P \cdot D_\alpha\hat +f = P \cdot \hat g = (P(D)g)\hat{}\), which is a bounded function, +since \(P(D)g \in L^1(R^n)\). This proves that \(\hat f \in +\mathcal S_n\). If \(f_i \rightarrow f\) in \(\mathcal S_n\), +then \(f_i \rightarrow f\) in \(L^1(R^n)\). Therefore \(\hat +f_i(t) \rightarrow \hat f(t)\) for all \(t \in R^n\). That \(f +\rightarrow \hat f\) is a \emph{continuous} mapping of +\(\mathcal S_n\) into \(\mathcal S_n\) follows now from the +closed graph theorem. And thus for \(x_1\) through \(x_i\). +\emph{Functional Analysis}, W.~Rudin, McGraw--Hill, 1973. +\end{boldface} + +{\itshape This paragraph should appear to be a monotone grey texture. +Suppose \(f \in \mathcal{S}_n\) and \(g(x) = +(-1)^{|\alpha|}x^\alpha f(x)\). Then \(g \in \mathcal{S}_n\); +now (\emph{c}) implies that \(\hat g = D_\alpha \hat f\) and +\(P \cdot D_\alpha\hat f = P \cdot \hat g = (P(D)g)\hat{}\), +which is a bounded function, since \(P(D)g \in L^1(R^n)\). This +proves that \(\hat f \in \mathcal S_n\). If \(f_i \rightarrow +f\) in \(\mathcal S_n\), then \(f_i \rightarrow f\) in +\(L^1(R^n)\). Therefore \(\hat f_i(t) \rightarrow \hat f(t)\) +for all \(t \in R^n\). That \(f \rightarrow \hat f\) is a +\emph{continuous} mapping of \(\mathcal S_n\) into \(\mathcal +S_n\) follows now from the closed graph theorem. \emph{Functional +Analysis}, W.~Rudin, McGraw--Hill, 1973.} + +The text in these boxes should spread out as much as the math does: +$$\begin{array}{c} + \framebox[.95\width][s]{For example \(x+y = \min\{x,y\} + + \max\{x,y\}\) is a formula.} \\ + \framebox[.975\width][s]{For example \(x+y = \min\{x,y\} + + \max\{x,y\}\) is a formula.} \\ + \framebox[\width][s]{For example \(x+y = \min\{x,y\} + + \max\{x,y\}\) is a formula.} \\ + \framebox[1.025\width][s]{For example \(x+y = \min\{x,y\} + + \max\{x,y\}\) is a formula.} \\ + \framebox[1.05\width][s]{For example \(x+y = \min\{x,y\} + + \max\{x,y\}\) is a formula.} \\ + \framebox[1.075\width][s]{For example \(x+y = \min\{x,y\} + + \max\{x,y\}\) is a formula.} \\ + \framebox[1.1\width][s]{For example \(x+y = \min\{x,y\} + + \max\{x,y\}\) is a formula.} \\ + \framebox[1.125\width][s]{For example \(x+y = \min\{x,y\} + + \max\{x,y\}\) is a formula.} \\ +\end{array}$$ +\end{document} + +%% Local Variables: +%% mode: latex +%% End: |