summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/mathdesign/mdbch/mdbchtest.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/latex/mathdesign/mdbch/mdbchtest.tex')
-rw-r--r--Master/texmf-dist/doc/latex/mathdesign/mdbch/mdbchtest.tex506
1 files changed, 0 insertions, 506 deletions
diff --git a/Master/texmf-dist/doc/latex/mathdesign/mdbch/mdbchtest.tex b/Master/texmf-dist/doc/latex/mathdesign/mdbch/mdbchtest.tex
deleted file mode 100644
index 3d1f354edf3..00000000000
--- a/Master/texmf-dist/doc/latex/mathdesign/mdbch/mdbchtest.tex
+++ /dev/null
@@ -1,506 +0,0 @@
-\documentclass[fleqn]{article}
-
-\usepackage[fraktur,mdbch]{mathdesign}
-
-\title{A \LaTeX\ math test document}
-\author{for fonts created by Math Design}
-
-\raggedbottom
-
-\newcommand{\testsize}[1]{
- #1 \texttt{\string#1}: \(a_{c_e}, b_{d_f}, C_{E_G}, 0_{1_2},
- a_{0_a}, 0_{a_0},
- \sum_{i=0}^\infty\) \\
-}
-
-\newcommand{\testdelims}[3]{\sqrt{
- #1|#1\|#1\uparrow
- #1\downarrow#1\updownarrow#1\Uparrow#1\Downarrow
- #1\Updownarrow#1\lfloor#1\lceil
- #1(#1\{#1[#1\langle
- #3
- #2\rangle#2]#2\}#2)
- #2\rceil#2\rfloor#2\Updownarrow#2\Downarrow
- #2\Uparrow#2\updownarrow#2\downarrow#2\uparrow
- #2\|#2|
-}\\}
-
-\newcommand{\testglyphs}[1]{
-\begin{quote}
- #1a#1b#1c#1d#1e#1f#1g#1h#1i#1j#1k#1l#1m
- #1n#1o#1p#1q#1r#1s#1t#1u#1v#1w#1x#1y#1z
- #1A#1B#1C#1D#1E#1F#1G#1H#1I#1J#1K#1L#1M
- #1N#1O#1P#1Q#1R#1S#1T#1U#1V#1W#1X#1Y#1Z
- #10#11#12#13#14#15#16#17#18#19
- #1\Gammait#1\Deltait#1\Thetait#1\Lambdait#1\Xiit
- #1\Piit#1\Sigmait#1\Upsilonit#1\Phiit#1\Psiit#1\Omegait
- #1\alpha#1\beta#1\gamma#1\digamma#1\delta#1\epsilon
- #1\varepsilon#1\zeta#1\eta#1\theta#1\vartheta
- #1\iota#1\kappa#1\varkappa#1\lambda#1\mu#1\nu#1\xi#1\omicron
- #1\pi#1\varpi#1\rho#1\varrho
- #1\sigma#1\varsigma#1\tau#1\upsilon#1\phi
- #1\varphi#1\chi#1\psi#1\omega
- #1\Gamma#1\Delta#1\Theta#1\Lambda#1\Xi
- #1\Pi#1\Sigma#1\Upsilon#1\Phi#1\Psi#1\Omega
- #1\alphaup#1\betaup#1\gammaup#1\digammaup#1\deltaup#1\epsilonup
- #1\varepsilonup#1\zetaup#1\etaup#1\thetaup#1\varthetaup
- #1\iotaup#1\kappaup#1\varkappaup#1\lambdaup#1\muup#1\nuup#1\xiup#1\omicron
- #1\piup#1\varpiup#1\rhoup#1\varrhoup
- #1\sigmaup#1\varsigmaup#1\tauup#1\upsilonup#1\phiup
- #1\varphiup#1\chiup#1\psiup#1\omegaup
- #1\partial#1\ell#1\imath#1\jmath#1\wp
-\end{quote}
-}
-
-\newcommand{\parenthesis}[1]{ $(#1)$ }
-\newcommand{\sidebearings}[1]{ $|#1|$ }
-\newcommand{\subscripts}[1]{ $#1_\circ$ }
-\newcommand{\supscripts}[1]{ $#1^\_$ }
-\newcommand{\scripts}[1]{ $#1^2_\circ$ }
-\newcommand{\vecaccents}[1]{ $\vec#1$ }
-\newcommand{\tildeaccents}[1]{ $\tilde#1$ }
-
-
-\ifx\omicron\undefined
- \let\omicron=o
-\fi
-
-\parindent 0pt
-\mathindent 1em
-
-\def\test#1{#1}
-
-\def\testnums{%
- \test 0 \test 1 \test 2 \test 3 \test 4 \test 5 \test 6 \test 7
- \test 8 \test 9 }
-\def\testupperi{%
- \test A \test B \test C \test D \test E \test F \test G \test H
- \test I \test J \test K \test L \test M }
-\def\testupperii{%
- \test N \test O \test P \test Q \test R \test S \test T \test U
- \test V \test W \test X \test Y \test Z }
-\def\testupper{%
- \testupperi\testupperii}
-
-\def\testloweri{%
- \test a \test b \test c \test d \test e \test f \test g \test h
- \test \imath \test \jmath \test k \test l \test m }
-\def\testlowerii{%
- \test n \test o \test p \test q \test r \test s \test t \test u
- \test v \test w \test x \test y \test z
- \test\imath \test\jmath }
-\def\testlower{%
- \testloweri\testlowerii}
-
-\def\testupgreeki{%
- \test A \test B \test\Gamma \test\Delta \test E \test Z \test H
- \test\Theta \test I \test K \test\Lambda \test M }
-\def\testupgreekii{%
- \test N \test\Xi \test O \test\Pi \test P \test\Sigma \test T
- \test\Upsilon \test\Phi \test X \test\Psi \test\Omega
- \test\nabla }
-\def\testupgreek{%
- \testupgreeki\testupgreekii}
-
-\def\testlowgreeki{%
- \test\alpha \test\beta \test\gamma \test\delta \test\epsilon
- \test\zeta \test\eta \test\theta \test\iota \test\kappa \test\lambda
- \test\mu }
-\def\testlowgreekii{%
- \test\nu \test\xi \test o \test\pi \test\rho \test\sigma \test\tau
- \test\upsilon \test\phi \test\chi \test\psi \test\omega }
-\def\testlowgreekiii{%
- \test\varepsilon \test\vartheta \test\varpi \test\varrho
- \test\varsigma \test\varphi}
-\def\testlowgreek{%
- \testlowgreeki\testlowgreekii\testlowgreekiii}
-
-\DeclareMathSymbol{\dit}{\mathord}{letters}{`d}
-\DeclareMathSymbol{\dup}{\mathord}{operators}{`d}
-
-\newenvironment{boldface}{\bgroup\mathversion{bold}%
- \def\it{\fontseries{b}\fontshape{it}\selectfont}%
- \fontseries{b}\selectfont }{\egroup}
-
-\begin{document}
-
-\maketitle
-
-\section*{Introduction}
-
-This document tests the math capabilities of the mdbchpackage, and is
-strongly modelled after a similar document by Alan Jeffrey.
-
-This test exercises the {\tt MathDesign mdbch} math fonts combined with the
-{\tt bch} text fonts.
-
-\section*{Math Alphabets}
-
-Math italic:
-$$
- ABCDEFGHIJKLMNOPQRSTUVWXYZ
- abcdefghijklmnopqrstuvwxyz
-$$
-Text italic:
-$$
- \mathit{ABCDEFGHIJKLMNOPQRSTUVWXYZ
- abcdefghijklmnopqrstuvwxyz}
-$$
-Roman:
-$$
- \mathrm{ABCDEFGHIJKLMNOPQRSTUVWXYZ
- abcdefghijklmnopqrstuvwxyz}
-$$
-Bold:
-$$
- \mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ
- abcdefghijklmnopqrstuvwxyz}
-$$
-Typewriter:
-$$
- \mathtt{ABCDEFGHIJKLMNOPQRSTUVWXYZ
- abcdefghijklmnopqrstuvwxyz}
-$$
-
-AMS like Symbol:
-$$
- \yen \geqq \circeq \daleth \varkappa \leftarrowtail \because
- \eqslantless \eqslantgtr \curlyeqprec
-$$
-
-Greek:
-$$
- \Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega
- \alpha\beta\gamma\delta\epsilon\varepsilon\zeta\eta\theta\vartheta
- \iota\kappa\lambda\mu\nu\xi\omicron\pi\varpi\rho\varrho
- \sigma\varsigma\tau\upsilon\phi\varphi\chi\psi\omega
-$$
-{\mathversion{bold}
-$$
- \Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega
- \alpha\beta\gamma\delta\epsilon\varepsilon\zeta\eta\theta\vartheta
- \iota\kappa\lambda\mu\nu\xi\omicron\pi\varpi\rho\varrho
- \sigma\varsigma\tau\upsilon\phi\varphi\chi\psi\omega
-$$}
-
-Calligraphic:
-$$A\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z$$
-Sans:
-$$
- A\mathsf{ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z \quad
- a\mathsf{abcdefghijklmnopqrstuvwxyz}z
-$$
-Fraktur:
-$$
- A\mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z
-$$
-$$
- a\mathfrak{abcdefghijklmnopqrstuvwxyz}z
-$$
-
-Blackboard Bold:
-$$
- A\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z
-$$
-
-\section*{Symbols}
-
-$$ \frac{\partial f}{\partial x} $$
-
-$$
- a \hookrightarrow b \hookleftarrow c \longrightarrow d
- \longleftarrow e \Longrightarrow f \Longleftarrow g
- \longleftrightarrow h \Longleftrightarrow i
- \mapsto j
-$$
-$$\textstyle
- \oint \int \quad
- \bigodot \bigoplus \bigotimes \sum \prod
- \bigcup \bigcap \biguplus \bigwedge \bigvee \coprod
-$$
-$$
- \oint \int \quad
- \bigodot \bigoplus \bigotimes \sum \prod
- \bigcup \bigcap \biguplus \bigwedge \bigvee \coprod
-$$
-$$ \bigodot_{i=1}^n \gamma_i = \bigoplus_{i=1}^n \gamma_i
-=\bigotimes_{i=1}^n \gamma_i = \sum_{i=1}^n \gamma_i = \prod_{i=1}^n
-\gamma_i = \bigcup_{i=1}^n \gamma_i = \bigcap_{i=1}^n \gamma_i =
-\biguplus_{i=1}^n \gamma_i = \bigwedge_{i=1}^n \gamma_i=
-\bigvee_{i=1}^n \gamma_i = \coprod_{i=1}^n \gamma_i
-$$
-
-\clearpage
-
-\section*{Big operators}
-
-\def\testop#1{#1_{i=1}^{n} x^{n} \quad}
-\begin{displaymath}
- \testop\sum
- \testop\prod
- \testop\coprod
- \testop\int
- \testop\oint
-\end{displaymath}
-\begin{displaymath}
- \testop\bigotimes
- \testop\bigoplus
- \testop\bigodot
- \testop\bigwedge
- \testop\bigvee
- \testop\biguplus
- \testop\bigcup
- \testop\bigcap
- \testop\bigsqcup
-% \testop\bigsqcap
-\end{displaymath}
-
-
-\section*{Radicals}
-
-\begin{displaymath}
- \sqrt{x+y} \qquad \sqrt{x^{2}+y^{2}} \qquad
- \sqrt{x_{i}^{2}+y_{j}^{2}} \qquad
- \sqrt{\left(\frac{\cos x}{2}\right)} \qquad
- \sqrt{\left(\frac{\sin x}{2}\right)}
-\end{displaymath}
-
-\begingroup
-\delimitershortfall-1pt
-\begin{displaymath}
- \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{x+y}}}}}}}
-\end{displaymath}
-\endgroup % \delimitershortfall
-
-
-\section*{Over- and underbraces}
-
-\begin{displaymath}
- \overbrace{x} \quad
- \overbrace{x+y} \quad
- \overbrace{x^{2}+y^{2}} \quad
- \overbrace{x_{i}^{2}+y_{j}^{2}} \quad
- \underbrace{x} \quad
- \underbrace{x+y} \quad
- \underbrace{x_{i}+y_{j}} \quad
- \underbrace{x_{i}^{2}+y_{j}^{2}} \quad
-\end{displaymath}
-
-
-\section*{Normal and wide accents}
-
-\begin{displaymath}
- \dot{x} \quad
- \ddot{x} \quad
- \vec{x} \quad
- \bar{x} \quad
- \overline{x} \quad
- \overline{xx} \quad
- \tilde{x} \quad
- \widetilde{x} \quad
- \widetilde{xx} \quad
- \widetilde{xxx} \quad
- \hat{x} \quad
- \widehat{x} \quad
- \widehat{xx} \quad
- \widehat{xxx} \quad
-\end{displaymath}
-
-\def\testwilde#1{
- \begin{displaymath}
- #1{a} \quad
- #1{ab} \quad
- #1{abc} \quad
- #1{abcde} \quad
- #1{abcdefg} \quad
- #1{abcdefghi} \quad
- #1{abcdefghijk} \quad
- \end{displaymath}}
-
-\testwilde\widehat
-\testwilde\widetilde
-\testwilde\widetriangle
-\testwilde\wideparen
-
-
-\section*{Long arrows}
-
-\begin{displaymath}
- \leftrightarrow \quad
- \longleftarrow \quad
- \longrightarrow \quad
- \longleftrightarrow \quad
- \Leftrightarrow \quad
- \Longleftarrow \quad
- \Longrightarrow \quad
- \Longleftrightarrow \quad
-\end{displaymath}
-
-
-\section*{Left and right delimters}
-
-\def\testdelim#1#2{ - #1 f #2 - }
-\begin{displaymath}
- \testdelim()
- \testdelim[]
- \testdelim\lfloor\rfloor
- \testdelim\lceil\rceil
- \testdelim\langle\rangle
- \testdelim\{\}
-\end{displaymath}
-
-\clearpage
-\section*{Big-g-g delimters}
-
-\def\testdelim#1#2{
- -
- \left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1
- #1 -
- #2 \right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2 -}
-
-\begingroup
-\delimitershortfall-1pt
-\begin{displaymath}
- \testdelim\lfloor\rfloor
- \qquad
- \testdelim()
-\end{displaymath}
-\begin{displaymath}
- \testdelim\lceil\rceil
- \qquad
- \testdelim\{\}
-\end{displaymath}
-\begin{displaymath}
- \testdelim\llbracket\rrbracket
- \qquad
- \testdelim\lwave\rwave
-\end{displaymath}
-\begin{displaymath}
- \testdelim[]
- \qquad
- \testdelim\lgroup\rgroup
-\end{displaymath}
-\begin{displaymath}
- \testdelim\langle\rangle
- \qquad
- \testdelim\lmoustache\rmoustache
-\end{displaymath}
-\begin{displaymath}
- \testdelim\uparrow\downarrow \quad
- \testdelim\Uparrow\Downarrow \quad
-\end{displaymath}
-\endgroup % \delimitershortfall
-
-\section*{Delimiters}
-
-Each row should be a different size, but within each row the delimiters
-should be the same size. First with \verb|\big|, etc:
-$$\begin{array}{c}
- \testdelims\relax\relax{J}
- \testdelims\bigl\bigr{J}
- \testdelims\Bigl\Bigr{J}
- \testdelims\biggl\biggr{J}
- \testdelims\Biggl\Biggr{J}
-\end{array}$$
-Then with \verb|\left| and \verb|\right|:
-$$\begin{array}{c}
- \testdelims\left\right{\begin{array}{c} f \end{array}}
- \testdelims\left\right{\begin{array}{c} a\\f \end{array}}
- \testdelims\left\right{\begin{array}{c} a\\a\\f \end{array}}
- \testdelims\left\right{\begin{array}{c} a\\a\\a\\f \end{array}}
-\end{array}$$
-
-\section*{Sizing}
-
-$$
- abcde + x^{abcde} + 2^{x^{abcde}}
-$$
-
-The subscripts should be appropriately sized:
-\begin{quote}
-\testsize\tiny
-\testsize\scriptsize
-\testsize\footnotesize
-\testsize\small
-\testsize\normalsize
-\testsize\large
-\testsize\Large
-\testsize\LARGE
-\testsize\huge
-\testsize\Huge
-
-\end{quote}
-
-\clearpage
-
-\section*{Spacing}
-
-This paragraph should appear to be a monotone grey texture. Suppose
-\(f \in \mathcal{S}_n\) and \(g(x) = (-1)^{|\alpha|}x^\alpha
-f(x)\). Then \(g \in \mathcal{S}_n\); now (\emph{c}) implies
-that \(\hat g = D_\alpha \hat f\) and \(P \cdot D_\alpha\hat
-f = P \cdot \hat g = (P(D)g)\hat{}\), which is a bounded function,
-since \(P(D)g \in L^1(R^n)\). This proves that \(\hat f \in
-\mathcal S_n\). If \(f_i \rightarrow f\) in \(\mathcal S_n\),
-then \(f_i \rightarrow f\) in \(L^1(R^n)\). Therefore \(\hat
-f_i(t) \rightarrow \hat f(t)\) for all \(t \in R^n\). That \(f
-\rightarrow \hat f\) is a \emph{continuous} mapping of
-\(\mathcal S_n\) into \(\mathcal S_n\) follows now from the
-closed graph theorem. And thus for \(x_1\) through \(x_i\).
-\emph{Functional Analysis}, W.~Rudin,
-McGraw--Hill, 1973.
-
-\begin{boldface}
-This paragraph should appear to be a monotone dark texture. Suppose
-\(f \in \mathcal{S}_n\) and \(g(x) = (-1)^{|\alpha|}x^\alpha
-f(x)\). Then \(g \in \mathcal{S}_n\); now (\emph{c}) implies
-that \(\hat g = D_\alpha \hat f\) and \(P \cdot D_\alpha\hat
-f = P \cdot \hat g = (P(D)g)\hat{}\), which is a bounded function,
-since \(P(D)g \in L^1(R^n)\). This proves that \(\hat f \in
-\mathcal S_n\). If \(f_i \rightarrow f\) in \(\mathcal S_n\),
-then \(f_i \rightarrow f\) in \(L^1(R^n)\). Therefore \(\hat
-f_i(t) \rightarrow \hat f(t)\) for all \(t \in R^n\). That \(f
-\rightarrow \hat f\) is a \emph{continuous} mapping of
-\(\mathcal S_n\) into \(\mathcal S_n\) follows now from the
-closed graph theorem. And thus for \(x_1\) through \(x_i\).
-\emph{Functional Analysis}, W.~Rudin, McGraw--Hill, 1973.
-\end{boldface}
-
-{\itshape This paragraph should appear to be a monotone grey texture.
-Suppose \(f \in \mathcal{S}_n\) and \(g(x) =
-(-1)^{|\alpha|}x^\alpha f(x)\). Then \(g \in \mathcal{S}_n\);
-now (\emph{c}) implies that \(\hat g = D_\alpha \hat f\) and
-\(P \cdot D_\alpha\hat f = P \cdot \hat g = (P(D)g)\hat{}\),
-which is a bounded function, since \(P(D)g \in L^1(R^n)\). This
-proves that \(\hat f \in \mathcal S_n\). If \(f_i \rightarrow
-f\) in \(\mathcal S_n\), then \(f_i \rightarrow f\) in
-\(L^1(R^n)\). Therefore \(\hat f_i(t) \rightarrow \hat f(t)\)
-for all \(t \in R^n\). That \(f \rightarrow \hat f\) is a
-\emph{continuous} mapping of \(\mathcal S_n\) into \(\mathcal
-S_n\) follows now from the closed graph theorem. \emph{Functional
-Analysis}, W.~Rudin, McGraw--Hill, 1973.}
-
-The text in these boxes should spread out as much as the math does:
-$$\begin{array}{c}
- \framebox[.95\width][s]{For example \(x+y = \min\{x,y\}
- + \max\{x,y\}\) is a formula.} \\
- \framebox[.975\width][s]{For example \(x+y = \min\{x,y\}
- + \max\{x,y\}\) is a formula.} \\
- \framebox[\width][s]{For example \(x+y = \min\{x,y\}
- + \max\{x,y\}\) is a formula.} \\
- \framebox[1.025\width][s]{For example \(x+y = \min\{x,y\}
- + \max\{x,y\}\) is a formula.} \\
- \framebox[1.05\width][s]{For example \(x+y = \min\{x,y\}
- + \max\{x,y\}\) is a formula.} \\
- \framebox[1.075\width][s]{For example \(x+y = \min\{x,y\}
- + \max\{x,y\}\) is a formula.} \\
- \framebox[1.1\width][s]{For example \(x+y = \min\{x,y\}
- + \max\{x,y\}\) is a formula.} \\
- \framebox[1.125\width][s]{For example \(x+y = \min\{x,y\}
- + \max\{x,y\}\) is a formula.} \\
-\end{array}$$
-\end{document}
-
-%% Local Variables:
-%% mode: latex
-%% End: