diff options
Diffstat (limited to 'Master/texmf-dist/doc/latex/mathdesign/mdbch/mdbchtest.tex')
-rw-r--r-- | Master/texmf-dist/doc/latex/mathdesign/mdbch/mdbchtest.tex | 506 |
1 files changed, 0 insertions, 506 deletions
diff --git a/Master/texmf-dist/doc/latex/mathdesign/mdbch/mdbchtest.tex b/Master/texmf-dist/doc/latex/mathdesign/mdbch/mdbchtest.tex deleted file mode 100644 index 3d1f354edf3..00000000000 --- a/Master/texmf-dist/doc/latex/mathdesign/mdbch/mdbchtest.tex +++ /dev/null @@ -1,506 +0,0 @@ -\documentclass[fleqn]{article} - -\usepackage[fraktur,mdbch]{mathdesign} - -\title{A \LaTeX\ math test document} -\author{for fonts created by Math Design} - -\raggedbottom - -\newcommand{\testsize}[1]{ - #1 \texttt{\string#1}: \(a_{c_e}, b_{d_f}, C_{E_G}, 0_{1_2}, - a_{0_a}, 0_{a_0}, - \sum_{i=0}^\infty\) \\ -} - -\newcommand{\testdelims}[3]{\sqrt{ - #1|#1\|#1\uparrow - #1\downarrow#1\updownarrow#1\Uparrow#1\Downarrow - #1\Updownarrow#1\lfloor#1\lceil - #1(#1\{#1[#1\langle - #3 - #2\rangle#2]#2\}#2) - #2\rceil#2\rfloor#2\Updownarrow#2\Downarrow - #2\Uparrow#2\updownarrow#2\downarrow#2\uparrow - #2\|#2| -}\\} - -\newcommand{\testglyphs}[1]{ -\begin{quote} - #1a#1b#1c#1d#1e#1f#1g#1h#1i#1j#1k#1l#1m - #1n#1o#1p#1q#1r#1s#1t#1u#1v#1w#1x#1y#1z - #1A#1B#1C#1D#1E#1F#1G#1H#1I#1J#1K#1L#1M - #1N#1O#1P#1Q#1R#1S#1T#1U#1V#1W#1X#1Y#1Z - #10#11#12#13#14#15#16#17#18#19 - #1\Gammait#1\Deltait#1\Thetait#1\Lambdait#1\Xiit - #1\Piit#1\Sigmait#1\Upsilonit#1\Phiit#1\Psiit#1\Omegait - #1\alpha#1\beta#1\gamma#1\digamma#1\delta#1\epsilon - #1\varepsilon#1\zeta#1\eta#1\theta#1\vartheta - #1\iota#1\kappa#1\varkappa#1\lambda#1\mu#1\nu#1\xi#1\omicron - #1\pi#1\varpi#1\rho#1\varrho - #1\sigma#1\varsigma#1\tau#1\upsilon#1\phi - #1\varphi#1\chi#1\psi#1\omega - #1\Gamma#1\Delta#1\Theta#1\Lambda#1\Xi - #1\Pi#1\Sigma#1\Upsilon#1\Phi#1\Psi#1\Omega - #1\alphaup#1\betaup#1\gammaup#1\digammaup#1\deltaup#1\epsilonup - #1\varepsilonup#1\zetaup#1\etaup#1\thetaup#1\varthetaup - #1\iotaup#1\kappaup#1\varkappaup#1\lambdaup#1\muup#1\nuup#1\xiup#1\omicron - #1\piup#1\varpiup#1\rhoup#1\varrhoup - #1\sigmaup#1\varsigmaup#1\tauup#1\upsilonup#1\phiup - #1\varphiup#1\chiup#1\psiup#1\omegaup - #1\partial#1\ell#1\imath#1\jmath#1\wp -\end{quote} -} - -\newcommand{\parenthesis}[1]{ $(#1)$ } -\newcommand{\sidebearings}[1]{ $|#1|$ } -\newcommand{\subscripts}[1]{ $#1_\circ$ } -\newcommand{\supscripts}[1]{ $#1^\_$ } -\newcommand{\scripts}[1]{ $#1^2_\circ$ } -\newcommand{\vecaccents}[1]{ $\vec#1$ } -\newcommand{\tildeaccents}[1]{ $\tilde#1$ } - - -\ifx\omicron\undefined - \let\omicron=o -\fi - -\parindent 0pt -\mathindent 1em - -\def\test#1{#1} - -\def\testnums{% - \test 0 \test 1 \test 2 \test 3 \test 4 \test 5 \test 6 \test 7 - \test 8 \test 9 } -\def\testupperi{% - \test A \test B \test C \test D \test E \test F \test G \test H - \test I \test J \test K \test L \test M } -\def\testupperii{% - \test N \test O \test P \test Q \test R \test S \test T \test U - \test V \test W \test X \test Y \test Z } -\def\testupper{% - \testupperi\testupperii} - -\def\testloweri{% - \test a \test b \test c \test d \test e \test f \test g \test h - \test \imath \test \jmath \test k \test l \test m } -\def\testlowerii{% - \test n \test o \test p \test q \test r \test s \test t \test u - \test v \test w \test x \test y \test z - \test\imath \test\jmath } -\def\testlower{% - \testloweri\testlowerii} - -\def\testupgreeki{% - \test A \test B \test\Gamma \test\Delta \test E \test Z \test H - \test\Theta \test I \test K \test\Lambda \test M } -\def\testupgreekii{% - \test N \test\Xi \test O \test\Pi \test P \test\Sigma \test T - \test\Upsilon \test\Phi \test X \test\Psi \test\Omega - \test\nabla } -\def\testupgreek{% - \testupgreeki\testupgreekii} - -\def\testlowgreeki{% - \test\alpha \test\beta \test\gamma \test\delta \test\epsilon - \test\zeta \test\eta \test\theta \test\iota \test\kappa \test\lambda - \test\mu } -\def\testlowgreekii{% - \test\nu \test\xi \test o \test\pi \test\rho \test\sigma \test\tau - \test\upsilon \test\phi \test\chi \test\psi \test\omega } -\def\testlowgreekiii{% - \test\varepsilon \test\vartheta \test\varpi \test\varrho - \test\varsigma \test\varphi} -\def\testlowgreek{% - \testlowgreeki\testlowgreekii\testlowgreekiii} - -\DeclareMathSymbol{\dit}{\mathord}{letters}{`d} -\DeclareMathSymbol{\dup}{\mathord}{operators}{`d} - -\newenvironment{boldface}{\bgroup\mathversion{bold}% - \def\it{\fontseries{b}\fontshape{it}\selectfont}% - \fontseries{b}\selectfont }{\egroup} - -\begin{document} - -\maketitle - -\section*{Introduction} - -This document tests the math capabilities of the mdbchpackage, and is -strongly modelled after a similar document by Alan Jeffrey. - -This test exercises the {\tt MathDesign mdbch} math fonts combined with the -{\tt bch} text fonts. - -\section*{Math Alphabets} - -Math italic: -$$ - ABCDEFGHIJKLMNOPQRSTUVWXYZ - abcdefghijklmnopqrstuvwxyz -$$ -Text italic: -$$ - \mathit{ABCDEFGHIJKLMNOPQRSTUVWXYZ - abcdefghijklmnopqrstuvwxyz} -$$ -Roman: -$$ - \mathrm{ABCDEFGHIJKLMNOPQRSTUVWXYZ - abcdefghijklmnopqrstuvwxyz} -$$ -Bold: -$$ - \mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ - abcdefghijklmnopqrstuvwxyz} -$$ -Typewriter: -$$ - \mathtt{ABCDEFGHIJKLMNOPQRSTUVWXYZ - abcdefghijklmnopqrstuvwxyz} -$$ - -AMS like Symbol: -$$ - \yen \geqq \circeq \daleth \varkappa \leftarrowtail \because - \eqslantless \eqslantgtr \curlyeqprec -$$ - -Greek: -$$ - \Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega - \alpha\beta\gamma\delta\epsilon\varepsilon\zeta\eta\theta\vartheta - \iota\kappa\lambda\mu\nu\xi\omicron\pi\varpi\rho\varrho - \sigma\varsigma\tau\upsilon\phi\varphi\chi\psi\omega -$$ -{\mathversion{bold} -$$ - \Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega - \alpha\beta\gamma\delta\epsilon\varepsilon\zeta\eta\theta\vartheta - \iota\kappa\lambda\mu\nu\xi\omicron\pi\varpi\rho\varrho - \sigma\varsigma\tau\upsilon\phi\varphi\chi\psi\omega -$$} - -Calligraphic: -$$A\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z$$ -Sans: -$$ - A\mathsf{ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z \quad - a\mathsf{abcdefghijklmnopqrstuvwxyz}z -$$ -Fraktur: -$$ - A\mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z -$$ -$$ - a\mathfrak{abcdefghijklmnopqrstuvwxyz}z -$$ - -Blackboard Bold: -$$ - A\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z -$$ - -\section*{Symbols} - -$$ \frac{\partial f}{\partial x} $$ - -$$ - a \hookrightarrow b \hookleftarrow c \longrightarrow d - \longleftarrow e \Longrightarrow f \Longleftarrow g - \longleftrightarrow h \Longleftrightarrow i - \mapsto j -$$ -$$\textstyle - \oint \int \quad - \bigodot \bigoplus \bigotimes \sum \prod - \bigcup \bigcap \biguplus \bigwedge \bigvee \coprod -$$ -$$ - \oint \int \quad - \bigodot \bigoplus \bigotimes \sum \prod - \bigcup \bigcap \biguplus \bigwedge \bigvee \coprod -$$ -$$ \bigodot_{i=1}^n \gamma_i = \bigoplus_{i=1}^n \gamma_i -=\bigotimes_{i=1}^n \gamma_i = \sum_{i=1}^n \gamma_i = \prod_{i=1}^n -\gamma_i = \bigcup_{i=1}^n \gamma_i = \bigcap_{i=1}^n \gamma_i = -\biguplus_{i=1}^n \gamma_i = \bigwedge_{i=1}^n \gamma_i= -\bigvee_{i=1}^n \gamma_i = \coprod_{i=1}^n \gamma_i -$$ - -\clearpage - -\section*{Big operators} - -\def\testop#1{#1_{i=1}^{n} x^{n} \quad} -\begin{displaymath} - \testop\sum - \testop\prod - \testop\coprod - \testop\int - \testop\oint -\end{displaymath} -\begin{displaymath} - \testop\bigotimes - \testop\bigoplus - \testop\bigodot - \testop\bigwedge - \testop\bigvee - \testop\biguplus - \testop\bigcup - \testop\bigcap - \testop\bigsqcup -% \testop\bigsqcap -\end{displaymath} - - -\section*{Radicals} - -\begin{displaymath} - \sqrt{x+y} \qquad \sqrt{x^{2}+y^{2}} \qquad - \sqrt{x_{i}^{2}+y_{j}^{2}} \qquad - \sqrt{\left(\frac{\cos x}{2}\right)} \qquad - \sqrt{\left(\frac{\sin x}{2}\right)} -\end{displaymath} - -\begingroup -\delimitershortfall-1pt -\begin{displaymath} - \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{x+y}}}}}}} -\end{displaymath} -\endgroup % \delimitershortfall - - -\section*{Over- and underbraces} - -\begin{displaymath} - \overbrace{x} \quad - \overbrace{x+y} \quad - \overbrace{x^{2}+y^{2}} \quad - \overbrace{x_{i}^{2}+y_{j}^{2}} \quad - \underbrace{x} \quad - \underbrace{x+y} \quad - \underbrace{x_{i}+y_{j}} \quad - \underbrace{x_{i}^{2}+y_{j}^{2}} \quad -\end{displaymath} - - -\section*{Normal and wide accents} - -\begin{displaymath} - \dot{x} \quad - \ddot{x} \quad - \vec{x} \quad - \bar{x} \quad - \overline{x} \quad - \overline{xx} \quad - \tilde{x} \quad - \widetilde{x} \quad - \widetilde{xx} \quad - \widetilde{xxx} \quad - \hat{x} \quad - \widehat{x} \quad - \widehat{xx} \quad - \widehat{xxx} \quad -\end{displaymath} - -\def\testwilde#1{ - \begin{displaymath} - #1{a} \quad - #1{ab} \quad - #1{abc} \quad - #1{abcde} \quad - #1{abcdefg} \quad - #1{abcdefghi} \quad - #1{abcdefghijk} \quad - \end{displaymath}} - -\testwilde\widehat -\testwilde\widetilde -\testwilde\widetriangle -\testwilde\wideparen - - -\section*{Long arrows} - -\begin{displaymath} - \leftrightarrow \quad - \longleftarrow \quad - \longrightarrow \quad - \longleftrightarrow \quad - \Leftrightarrow \quad - \Longleftarrow \quad - \Longrightarrow \quad - \Longleftrightarrow \quad -\end{displaymath} - - -\section*{Left and right delimters} - -\def\testdelim#1#2{ - #1 f #2 - } -\begin{displaymath} - \testdelim() - \testdelim[] - \testdelim\lfloor\rfloor - \testdelim\lceil\rceil - \testdelim\langle\rangle - \testdelim\{\} -\end{displaymath} - -\clearpage -\section*{Big-g-g delimters} - -\def\testdelim#1#2{ - - - \left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1 - #1 - - #2 \right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2 -} - -\begingroup -\delimitershortfall-1pt -\begin{displaymath} - \testdelim\lfloor\rfloor - \qquad - \testdelim() -\end{displaymath} -\begin{displaymath} - \testdelim\lceil\rceil - \qquad - \testdelim\{\} -\end{displaymath} -\begin{displaymath} - \testdelim\llbracket\rrbracket - \qquad - \testdelim\lwave\rwave -\end{displaymath} -\begin{displaymath} - \testdelim[] - \qquad - \testdelim\lgroup\rgroup -\end{displaymath} -\begin{displaymath} - \testdelim\langle\rangle - \qquad - \testdelim\lmoustache\rmoustache -\end{displaymath} -\begin{displaymath} - \testdelim\uparrow\downarrow \quad - \testdelim\Uparrow\Downarrow \quad -\end{displaymath} -\endgroup % \delimitershortfall - -\section*{Delimiters} - -Each row should be a different size, but within each row the delimiters -should be the same size. First with \verb|\big|, etc: -$$\begin{array}{c} - \testdelims\relax\relax{J} - \testdelims\bigl\bigr{J} - \testdelims\Bigl\Bigr{J} - \testdelims\biggl\biggr{J} - \testdelims\Biggl\Biggr{J} -\end{array}$$ -Then with \verb|\left| and \verb|\right|: -$$\begin{array}{c} - \testdelims\left\right{\begin{array}{c} f \end{array}} - \testdelims\left\right{\begin{array}{c} a\\f \end{array}} - \testdelims\left\right{\begin{array}{c} a\\a\\f \end{array}} - \testdelims\left\right{\begin{array}{c} a\\a\\a\\f \end{array}} -\end{array}$$ - -\section*{Sizing} - -$$ - abcde + x^{abcde} + 2^{x^{abcde}} -$$ - -The subscripts should be appropriately sized: -\begin{quote} -\testsize\tiny -\testsize\scriptsize -\testsize\footnotesize -\testsize\small -\testsize\normalsize -\testsize\large -\testsize\Large -\testsize\LARGE -\testsize\huge -\testsize\Huge - -\end{quote} - -\clearpage - -\section*{Spacing} - -This paragraph should appear to be a monotone grey texture. Suppose -\(f \in \mathcal{S}_n\) and \(g(x) = (-1)^{|\alpha|}x^\alpha -f(x)\). Then \(g \in \mathcal{S}_n\); now (\emph{c}) implies -that \(\hat g = D_\alpha \hat f\) and \(P \cdot D_\alpha\hat -f = P \cdot \hat g = (P(D)g)\hat{}\), which is a bounded function, -since \(P(D)g \in L^1(R^n)\). This proves that \(\hat f \in -\mathcal S_n\). If \(f_i \rightarrow f\) in \(\mathcal S_n\), -then \(f_i \rightarrow f\) in \(L^1(R^n)\). Therefore \(\hat -f_i(t) \rightarrow \hat f(t)\) for all \(t \in R^n\). That \(f -\rightarrow \hat f\) is a \emph{continuous} mapping of -\(\mathcal S_n\) into \(\mathcal S_n\) follows now from the -closed graph theorem. And thus for \(x_1\) through \(x_i\). -\emph{Functional Analysis}, W.~Rudin, -McGraw--Hill, 1973. - -\begin{boldface} -This paragraph should appear to be a monotone dark texture. Suppose -\(f \in \mathcal{S}_n\) and \(g(x) = (-1)^{|\alpha|}x^\alpha -f(x)\). Then \(g \in \mathcal{S}_n\); now (\emph{c}) implies -that \(\hat g = D_\alpha \hat f\) and \(P \cdot D_\alpha\hat -f = P \cdot \hat g = (P(D)g)\hat{}\), which is a bounded function, -since \(P(D)g \in L^1(R^n)\). This proves that \(\hat f \in -\mathcal S_n\). If \(f_i \rightarrow f\) in \(\mathcal S_n\), -then \(f_i \rightarrow f\) in \(L^1(R^n)\). Therefore \(\hat -f_i(t) \rightarrow \hat f(t)\) for all \(t \in R^n\). That \(f -\rightarrow \hat f\) is a \emph{continuous} mapping of -\(\mathcal S_n\) into \(\mathcal S_n\) follows now from the -closed graph theorem. And thus for \(x_1\) through \(x_i\). -\emph{Functional Analysis}, W.~Rudin, McGraw--Hill, 1973. -\end{boldface} - -{\itshape This paragraph should appear to be a monotone grey texture. -Suppose \(f \in \mathcal{S}_n\) and \(g(x) = -(-1)^{|\alpha|}x^\alpha f(x)\). Then \(g \in \mathcal{S}_n\); -now (\emph{c}) implies that \(\hat g = D_\alpha \hat f\) and -\(P \cdot D_\alpha\hat f = P \cdot \hat g = (P(D)g)\hat{}\), -which is a bounded function, since \(P(D)g \in L^1(R^n)\). This -proves that \(\hat f \in \mathcal S_n\). If \(f_i \rightarrow -f\) in \(\mathcal S_n\), then \(f_i \rightarrow f\) in -\(L^1(R^n)\). Therefore \(\hat f_i(t) \rightarrow \hat f(t)\) -for all \(t \in R^n\). That \(f \rightarrow \hat f\) is a -\emph{continuous} mapping of \(\mathcal S_n\) into \(\mathcal -S_n\) follows now from the closed graph theorem. \emph{Functional -Analysis}, W.~Rudin, McGraw--Hill, 1973.} - -The text in these boxes should spread out as much as the math does: -$$\begin{array}{c} - \framebox[.95\width][s]{For example \(x+y = \min\{x,y\} - + \max\{x,y\}\) is a formula.} \\ - \framebox[.975\width][s]{For example \(x+y = \min\{x,y\} - + \max\{x,y\}\) is a formula.} \\ - \framebox[\width][s]{For example \(x+y = \min\{x,y\} - + \max\{x,y\}\) is a formula.} \\ - \framebox[1.025\width][s]{For example \(x+y = \min\{x,y\} - + \max\{x,y\}\) is a formula.} \\ - \framebox[1.05\width][s]{For example \(x+y = \min\{x,y\} - + \max\{x,y\}\) is a formula.} \\ - \framebox[1.075\width][s]{For example \(x+y = \min\{x,y\} - + \max\{x,y\}\) is a formula.} \\ - \framebox[1.1\width][s]{For example \(x+y = \min\{x,y\} - + \max\{x,y\}\) is a formula.} \\ - \framebox[1.125\width][s]{For example \(x+y = \min\{x,y\} - + \max\{x,y\}\) is a formula.} \\ -\end{array}$$ -\end{document} - -%% Local Variables: -%% mode: latex -%% End: |