diff options
Diffstat (limited to 'Master/texmf-dist/doc/latex/math-e/03-07-3.ltx')
-rw-r--r-- | Master/texmf-dist/doc/latex/math-e/03-07-3.ltx | 84 |
1 files changed, 84 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/math-e/03-07-3.ltx b/Master/texmf-dist/doc/latex/math-e/03-07-3.ltx new file mode 100644 index 00000000000..934635469da --- /dev/null +++ b/Master/texmf-dist/doc/latex/math-e/03-07-3.ltx @@ -0,0 +1,84 @@ +%% +%% An UIT Edition example +%% +%% Example 03-07-3 on page 30. +%% +%% Copyright (C) 2010 Herbert Voss +%% +%% It may be distributed and/or modified under the conditions +%% of the LaTeX Project Public License, either version 1.3 +%% of this license or (at your option) any later version. +%% +%% See http://www.latex-project.org/lppl.txt for details. +%% +%% +%% ==== +% Show page(s) 1 +%% +\documentclass[]{exaarticle} +\pagestyle{empty} +\setlength\textwidth{375.57637pt} +\usepackage[utf8]{inputenc} +\usepackage[english]{babel} +\setcounter{equation}{37} +\renewcommand\theequation{3.\arabic{equation}} +\usepackage{amsmath,esint,array,esvect} +\setlength\parindent{0pt} +\StartShownPreambleCommands +\def\Q#1#2{\frac{\partial #1}{\partial #2}} +\def\half{\frac{1}{2}} +\def\vvec#1{\vv{#1}} +\newcommand*\diff{\mathop{}\!\mathrm{d}} +\newcommand*\<{\negthickspace} +\newcommand*\TT{\boldsymbol{\mathsf{T}}} +\def\DD{\boldsymbol{\mathsf{D}}} +\StopShownPreambleCommands +\begin{document} +The conservation principles for mass, torque, and energy can be given in +differential or integral form: +\setlength\jot{15pt} + +\begin{description} +\item[Differential form] +\begin{align} +\begin{aligned} + \Q{\varrho}{t}+\mathrm{div}(\varrho\vv{v}) &= 0 \\ + \varrho\Q{\vv{v}}{t}+(\varrho\vv{v}\times\nabla)\vv{v} &= \vv{f}_0+\mathrm{div}\TT=\vv{f}_0 + -\mathrm{grad}p+\mathrm{div}\TT' \\ + \varrho T\frac{\diff s}{\diff t} &= \varrho\frac{\diff e}{\diff t} + -\frac{p}{\varrho}\frac{\diff\varrho}{\diff t}=-\mathrm{div}\vv{q}+\TT':\DD +\end{aligned} +\end{align} + +\item[Integral form] +\begin{align} + \Q{}{t}\iiint\<\varrho\diff^3V+\oiint\varrho(\vv{v}\times\vv{v}ec{n})\diff^2A &= 0\\ + \Q{}{t}\iiint\<\varrho\vv{v}\diff^3V+\oiint\varrho\vv{v}(\vv{v}\times\vv{n}\,)\diff^2A &= + \iiint\<f_0\diff^3V+\oiint\vv{n}\times T\diff^2A \\ + \Q{}{t}\iiint\<\left(\half v^2+e\right)\varrho\diff^3V+\oiint\left(\half v^2+e\right) + \varrho\left(\vv{v}\times\vv{n}\,\right)\diff^2A & =\\ + \multispan2{\hfill${\displaystyle-\oiint\left(\vv{q}\times\vv{v}ec{n}\right)\diff^2A+ + \iiint\<\left(\vv{v}\times\vv{f}_0\right)\diff^3V+\oiint\left(\vv{v} + \times\vv{n}~\TT\right)\diff^2A}$}.\nonumber +\end{align} +\end{description} + +\def\QQ#1#2{\frac{\partial^2 #1}{\partial #2^2}} +\def\ee#1{\vv{e}_{#1}} +The $\nabla$ operator in Cartesian coordinates: +% +\[ + \vv{\nabla}=\Q{}{x}\ee{x}+\Q{}{y}\ee{y}+\Q{}{z}\ee{z}~~,~~ + \mathrm{grad}f=\vv{\nabla}f=\Q{f}{x}\ee{x}+\Q{f}{y}\ee{y}+\Q{f}{z}\ee{z} +\] +% +\[ + \mathrm{div}~\vv{a}=\vv{\nabla}\times\vv{a}=\Q{a_x}{x}+\Q{a_y}{y}+\Q{a_z}{z}~~,~~\nabla^2 f=\QQ{f}{x}+\QQ{f}{y}+\QQ{f}{z} +\] +% +\[ +\mathrm{rot}~\vv{a}=\vv{\nabla}\times\vv{a}= + \left(\Q{a_z}{y}-\Q{a_y}{z}\right)\ee{x}+\left(\Q{a_x}{z}-\Q{a_z}{x}\right)\ee{y}+ + \left(\Q{a_y}{x}-\Q{a_x}{y}\right)\ee{z} +\] +\end{document} |