diff options
Diffstat (limited to 'Master/texmf-dist/doc/latex/latex-web-companion/ch4/latexexa.html')
-rw-r--r-- | Master/texmf-dist/doc/latex/latex-web-companion/ch4/latexexa.html | 1510 |
1 files changed, 1510 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/latex-web-companion/ch4/latexexa.html b/Master/texmf-dist/doc/latex/latex-web-companion/ch4/latexexa.html new file mode 100644 index 00000000000..7461e32259f --- /dev/null +++ b/Master/texmf-dist/doc/latex/latex-web-companion/ch4/latexexa.html @@ -0,0 +1,1510 @@ + + +<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> +<html +><head><!--latexexa.html from latexexa.tex (TeX4ht, 1999-03-31 09:15:00)--> +<title>Simulation of Energy Loss Straggling</title><link +rel="stylesheet" type="text/css" href="latexexa.css"></head><body +> <div align="center" class="maketitle"> +<h2 class="titleHead">Simulation of Energy Loss Straggling</h2> +<div class="author" align="center"><span +class="emr-12">Maria Physicist</span></div> +<br> +<div class="date" align="center"><span +class="emr-12">March 31, 1999</span></div> + <span class="thanks"></span></div> + <h2 class="sectionHead">1 <a + name="1-10001"></a><a + name="QQ1-1-1"></a>Introduction</h2> +<!--16--><p class="noindent">Due to the statistical nature of ionisation energy loss, large fluctuations can occur in +the amount of energy deposited by a particle traversing an absorber element. +Continuous processes such as multiple scattering and energy loss play a +relevant role in the longitudinal and lateral development of electromagnetic and +hadronic showers, and in the case of sampling calorimeters the measured +resolution can be significantly affected by such fluctuations in their active +layers. The description of ionisation fluctuations is characterised by the +significance parameter <span +class="emmi-10"><img +src="emmi10-14.gif"alt="k"class="10--14"></span>, which is proportional to the ratio of mean energy loss to +the maximum allowed energy transfer in a single collision with an atomic +electron + <center> +<img +src="latexexa0x.gif"alt=" q +k = E---- + max"class="mathdisplay"></center> <span +class="emmi-10">E</span><span +class="emr-7">max</span> +is the maximum transferable energy in a single collision with an atomic +electron. + <center> +<img +src="latexexa1x.gif"alt=" 2m b2g2 +Emax = ----------e----------2-, + 1 +2gme/mx + (me/mx)"class="mathdisplay"></center> where +<span +class="emmi-10"><img +src="emmi10-d.gif"alt="g"class="10--d"> </span>= <span +class="emmi-10">E/m</span><sub ><span +class="emmi-7">x</span></sub> , <span +class="emmi-10">E </span>is energy and <span +class="emmi-10">m</span><sub ><span +class="emmi-7">x</span></sub> the mass of the incident particle, <span +class="emmi-10"><img +src="emmi10-c.gif"alt="b"class="emmi-10--c"align="middle"></span><sup ><span +class="emr-7">2</span></sup> = 1 <span +class="cmsy-10">- </span>1<span +class="emmi-10">/<img +src="emmi10-d.gif"alt="g"class="10--d"></span><sup ><span +class="emr-7">2</span></sup> and +<span +class="emmi-10">m</span><sub ><span +class="emmi-7">e</span></sub> is the electron mass. <span +class="emmi-10"><img +src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle"> </span>comes from the Rutherford scattering cross section and is +defined as: <div align="center" class="eqnarray"><a + name="1-1001r1"></a> +<table +class="eqnarray-star"><tr valign="middle" class="eqnarray"><td +align="right"nowrap +class="eqnarray1"><span +class="emmi-10"><img +src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle"> </span>= 2<span +class="emmi-10"><img +src="emmi10-19.gif"alt="p"class="10--19">z</span><sup ><span +class="emr-7">2</span></sup><span +class="emmi-10">e</span><sup ><span +class="emr-7">4</span></sup><span +class="emmi-10">N</span><sub ><span +class="emmi-7">Av</span></sub><span +class="emmi-10">Z<img +src="emmi10-1a.gif"alt="r"class="emmi-10--1a"align="middle"><img +src="emmi10-e.gif"alt="d"class="10--e">x</span> + <span +class="emmi-10">m</span><sub ><span +class="emmi-7">e</span></sub><span +class="emmi-10"><img +src="emmi10-c.gif"alt="b"class="emmi-10--c"align="middle"></span><sup ><span +class="emr-7">2</span></sup><span +class="emmi-10">c</span><sup ><span +class="emr-7">2</span></sup><span +class="emmi-10">A</span> = 153<span +class="emmi-10">.</span>4 <span +class="emmi-10">z</span><sup ><span +class="emr-7">2</span></sup> +<span +class="emmi-10"><img +src="emmi10-c.gif"alt="b"class="emmi-10--c"align="middle"></span><sup ><span +class="emr-7">2</span></sup> <span +class="emmi-10">Z</span> +<span +class="emmi-10">A</span><span +class="emmi-10"><img +src="emmi10-1a.gif"alt="r"class="emmi-10--1a"align="middle"><img +src="emmi10-e.gif"alt="d"class="10--e">x</span> keV<span +class="emmi-10">,</span></td><td +align="center"nowrap +class="eqnarray2"></td><td +align="left"nowrap +class="eqnarray3"></td></tr></table> +</div>where + <div align="center"><table class="tabular" +cellspacing="0pt" cellpadding="0" +frame="void" ><colgroup><col +id="TBL-2-1"><col +id="TBL-2-2"></colgroup><tr +valign="baseline" id="TBL-2-1-"><td align="left"nowrap id="TBL-2-1-1" +><div class="td11"><span +class="emmi-10">z </span></div></td><td align="left"nowrap id="TBL-2-1-2" +><div class="td11">charge of the incident particle </div></td> +</tr><tr +valign="baseline" id="TBL-2-2-"><td align="left"nowrap id="TBL-2-2-1" +><div class="td11"><span +class="emmi-10">N</span><sub ><span +class="emmi-7">Av</span></sub></div></td><td align="left"nowrap id="TBL-2-2-2" +><div class="td11">Avogadro's number </div></td> +</tr><tr +valign="baseline" id="TBL-2-3-"><td align="left"nowrap id="TBL-2-3-1" +><div class="td11"><span +class="emmi-10">Z </span></div></td><td align="left"nowrap id="TBL-2-3-2" +><div class="td11">atomic number of the material</div></td> +</tr><tr +valign="baseline" id="TBL-2-4-"><td align="left"nowrap id="TBL-2-4-1" +><div class="td11"><span +class="emmi-10">A </span></div></td><td align="left"nowrap id="TBL-2-4-2" +><div class="td11">atomic weight of the material </div></td> +</tr><tr +valign="baseline" id="TBL-2-5-"><td align="left"nowrap id="TBL-2-5-1" +><div class="td11"><span +class="emmi-10"><img +src="emmi10-1a.gif"alt="r"class="emmi-10--1a"align="middle"> </span></div></td><td align="left"nowrap id="TBL-2-5-2" +><div class="td11">density </div></td> +</tr><tr +valign="baseline" id="TBL-2-6-"><td align="left"nowrap id="TBL-2-6-1" +><div class="td11"><span +class="emmi-10"><img +src="emmi10-e.gif"alt="d"class="10--e">x </span></div></td><td align="left"nowrap id="TBL-2-6-2" +><div class="td11">thickness of the material </div></td> +</tr><tr +valign="baseline" id="TBL-2-7-"><td align="left"nowrap id="TBL-2-7-1" +><div class="td11"> </div></td> </tr></table> +</div> +<!--57--><p class="indent"> <span +class="emmi-10"><img +src="emmi10-14.gif"alt="k"class="10--14"> </span>measures the contribution of the collisions with energy transfer close to <span +class="emmi-10">E</span><span +class="emr-7">max</span>. +For a given absorber, <span +class="emmi-10"><img +src="emmi10-14.gif"alt="k"class="10--14"> </span>tends towards large values if <span +class="emmi-10"><img +src="emmi10-e.gif"alt="d"class="10--e">x </span>is large and/or if <span +class="emmi-10"><img +src="emmi10-c.gif"alt="b"class="emmi-10--c"align="middle"> </span>is +small. Likewise, <span +class="emmi-10"><img +src="emmi10-14.gif"alt="k"class="10--14"> </span>tends towards zero if <span +class="emmi-10"><img +src="emmi10-e.gif"alt="d"class="10--e">x </span>is small and/or if <span +class="emmi-10"><img +src="emmi10-c.gif"alt="b"class="emmi-10--c"align="middle"> </span>approaches +1. +<!--63--><p class="indent"> The value of <span +class="emmi-10"><img +src="emmi10-14.gif"alt="k"class="10--14"> </span>distinguishes two regimes which occur in the description of +ionisation fluctuations : + <ol type="1"class="enumerate1" +> + <li class="enumerate"><a + name="1-1003x1"></a>A large number of collisions involving the loss of all or most of the incident + particle energy during the traversal of an absorber. + <!--70--><p class="noindent">As the total energy transfer is composed of a multitude of small energy + losses, we can apply the central limit theorem and describe the fluctuations + by a Gaussian distribution. This case is applicable to non-relativistic + particles and is described by the inequality <span +class="emmi-10"><img +src="emmi10-14.gif"alt="k"class="10--14"> > </span>10 (i.e. when the mean + energy loss in the absorber is greater than the maximum energy transfer + in a single collision). + </li> + <li class="enumerate"><a + name="1-1005x2"></a>Particles traversing thin counters and incident electrons under any + conditions. + <!--81--><p class="noindent">The relevant inequalities and distributions are 0<span +class="emmi-10">.</span>01 <span +class="emmi-10">< <img +src="emmi10-14.gif"alt="k"class="10--14"> < </span>10, Vavilov + distribution, and <span +class="emmi-10"><img +src="emmi10-14.gif"alt="k"class="10--14"> < </span>0<span +class="emmi-10">.</span>01, Landau distribution.</li></ol> +<!--83--><p class="noindent"> +<!--85--><p class="indent"> An additional regime is defined by the contribution of the collisions with low +energy transfer which can be estimated with the relation <span +class="emmi-10"><img +src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle">/I</span><sub ><span +class="emr-7">0</span></sub>, where <span +class="emmi-10">I</span><sub ><span +class="emr-7">0</span></sub> is the mean +ionisation potential of the atom. Landau theory assumes that the number of these +collisions is high, and consequently, it has a restriction <span +class="emmi-10"><img +src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle">/I</span><sub ><span +class="emr-7">0</span></sub> <span +class="cmsy-10">» </span>1. In <span +class="emtt-10">GEANT </span>(see URL +<span +class="emtt-10">http://wwwinfo.cern.ch/asdoc/geant/geantall.html</span>), the limit of Landau +theory has been set at <span +class="emmi-10"><img +src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle">/I</span><sub ><span +class="emr-7">0</span></sub> = 50. Below this limit special models taking into account +the atomic structure of the material are used. This is important in thin layers and +gaseous materials. Figure <a + href="#1-10061">1</a> shows the behaviour of <span +class="emmi-10"><img +src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle">/I</span><sub ><span +class="emr-7">0</span></sub> as a function of the layer +thickness for an electron of 100 keV and 1 GeV of kinetic energy in Argon, Silicon +and Uranium. +<a + name="1-10061"></a> + <hr class="float"><div align="center" class="float" +><table class="float"><tr class="float"><td class="float" +> +<img +src="latexexa2x.gif"alt="PIC"> +<br><div align="center"class="caption"><table class="caption" +><tr valign="baseline" class="caption"><td class="id">Figure 1</td><td +class="content">The variable <span +class="emmi-10"><img +src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle">/I</span><sub ><span +class="emr-7">0</span></sub> can be used to measure the validity range of the +Landau theory. It depends on the type and energy of the particle, <span +class="emmi-10">Z </span>, <span +class="emmi-10">A </span>and the +ionisation potential of the material and the layer thickness. </td></tr></table></div> + </td></tr></table></div><hr class="endfloat"> +<!--110--><p class="indent"> In the following sections, the different theories and models for the energy loss +fluctuation are described. First, the Landau theory and its limitations are discussed, +and then, the Vavilov and Gaussian straggling functions and the methods in the thin +layers and gaseous materials are presented. + <h2 class="sectionHead">2 <a + name="1-20002"></a><a + name="QQ1-1-3"></a>Landau theory</h2> +<!--119--><p class="noindent">For a particle of mass <span +class="emmi-10">m</span><sub ><span +class="emmi-7">x</span></sub> traversing a thickness of material <span +class="emmi-10"><img +src="emmi10-e.gif"alt="d"class="10--e">x</span>, the Landau +probability distribution may be written in terms of the universal Landau function +<span +class="emmi-10"><img +src="emmi10-1e.gif"alt="f"class="10--1e"></span>(<span +class="emmi-10"><img +src="emmi10-15.gif"alt="c"class="10--15"></span>) as[<a + href="#Xbib-LAND">1</a>]: <div align="center" class="eqnarray"><a + name="1-2001r1"></a> +<table +class="eqnarray-star"><tr valign="middle" class="eqnarray"><td +align="right"nowrap +class="eqnarray1"><span +class="emmi-10">f</span>(<span +class="emmi-10"><img +src="emmi10-f.gif"alt="e"class="10--f">, <img +src="emmi10-e.gif"alt="d"class="10--e">x</span>)</td><td +align="center"nowrap +class="eqnarray2">=</td><td +align="left"nowrap +class="eqnarray3">1 + <span +class="emmi-10"><img +src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle"></span> <span +class="emmi-10"><img +src="emmi10-1e.gif"alt="f"class="10--1e"></span>(<span +class="emmi-10"><img +src="emmi10-15.gif"alt="c"class="10--15"></span>)</td></tr></table> +</div>where <div align="center" class="eqnarray"><a + name="1-2002r1"></a> +<table +class="eqnarray-star"><tr valign="middle" class="eqnarray"><td +align="right"nowrap +class="eqnarray1"><span +class="emmi-10"><img +src="emmi10-1e.gif"alt="f"class="10--1e"></span>(<span +class="emmi-10"><img +src="emmi10-15.gif"alt="c"class="10--15"></span>)</td><td +align="center"nowrap +class="eqnarray2">=</td><td +align="left"nowrap +class="eqnarray3"> 1_ +2<span +class="emmi-10"><img +src="emmi10-19.gif"alt="p"class="10--19">i</span> <span +class="cmex-10"><img +src="cmex10-5a.gif"alt=" integral "class="cmex-10--5a"align="middle"></span> + <sub> <span +class="emmi-10">c </span><span +class="cmsy-10">- </span><span +class="emmi-10">i</span><span +class="cmsy-10"><img +src="cmsy10-31.gif"alt=" oo "class="10--31"></span></sub><sup><span +class="emmi-10">c </span>+ <span +class="emmi-10">i</span><span +class="cmsy-10"><img +src="cmsy10-31.gif"alt=" oo "class="10--31"></span></sup> exp <img +src="latexexa3x.gif"alt="(u ln u+ cu)"class="left" align="middle"> <span +class="emmi-10">du</span><span +class="emmi-10"> </span><span +class="emmi-10"> </span><span +class="emmi-10"> </span><span +class="emmi-10"> </span><span +class="emmi-10"> </span> <span +class="emmi-10">c </span><span +class="cmsy-10"><span +class="underline">></span> </span>0</td></tr> +<tr valign="middle" class="eqnarray"><td +align="right"nowrap +class="eqnarray1"><span +class="emmi-10"><img +src="emmi10-15.gif"alt="c"class="10--15"></span></td> <td +align="center"nowrap +class="eqnarray2">=</td><td +align="left"nowrap +class="eqnarray3"><span +class="emmi-10"><img +src="emmi10-f.gif"alt="e"class="10--f"> </span><span +class="cmsy-10">-</span> <img +src="latexexa4x.gif"alt="e"class="bar" > + <span +class="emmi-10"><img +src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle"></span> <span +class="cmsy-10">- </span><span +class="emmi-10"><img +src="emmi10-d.gif"alt="g"class="10--d"></span><span +class="cmsy-7">'</span> <span +class="cmsy-10">- </span><span +class="emmi-10"><img +src="emmi10-c.gif"alt="b"class="emmi-10--c"align="middle"></span><sup ><span +class="emr-7">2</span></sup> <span +class="cmsy-10">-</span> ln <span +class="emmi-10"><img +src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle"></span> ___ +<span +class="emmi-10">E</span><span +class="emr-7">max</span> </td> </tr> +<tr valign="middle" class="eqnarray"><td +align="right"nowrap +class="eqnarray1"><span +class="emmi-10"><img +src="emmi10-d.gif"alt="g"class="10--d"></span><span +class="cmsy-7">'</span></td> <td +align="center"nowrap +class="eqnarray2">=</td><td +align="left"nowrap +class="eqnarray3">0<span +class="emmi-10">.</span>422784 <span +class="emmi-10">. . .</span> = 1 <span +class="cmsy-10">- </span><span +class="emmi-10"><img +src="emmi10-d.gif"alt="g"class="10--d"></span></td> </tr> +<tr valign="middle" class="eqnarray"><td +align="right"nowrap +class="eqnarray1"><span +class="emmi-10"><img +src="emmi10-d.gif"alt="g"class="10--d"></span></td> <td +align="center"nowrap +class="eqnarray2">=</td><td +align="left"nowrap +class="eqnarray3">0<span +class="emmi-10">.</span>577215 <span +class="emmi-10">. . .</span> (Euler's constant)</td> </tr> +<tr valign="middle" class="eqnarray"><td +align="right"nowrap +class="eqnarray1"><img +src="latexexa5x.gif"alt="e"class="bar" ></td> <td +align="center"nowrap +class="eqnarray2">=</td><td +align="left"nowrap +class="eqnarray3">average energy loss</td> </tr> +<tr valign="middle" class="eqnarray"><td +align="right"nowrap +class="eqnarray1"><span +class="emmi-10"><img +src="emmi10-f.gif"alt="e"class="10--f"></span></td> <td +align="center"nowrap +class="eqnarray2">=</td><td +align="left"nowrap +class="eqnarray3">actual energy loss</td> </tr></table> +</div> + <h3 class="subsectionHead">2.1 <a + name="1-30002.1"></a><a + name="QQ1-1-4"></a>Restrictions</h3> +<!--140--><p class="noindent">The Landau formalism makes two restrictive assumptions : + <ol type="1"class="enumerate1" +> + <li class="enumerate"><a + name="1-3002x1"></a>The typical energy loss is small compared to the maximum energy loss in + a single collision. This restriction is removed in the Vavilov theory (see + section <a + href="#1-40003">3</a>). + </li> + <li class="enumerate"><a + name="1-3004x2"></a>The typical energy loss in the absorber should be large compared to the + binding energy of the most tightly bound electron. For gaseous detectors, + typical energy losses are a few keV which is comparable to the binding + energies of the inner electrons. In such cases a more sophisticated approach + which accounts for atomic energy levels[<a + href="#Xbib-TALM">4</a>] is necessary to accurately + simulate data distributions. In <span +class="emtt-10">GEANT</span>, a parameterised model by L. Urbán + is used (see section <a + href="#1-60005">5</a>).</li></ol> +<!--153--><p class="noindent"> +<!--155--><p class="indent"> In addition, the average value of the Landau distribution is infinite. Summing the +Landau fluctuation obtained to the average energy from the <span +class="emmi-10">dE/dx </span>tables, we +obtain a value which is larger than the one coming from the table. The +probability to sample a large value is small, so it takes a large number of steps +(extractions) for the average fluctuation to be significantly larger than zero. This +introduces a dependence of the energy loss on the step size which can affect +calculations. +<!--164--><p class="indent"> A solution to this has been to introduce a limit on the value of the variable +sampled by the Landau distribution in order to keep the average fluctuation to 0. +The value obtained from the <span +class="emtt-10">GLANDO </span>routine is: + <center> +<img +src="latexexa6x.gif"alt="ddE/dx = e- e = q(c -g'+ b2 + ln--q-) + Emax"class="mathdisplay"></center> In +order for this to have average 0, we must impose that: + <center> +<img +src="latexexa7x.gif"alt="c = -g'- b2 -ln -q--- + Emax"class="mathdisplay"></center> +<!--177--><p class="indent"> This is realised introducing a <span +class="emmi-10"><img +src="emmi10-15.gif"alt="c"class="10--15"></span><sub ><span +class="emr-7">max</span></sub>(<img +src="latexexa8x.gif"alt="c"class="bar" >) such that if only values of <span +class="emmi-10"><img +src="emmi10-15.gif"alt="c"class="10--15"> </span><span +class="cmsy-10"><span +class="underline"><</span> </span><span +class="emmi-10"><img +src="emmi10-15.gif"alt="c"class="10--15"></span><sub ><span +class="emr-7">max</span></sub> are +accepted, the average value of the distribution is <img +src="latexexa9x.gif"alt="c"class="bar" >. +<!--181--><p class="indent"> A parametric fit to the universal Landau distribution has been performed, with +following result: + <center> +<img +src="latexexa10x.gif"alt="cmax = 0.60715+ 1.1934c + (0.67794+ 0.052382c)exp(0.94753 +0.74442c)"class="mathdisplay"></center> +only values smaller than <span +class="emmi-10"><img +src="emmi10-15.gif"alt="c"class="10--15"></span><sub ><span +class="emr-7">max</span></sub> are accepted, otherwise the distribution is +resampled. + <h2 class="sectionHead">3 <a + name="1-40003"></a><a + name="QQ1-1-5"></a>Vavilov theory</h2> +<!--197--><p class="noindent">Vavilov[<a + href="#Xbib-VAVI">5</a>] derived a more accurate straggling distribution by introducing the +kinematic limit on the maximum transferable energy in a single collision, rather than +using <span +class="emmi-10">E</span><span +class="emr-7">max</span> = <span +class="cmsy-10"><img +src="cmsy10-31.gif"alt=" oo "class="10--31"></span>. Now we can write[<a + href="#Xbib-SCH1">2</a>]: <div align="center" class="eqnarray"><a + name="1-4001r1"></a> +<table +class="eqnarray-star"><tr valign="middle" class="eqnarray"><td +align="right"nowrap +class="eqnarray1"><span +class="emmi-10">f</span><img +src="latexexa11x.gif"alt="(e,ds)"class="left" align="middle"></td><td +align="center"nowrap +class="eqnarray2">=</td><td +align="left"nowrap +class="eqnarray3">1 + <span +class="emmi-10"><img +src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle"></span> <span +class="emmi-10"><img +src="emmi10-1e.gif"alt="f"class="10--1e"></span><sub ><span +class="emmi-7">v</span></sub><img +src="latexexa12x.gif"alt="( ) + cv,k,b2"class="left" align="middle"></td></tr></table> +</div>where <div align="center" class="eqnarray"><a + name="1-4002r1"></a> +<table +class="eqnarray-star"><tr valign="middle" class="eqnarray"><td +align="right"nowrap +class="eqnarray1"><span +class="emmi-10"><img +src="emmi10-1e.gif"alt="f"class="10--1e"></span><sub ><span +class="emmi-7">v</span></sub><img +src="latexexa13x.gif"alt="(cv,k,b2)"class="left" align="middle"></td><td +align="center"nowrap +class="eqnarray2">=</td><td +align="left"nowrap +class="eqnarray3"> 1_ +2<span +class="emmi-10"><img +src="emmi10-19.gif"alt="p"class="10--19">i</span> <span +class="cmex-10"><img +src="cmex10-5a.gif"alt=" integral "class="cmex-10--5a"align="middle"></span> + <sub> <span +class="emmi-10">c </span><span +class="cmsy-10">- </span><span +class="emmi-10">i</span><span +class="cmsy-10"><img +src="cmsy10-31.gif"alt=" oo "class="10--31"></span></sub><sup><span +class="emmi-10">c </span>+ <span +class="emmi-10">i</span><span +class="cmsy-10"><img +src="cmsy10-31.gif"alt=" oo "class="10--31"></span></sup><span +class="emmi-10"><img +src="emmi10-1e.gif"alt="f"class="10--1e"></span><img +src="latexexa14x.gif"alt="(s)"class="left" align="middle"> <span +class="emmi-10">e</span><sup ><span +class="emmi-7"><img +src="emmi7-15.gif"alt="c"class="7--15">s</span></sup><span +class="emmi-10">ds</span><span +class="emmi-10"> </span><span +class="emmi-10"> </span><span +class="emmi-10"> </span><span +class="emmi-10"> </span><span +class="emmi-10"> </span> <span +class="emmi-10">c </span><span +class="cmsy-10"><span +class="underline">></span> </span>0</td></tr> +<tr valign="middle" class="eqnarray"><td +align="right"nowrap +class="eqnarray1"><span +class="emmi-10"><img +src="emmi10-1e.gif"alt="f"class="10--1e"></span><img +src="latexexa15x.gif"alt="(s)"class="left" align="middle"></td> <td +align="center"nowrap +class="eqnarray2">=</td><td +align="left"nowrap +class="eqnarray3">exp <img +src="latexexa16x.gif"alt="[ 2 ] + k(1+ b g)"class="left" align="middle"> <span +class="emmi-10"> </span> exp <img +src="latexexa17x.gif"alt="[y(s)]"class="left" align="middle"> <span +class="emmi-10">,</span> </td> </tr> +<tr valign="middle" class="eqnarray"><td +align="right"nowrap +class="eqnarray1"><span +class="emmi-10"><img +src="emmi10-20.gif"alt="y"class="10--20"></span><img +src="latexexa18x.gif"alt="(s)"class="left" align="middle"></td> <td +align="center"nowrap +class="eqnarray2">=</td><td +align="left"nowrap +class="eqnarray3"><span +class="emmi-10">s</span> ln <span +class="emmi-10"><img +src="emmi10-14.gif"alt="k"class="10--14"> </span>+ (<span +class="emmi-10">s </span>+ <span +class="emmi-10"><img +src="emmi10-c.gif"alt="b"class="emmi-10--c"align="middle"></span><sup ><span +class="emr-7">2</span></sup><span +class="emmi-10"><img +src="emmi10-14.gif"alt="k"class="10--14"></span>)<img +src="latexexa19x.gif"alt="[ln(s/k)+ E1(s/k)]"class="left" align="middle"> <span +class="cmsy-10">- </span><span +class="emmi-10"><img +src="emmi10-14.gif"alt="k"class="10--14">e</span><sup ><span +class="cmsy-7">-</span><span +class="emmi-7">s/<img +src="emmi7-14.gif"alt="k"class="7--14"></span></sup><span +class="emmi-10">,</span></td> </tr></table> +</div>and <div align="center" class="eqnarray"><a + name="1-4003r1"></a> +<table +class="eqnarray-star"><tr valign="middle" class="eqnarray"><td +align="right"nowrap +class="eqnarray1"><span +class="emmi-10">E</span><sub ><span +class="emr-7">1</span></sub>(<span +class="emmi-10">z</span>)</td><td +align="center"nowrap +class="eqnarray2">=</td><td +align="left"nowrap +class="eqnarray3"><span +class="cmex-10"><img +src="cmex10-5a.gif"alt=" integral "class="cmex-10--5a"align="middle"></span> + <sub> <span +class="emmi-10">z</span></sub><sup><span +class="cmsy-10"><img +src="cmsy10-31.gif"alt=" oo "class="10--31"></span></sup><span +class="emmi-10">t</span><sup ><span +class="cmsy-7">-</span><span +class="emr-7">1</span></sup><span +class="emmi-10">e</span><sup ><span +class="cmsy-7">-</span><span +class="emmi-7">t</span></sup><span +class="emmi-10">dt</span> (the exponential integral)</td></tr> +<tr valign="middle" class="eqnarray"><td +align="right"nowrap +class="eqnarray1"><span +class="emmi-10"><img +src="emmi10-15.gif"alt="c"class="10--15"></span><sub ><span +class="emmi-7">v</span></sub></td> <td +align="center"nowrap +class="eqnarray2">=</td><td +align="left"nowrap +class="eqnarray3"><span +class="emmi-10"><img +src="emmi10-14.gif"alt="k"class="10--14"></span><img +src="latexexa20x.gif"alt="[ ] + e--e - g'- b2 + q"class="left" align="middle"></td> </tr></table> +</div> +<!--224--><p class="indent"> The Vavilov parameters are simply related to the Landau parameter by +<span +class="emmi-10"><img +src="emmi10-15.gif"alt="c"class="10--15"></span><sub ><span +class="emmi-7">L</span></sub> = <span +class="emmi-10"><img +src="emmi10-15.gif"alt="c"class="10--15"></span><sub ><span +class="emmi-7">v</span></sub><span +class="emmi-10">/<img +src="emmi10-14.gif"alt="k"class="10--14"> </span><span +class="cmsy-10">-</span> ln <span +class="emmi-10"><img +src="emmi10-14.gif"alt="k"class="10--14"></span>. It can be shown that as <span +class="emmi-10"><img +src="emmi10-14.gif"alt="k"class="10--14"> </span><span +class="cmsy-10"><img +src="cmsy10-21.gif"alt="-->"class="10--21"> </span>0, the distribution of the variable <span +class="emmi-10"><img +src="emmi10-15.gif"alt="c"class="10--15"></span><sub ><span +class="emmi-7">L</span></sub> +approaches that of Landau. For <span +class="emmi-10"><img +src="emmi10-14.gif"alt="k"class="10--14"> </span><span +class="cmsy-10"><span +class="underline"><</span> </span>0<span +class="emmi-10">.</span>01 the two distributions are already practically +identical. Contrary to what many textbooks report, the Vavilov distribution <span +class="emti-10">does not</span> +approximate the Landau distribution for small <span +class="emmi-10"><img +src="emmi10-14.gif"alt="k"class="10--14"></span>, but rather the distribution of <span +class="emmi-10"><img +src="emmi10-15.gif"alt="c"class="10--15"></span><sub ><span +class="emmi-7">L</span></sub> +defined above tends to the distribution of the true <span +class="emmi-10"><img +src="emmi10-15.gif"alt="c"class="10--15"> </span>from the Landau density +function. Thus the routine <span +class="emtt-10">GVAVIV </span>samples the variable <span +class="emmi-10"><img +src="emmi10-15.gif"alt="c"class="10--15"></span><sub ><span +class="emmi-7">L</span></sub> rather than <span +class="emmi-10"><img +src="emmi10-15.gif"alt="c"class="10--15"></span><sub ><span +class="emmi-7">v</span></sub>. For +<span +class="emmi-10"><img +src="emmi10-14.gif"alt="k"class="10--14"> </span><span +class="cmsy-10"><span +class="underline">></span> </span>10 the Vavilov distribution tends to a Gaussian distribution (see next +section). + <h2 class="sectionHead">4 <a + name="1-50004"></a><a + name="QQ1-1-6"></a>Gaussian Theory</h2> +<!--239--><p class="noindent">Various conflicting forms have been proposed for Gaussian straggling functions, but +most of these appear to have little theoretical or experimental basis. However, it has +been shown[<a + href="#Xbib-SELT">3</a>] that for <span +class="emmi-10"><img +src="emmi10-14.gif"alt="k"class="10--14"> </span><span +class="cmsy-10"><span +class="underline">></span> </span>10 the Vavilov distribution can be replaced by a Gaussian +of the form : <div align="center" class="eqnarray"><a + name="1-5001r1"></a> +<table +class="eqnarray-star"><tr valign="middle" class="eqnarray"><td +align="right"nowrap +class="eqnarray1"><span +class="emmi-10">f</span>(<span +class="emmi-10"><img +src="emmi10-f.gif"alt="e"class="10--f">, <img +src="emmi10-e.gif"alt="d"class="10--e">s</span>) <span +class="cmsy-10"><img +src="cmsy10-19.gif"alt=" ~~ "class="10--19"></span> 1 __________ +<span +class="emmi-10"><img +src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle"></span><img +src="latexexa21x.gif"alt=" V~ ------------ + 2pk (1- b2/2)"class="sqrtsign" > exp <img +src="latexexa22x.gif"alt="[(e- e)2 k ] + --------2-----2--- + 2 q (1- b /2)"class="left" align="middle"></td><td +align="center"nowrap +class="eqnarray2"></td><td +align="left"nowrap +class="eqnarray3"></td></tr></table> +</div>thus implying <div align="center" class="eqnarray"><a + name="1-5002r1"></a> +<table +class="eqnarray-star"><tr valign="middle" class="eqnarray"><td +align="right"nowrap +class="eqnarray1">mean</td><td +align="center"nowrap +class="eqnarray2">=</td><td +align="left"nowrap +class="eqnarray3"><img +src="latexexa23x.gif"alt="e"class="bar" ></td> </tr> +<tr valign="middle" class="eqnarray"><td +align="right"nowrap +class="eqnarray1"><span +class="emmi-10"><img +src="emmi10-1b.gif"alt="s"class="10--1b"></span><sup ><span +class="emr-7">2</span></sup></td> <td +align="center"nowrap +class="eqnarray2">=</td><td +align="left"nowrap +class="eqnarray3"><span +class="emmi-10"><img +src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle"></span><sup ><span +class="emr-7">2</span></sup> + <span +class="emmi-10"><img +src="emmi10-14.gif"alt="k"class="10--14"></span> (1 <span +class="cmsy-10">- </span><span +class="emmi-10"><img +src="emmi10-c.gif"alt="b"class="emmi-10--c"align="middle"></span><sup ><span +class="emr-7">2</span></sup><span +class="emmi-10">/</span>2) = <span +class="emmi-10"><img +src="emmi10-18.gif"alt="q"class="emmi-10--18"align="middle">E</span> +<span +class="emr-7">max</span>(1 <span +class="cmsy-10">- </span><span +class="emmi-10"><img +src="emmi10-c.gif"alt="b"class="emmi-10--c"align="middle"></span><sup ><span +class="emr-7">2</span></sup><span +class="emmi-10">/</span>2)</td></tr></table> +</div> + <h2 class="sectionHead">5 <a + name="1-60005"></a><a + name="QQ1-1-7"></a>Urbán model</h2> +<!--260--><p class="noindent">The method for computing restricted energy losses with <span +class="emmi-10"><img +src="emmi10-e.gif"alt="d"class="10--e"></span>-ray production +above given threshold energy in <span +class="emtt-10">GEANT </span>is a Monte Carlo method that can +be used for thin layers. It is fast and it can be used for any thickness of +a medium. Approaching the limit of the validity of Landau's theory, the +loss distribution approaches smoothly the Landau form as shown in Figure +<a + href="#1-60012">2</a>. +<a + name="1-60012"></a> + <hr class="float"><div align="center" class="float" +><table class="float"><tr class="float"><td class="float" +> +<img +src="latexexa24x.gif"alt="PIC"> +<br><div align="center"class="caption"><table class="caption" +><tr valign="baseline" class="caption"><td class="id">Figure 2</td><td +class="content">Energy loss distribution for a 3 GeV electron in Argon as given by +standard <span +class="emtt-10">GEANT</span>. The width of the layers is given in centimeters.</td></tr></table></div> + </td></tr></table></div><hr class="endfloat"> +<!--275--><p class="indent"> It is assumed that the atoms have only two energy levels with binding energy <span +class="emmi-10">E</span><sub ><span +class="emr-7">1</span></sub> +and <span +class="emmi-10">E</span><sub ><span +class="emr-7">2</span></sub>. The particle--atom interaction will then be an excitation with energy loss <span +class="emmi-10">E</span><sub ><span +class="emr-7">1</span></sub> +or <span +class="emmi-10">E</span><sub ><span +class="emr-7">2</span></sub>, or an ionisation with an energy loss distributed according to a function +<span +class="emmi-10">g</span>(<span +class="emmi-10">E</span>) <span +class="cmsy-10">~ </span>1<span +class="emmi-10">/E</span><sup ><span +class="emr-7">2</span></sup>: <table width="100%" +class="equation"><tr><td> + <center> +<img +src="latexexa25x.gif"alt=" (Emax +-I)I-1 +g(E) = Emax E2"class="mathdisplay"><a + name="1-6002r1"></a></center></td><td width="5%">(1)</td></tr></table> +<!--283--><p class="indent"> The macroscopic cross-section for excitations (<span +class="emmi-10">i </span>= 1<span +class="emmi-10">, </span>2) is <table width="100%" +class="equation"><tr><td> + <center> +<img +src="latexexa26x.gif"alt=" f ln(2mb2g2/E )- b2 +i = C-i-------2-2-i----2 (1- r) + Ei ln(2mb g/I) - b"class="mathdisplay"><a + name="1-6003r2"></a></center></td><td width="5%">(2)</td></tr></table> +and the macroscopic cross-section for ionisation is <table width="100%" +class="equation"><tr><td> + <center> +<img +src="latexexa27x.gif"alt="3 = C-------Emax---------r + I(Emax + I)ln(EmaIx+I)"class="mathdisplay"><a + name="1-6004r3"></a></center></td><td width="5%">(3)</td></tr></table> +<span +class="emmi-10">E</span><span +class="emr-7">max</span> is the <span +class="emtt-10">GEANT </span>cut for <span +class="emmi-10"><img +src="emmi10-e.gif"alt="d"class="10--e"></span>-production, or the maximum energy transfer minus mean +ionisation energy, if it is smaller than this cut-off value. The following notation is +used: + <div align="center"><table class="tabular" +cellspacing="0pt" cellpadding="0" +frame="void" ><colgroup><col +id="TBL-3-1"><col +id="TBL-3-2"></colgroup><tr +valign="baseline" id="TBL-3-1-"><td align="left"nowrap id="TBL-3-1-1" +><div class="td11"><span +class="emmi-10">r, C</span></div></td><td align="left"nowrap id="TBL-3-1-2" +><div class="td11">parameters of the model</div></td> +</tr><tr +valign="baseline" id="TBL-3-2-"><td align="left"nowrap id="TBL-3-2-1" +><div class="td11"><span +class="emmi-10">E</span><sub ><span +class="emmi-7">i</span></sub> </div></td><td align="left"nowrap id="TBL-3-2-2" +><div class="td11">atomic energy levels </div></td> +</tr><tr +valign="baseline" id="TBL-3-3-"><td align="left"nowrap id="TBL-3-3-1" +><div class="td11"><span +class="emmi-10">I </span></div></td><td align="left"nowrap id="TBL-3-3-2" +><div class="td11">mean ionisation energy </div></td> +</tr><tr +valign="baseline" id="TBL-3-4-"><td align="left"nowrap id="TBL-3-4-1" +><div class="td11"><span +class="emmi-10">f</span><sub ><span +class="emmi-7">i</span></sub> </div></td><td align="left"nowrap id="TBL-3-4-2" +><div class="td11">oscillator strengths </div></td> </tr></table> +</div> +<!--306--><p class="indent"> The model has the parameters <span +class="emmi-10">f</span><sub ><span +class="emmi-7">i</span></sub> , <span +class="emmi-10">E</span><sub ><span +class="emmi-7">i</span></sub> , <span +class="emmi-10">C </span>and <span +class="emmi-10">r</span><span +class="emmi-10"> </span>(0 <span +class="cmsy-10"><span +class="underline"><</span> </span><span +class="emmi-10">r </span><span +class="cmsy-10"><span +class="underline"><</span> </span>1). The oscillator +strengths <span +class="emmi-10">f</span><sub ><span +class="emmi-7">i</span></sub> and the atomic level energies <span +class="emmi-10">E</span><sub ><span +class="emmi-7">i</span></sub> should satisfy the constraints +<div align="center" class="eqnarray"><a + name="1-6005r4"></a> +<table +class="eqnarray"><tr valign="middle" class="eqnarray"><td +align="right"nowrap +class="eqnarray1"><span +class="emmi-10">f</span><sub ><span +class="emr-7">1</span></sub> + <span +class="emmi-10">f</span><sub ><span +class="emr-7">2</span></sub></td> <td +align="center"nowrap +class="eqnarray2">=</td><td +align="left"nowrap +class="eqnarray3">1</td><td +width="10" class="eqnarray4"></td><td +align="right"nowrap +class="eqnarray4">(4)<a + name="1-6005r5"></a></td></tr> +<tr valign="middle" class="eqnarray"><td +align="right"nowrap +class="eqnarray1"><span +class="emmi-10">f</span><sub ><span +class="emr-7">1</span></sub> ln <span +class="emmi-10">E</span><sub ><span +class="emr-7">1</span></sub> + <span +class="emmi-10">f</span><sub ><span +class="emr-7">2</span></sub> ln <span +class="emmi-10">E</span><sub ><span +class="emr-7">2</span></sub></td><td +align="center"nowrap +class="eqnarray2">=</td><td +align="left"nowrap +class="eqnarray3">ln <span +class="emmi-10">I</span></td><td +width="10" class="eqnarray4"></td><td +align="right"nowrap +class="eqnarray4">(5)<a + name="1-6005r6"></a></td></tr></table> +</div>The parameter <span +class="emmi-10">C </span>can be defined with the help of the mean energy loss <span +class="emmi-10">dE/dx </span>in the +following way: The numbers of collisions (<span +class="emmi-10">n</span><sub ><span +class="emmi-7">i</span></sub> , i = 1,2 for the excitation and 3 for the +ionisation) follow the Poisson distribution with a mean number <span +class="cmsy-10"><</span><span +class="emmi-10">n</span><sub ><span +class="emmi-7">i</span></sub><span +class="cmsy-10">></span>. In a step <span +class="emmi-10">x</span> +the mean number of collisions is <table width="100%" +class="equation"><tr><td> + <center> +<img +src="latexexa28x.gif"alt="<n> = x + i i"class="mathdisplay"><a + name="1-6006r6"></a></center></td><td width="5%">(6)</td></tr></table> +The mean energy loss <span +class="emmi-10">dE/dx </span>in a step is the sum of the excitation and ionisation +contributions <table width="100%" +class="equation"><tr><td> + <center> +<img +src="latexexa29x.gif"alt=" [ ] +dE integral Emax+I +dx- x = 1E1 + 2E2 + 3 E g(E) dE x + I"class="mathdisplay"><a + name="1-6007r7"></a></center></td><td width="5%">(7)</td></tr></table> +From this, using the equations (<a + href="#1-6003r2">2</a>), (<a + href="#1-6004r3">3</a>), (<a + href="#1-6005r4">4</a>) and (<a + href="#1-6005r5">5</a>), one can define the parameter <span +class="emmi-10">C</span> +<table width="100%" +class="equation"><tr><td> + <center> +<img +src="latexexa30x.gif"alt="C = dE- + dx"class="mathdisplay"><a + name="1-6008r8"></a></center></td><td width="5%">(8)</td></tr></table> +<!--335--><p class="indent"> The following values have been chosen in <span +class="emtt-10">GEANT </span>for the other parameters: + <center> +<img +src="latexexa31x.gif"alt=" { + 0 ifZ < 2 +f2 = 2/Z ifZ > 2 ==> f1 = 1- f2 + ( )f11 +E2 = 10Z2eV ==> E1 = EIf2 +r = 0.4 2"class="mathdisplay"></center> With +these values the atomic level <span +class="emmi-10">E</span><sub ><span +class="emr-7">2</span></sub> corresponds approximately the K-shell energy of the +atoms and <span +class="emmi-10">Zf</span><sub ><span +class="emr-7">2</span></sub> the number of K-shell electrons. <span +class="emmi-10">r </span>is the only variable which can be +tuned freely. It determines the relative contribution of ionisation and excitation to +the energy loss. +<!--354--><p class="indent"> The energy loss is computed with the assumption that the step length (or the +relative energy loss) is small, and---in consequence---the cross-section can be +considered constant along the path length. The energy loss due to the excitation is +<table width="100%" +class="equation"><tr><td> + <center> +<img +src="latexexa32x.gif"alt="Ee = n1E1 +n2E2"class="mathdisplay"><a + name="1-6009r9"></a></center></td><td width="5%">(9)</td></tr></table> +where <span +class="emmi-10">n</span><sub ><span +class="emr-7">1</span></sub> and <span +class="emmi-10">n</span><sub ><span +class="emr-7">2</span></sub> are sampled from Poisson distribution as discussed above. The loss +due to the ionisation can be generated from the distribution <span +class="emmi-10">g</span>(<span +class="emmi-10">E</span>) by the inverse +transformation method: <div align="center" class="eqnarray"><a + name="1-6010r10"></a> +<table +class="eqnarray"><tr valign="middle" class="eqnarray"><td +align="right"nowrap +class="eqnarray1"><span +class="emmi-10">u </span>= <span +class="emmi-10">F</span>(<span +class="emmi-10">E</span>)</td> <td +align="center"nowrap +class="eqnarray2">=</td><td +align="left"nowrap +class="eqnarray3"><span +class="cmex-10"><img +src="cmex10-5a.gif"alt=" integral "class="cmex-10--5a"align="middle"></span> + <sub> <span +class="emmi-10">I</span></sub><sup><span +class="emmi-10">E</span></sup><span +class="emmi-10">g</span>(<span +class="emmi-10">x</span>)<span +class="emmi-10">dx</span></td> <td +width="10" class="eqnarray4"></td><td +align="right"nowrap +class="eqnarray4"></td></tr> +<tr valign="middle" class="eqnarray"><td +align="right"nowrap +class="eqnarray1"><span +class="emmi-10">E </span>= <span +class="emmi-10">F</span><sup ><span +class="cmsy-7">-</span><span +class="emr-7">1</span></sup>(<span +class="emmi-10">u</span>)</td><td +align="center"nowrap +class="eqnarray2">=</td><td +align="left"nowrap +class="eqnarray3"> <span +class="emmi-10">I</span>_____ +1 <span +class="cmsy-10">- </span><span +class="emmi-10">u</span> <span +class="emmi-7">E</span><span +class="emr-5">max</span>__ +<span +class="emmi-7">E</span><span +class="emr-5">max</span><span +class="emr-7">+</span><span +class="emmi-7">I</span> </td><td +width="10" class="eqnarray4"></td><td +align="right"nowrap +class="eqnarray4">(10)<a + name="1-6010r11"></a></td></tr> +<tr valign="middle" class="eqnarray"><td +align="right"nowrap +class="eqnarray1"></td> <td +align="center"nowrap +class="eqnarray2"></td> <td +align="left"nowrap +class="eqnarray3"></td> <td +width="10" class="eqnarray4"></td><td +align="right"nowrap +class="eqnarray4">(11)<a + name="1-6010r12"></a></td></tr></table> +</div>where <span +class="emmi-10">u </span>is a uniform random number between <span +class="emmi-10">F</span>(<span +class="emmi-10">I</span>) = 0 and <span +class="emmi-10">F</span>(<span +class="emmi-10">E</span><span +class="emr-7">max</span> + <span +class="emmi-10">I</span>) = 1. The +contribution from the ionisations will be <table width="100%" +class="equation"><tr><td> + <center> +<img +src="latexexa33x.gif"alt=" n sum 3 -----I------ +Ei = 1 -uj -Emax-- + j=1 Emax+I"class="mathdisplay"><a + name="1-6011r12"></a></center></td><td width="5%">(12)</td></tr></table> +where <span +class="emmi-10">n</span><sub ><span +class="emr-7">3</span></sub> is the number of ionisation (sampled from Poisson distribution). The +energy loss in a step will then be <span +class="emmi-10">E </span>= <span +class="emmi-10">E</span><sub ><span +class="emmi-7">e</span></sub> + <span +class="emmi-10">E</span><sub ><span +class="emmi-7">i</span></sub>. + <h3 class="subsectionHead">5.1 <a + name="1-70005.1"></a><a + name="QQ1-1-9"></a>Fast simulation for <span +class="emmi-10">n</span><sub ><span +class="emr-7">3</span></sub> <span +class="cmsy-10"><span +class="underline">></span> </span>16</h3> +<!--380--><p class="noindent">If the number of ionisation <span +class="emmi-10">n</span><sub ><span +class="emr-7">3</span></sub> is bigger than 16, a faster sampling method can be +used. The possible energy loss interval is divided in two parts: one in which the +number of collisions is large and the sampling can be done from a Gaussian +distribution and the other in which the energy loss is sampled for each collision. Let +us call the former interval [<span +class="emmi-10">I, <img +src="emmi10-b.gif"alt="a"class="10--b">I</span>] the interval A, and the latter [<span +class="emmi-10"><img +src="emmi10-b.gif"alt="a"class="10--b">I, E</span><span +class="emr-7">max</span>] the interval +B. <span +class="emmi-10"><img +src="emmi10-b.gif"alt="a"class="10--b"> </span>lies between 1 and <span +class="emmi-10">E</span><span +class="emr-7">max</span><span +class="emmi-10">/I</span>. A collision with a loss in the interval A happens +with the probability <table width="100%" +class="equation"><tr><td> + <center> +<img +src="latexexa34x.gif"alt=" integral aI +P(a) = g(E)dE = (Emax-+-I)(a---1) + I Emaxa"class="mathdisplay"><a + name="1-7001r13"></a></center></td><td width="5%">(13)</td></tr></table> +The mean energy loss and the standard deviation for this type of collision are +<table width="100%" +class="equation"><tr><td> + <center> +<img +src="latexexa35x.gif"alt=" --1-- integral aI Ia-lna- +< E(a)> = P (a) I E g(E) dE = a- 1"class="mathdisplay"><a + name="1-7002r14"></a></center></td><td width="5%">(14)</td></tr></table> +and <table width="100%" +class="equation"><tr><td> + <center> +<img +src="latexexa36x.gif"alt=" integral aI ( 2 ) +s2(a) =--1-- E2 g(E) dE = I2a 1 - -aln-a2 + P (a) I (a- 1)"class="mathdisplay"><a + name="1-7003r15"></a></center></td><td width="5%">(15)</td></tr></table> +If the collision number is high , we assume that the number of the type A collisions +can be calculated from a Gaussian distribution with the following mean value and +standard deviation: <div align="center" class="eqnarray"><a + name="1-7004r16"></a> +<table +class="eqnarray"><tr valign="middle" class="eqnarray"><td +align="right"nowrap +class="eqnarray1"><span +class="cmsy-10"><</span><span +class="emmi-10">n</span><sub ><span +class="emmi-7">A</span></sub><span +class="cmsy-10">></span></td><td +align="center"nowrap +class="eqnarray2">=</td><td +align="left"nowrap +class="eqnarray3"><span +class="emmi-10">n</span><sub ><span +class="emr-7">3</span></sub><span +class="emmi-10">P</span>(<span +class="emmi-10"><img +src="emmi10-b.gif"alt="a"class="10--b"></span>)</td> <td +width="10" class="eqnarray4"></td><td +align="right"nowrap +class="eqnarray4">(16)<a + name="1-7004r17"></a></td></tr> +<tr valign="middle" class="eqnarray"><td +align="right"nowrap +class="eqnarray1"><span +class="emmi-10"><img +src="emmi10-1b.gif"alt="s"class="10--1b"></span><sub><span +class="emmi-10">A</span></sub><sup>2</sup></td> <td +align="center"nowrap +class="eqnarray2">=</td><td +align="left"nowrap +class="eqnarray3"><span +class="emmi-10">n</span><sub ><span +class="emr-7">3</span></sub><span +class="emmi-10">P</span>(<span +class="emmi-10"><img +src="emmi10-b.gif"alt="a"class="10--b"></span>)(1 <span +class="cmsy-10">- </span><span +class="emmi-10">P</span>(<span +class="emmi-10"><img +src="emmi10-b.gif"alt="a"class="10--b"></span>))</td><td +width="10" class="eqnarray4"></td><td +align="right"nowrap +class="eqnarray4">(17)<a + name="1-7004r18"></a></td></tr></table> +</div>It is further assumed that the energy loss in these collisions has a Gaussian +distribution with <div align="center" class="eqnarray"><a + name="1-7005r18"></a> +<table +class="eqnarray"><tr valign="middle" class="eqnarray"><td +align="right"nowrap +class="eqnarray1"><span +class="cmsy-10"><</span><span +class="emmi-10">E</span><sub ><span +class="emmi-7">A</span></sub><span +class="cmsy-10">></span></td><td +align="center"nowrap +class="eqnarray2">=</td><td +align="left"nowrap +class="eqnarray3"><span +class="emmi-10">n</span><sub ><span +class="emmi-7">A</span></sub><span +class="cmsy-10"><</span><span +class="emmi-10">E</span>(<span +class="emmi-10"><img +src="emmi10-b.gif"alt="a"class="10--b"></span>)<span +class="cmsy-10">></span></td><td +width="10" class="eqnarray4"></td><td +align="right"nowrap +class="eqnarray4">(18)<a + name="1-7005r19"></a></td></tr> +<tr valign="middle" class="eqnarray"><td +align="right"nowrap +class="eqnarray1"><span +class="emmi-10"><img +src="emmi10-1b.gif"alt="s"class="10--1b"></span><sub><span +class="emmi-10">E, A</span></sub><sup>2</sup></td><td +align="center"nowrap +class="eqnarray2">=</td><td +align="left"nowrap +class="eqnarray3"><span +class="emmi-10">n</span><sub ><span +class="emmi-7">A</span></sub><span +class="emmi-10"><img +src="emmi10-1b.gif"alt="s"class="10--1b"></span><sup ><span +class="emr-7">2</span></sup>(<span +class="emmi-10"><img +src="emmi10-b.gif"alt="a"class="10--b"></span>)</td><td +width="10" class="eqnarray4"></td><td +align="right"nowrap +class="eqnarray4">(19)<a + name="1-7005r20"></a></td></tr></table> +</div>The energy loss of these collision can then be sampled from the Gaussian +distribution. +<!--427--><p class="indent"> The collisions where the energy loss is in the interval B are sampled directly from +<table width="100%" +class="equation"><tr><td> + <center> +<img +src="latexexa37x.gif"alt=" n3- sum nA aI +EB = 1--u-Emax+I-aI + i=1 i Emax+I"class="mathdisplay"><a + name="1-7006r20"></a></center></td><td width="5%">(20)</td></tr></table> +The total energy loss is the sum of these two types of collisions: <table width="100%" +class="equation"><tr><td> + <center> +<img +src="latexexa38x.gif"alt="E = EA + EB"class="mathdisplay"><a + name="1-7007r21"></a></center></td><td width="5%">(21)</td></tr></table> +<!--438--><p class="indent"> The approximation of equations ((<a + href="#1-7004r16">16</a>), (<a + href="#1-7004r17">17</a>), (<a + href="#1-7005r18">18</a>) and (<a + href="#1-7005r19">19</a>) can be used under the +following conditions: <div align="center" class="eqnarray"><a + name="1-7008r22"></a> +<table +class="eqnarray"><tr valign="middle" class="eqnarray"><td +align="right"nowrap +class="eqnarray1"><span +class="cmsy-10"><</span><span +class="emmi-10">n</span><sub ><span +class="emmi-7">A</span></sub><span +class="cmsy-10">> - </span><span +class="emmi-10">c <img +src="emmi10-1b.gif"alt="s"class="10--1b"></span><sub ><span +class="emmi-7">A</span></sub></td> <td +align="center"nowrap +class="eqnarray2"><span +class="cmsy-10"><span +class="underline">></span></span></td><td +align="left"nowrap +class="eqnarray3">0</td><td +width="10" class="eqnarray4"></td><td +align="right"nowrap +class="eqnarray4">(22)<a + name="1-7008r23"></a></td></tr> +<tr valign="middle" class="eqnarray"><td +align="right"nowrap +class="eqnarray1"><span +class="cmsy-10"><</span><span +class="emmi-10">n</span><sub ><span +class="emmi-7">A</span></sub><span +class="cmsy-10">> </span>+ <span +class="emmi-10">c <img +src="emmi10-1b.gif"alt="s"class="10--1b"></span><sub ><span +class="emmi-7">A</span></sub></td> <td +align="center"nowrap +class="eqnarray2"><span +class="cmsy-10"><span +class="underline"><</span></span></td><td +align="left"nowrap +class="eqnarray3"><span +class="emmi-10">n</span><sub ><span +class="emr-7">3</span></sub></td><td +width="10" class="eqnarray4"></td><td +align="right"nowrap +class="eqnarray4">(23)<a + name="1-7008r24"></a></td></tr> +<tr valign="middle" class="eqnarray"><td +align="right"nowrap +class="eqnarray1"><span +class="cmsy-10"><</span><span +class="emmi-10">E</span><sub ><span +class="emmi-7">A</span></sub><span +class="cmsy-10">> - </span><span +class="emmi-10">c <img +src="emmi10-1b.gif"alt="s"class="10--1b"></span><sub ><span +class="emmi-7">E,A</span></sub></td><td +align="center"nowrap +class="eqnarray2"><span +class="cmsy-10"><span +class="underline">></span></span></td><td +align="left"nowrap +class="eqnarray3">0</td><td +width="10" class="eqnarray4"></td><td +align="right"nowrap +class="eqnarray4">(24)<a + name="1-7008r25"></a></td></tr></table> +</div>where <span +class="emmi-10">c </span><span +class="cmsy-10"><span +class="underline">></span> </span>4. From the equations (<a + href="#1-7001r13">13</a>), (<a + href="#1-7004r16">16</a>) and (<a + href="#1-7005r18">18</a>) and from the conditions (<a + href="#1-7008r22">22</a>) +and (<a + href="#1-7008r23">23</a>) the following limits can be derived: <table width="100%" +class="equation"><tr><td> + <center> +<img +src="latexexa39x.gif"alt=" (n3 + c2)(Emax + I) (n3 + c2)(Emax +I) +amin =---------------2- < a < amax = -2--------------- + n3(Emax + I)+ c I c(Emax + I)+ n3I"class="mathdisplay"><a + name="1-7009r25"></a></center></td><td width="5%">(25)</td></tr></table> +This conditions gives a lower limit to number of the ionisations <span +class="emmi-10">n</span><sub ><span +class="emr-7">3</span></sub> for which the fast +sampling can be done: <table width="100%" +class="equation"><tr><td> + <center> +<img +src="latexexa40x.gif"alt="n3 > c2"class="mathdisplay"><a + name="1-7010r26"></a></center></td><td width="5%">(26)</td></tr></table> +As in the conditions (<a + href="#1-7008r22">22</a>), (<a + href="#1-7008r23">23</a>) and (<a + href="#1-7008r24">24</a>) the value of <span +class="emmi-10">c </span>is as minimum 4, one gets +<span +class="emmi-10">n</span><sub ><span +class="emr-7">3</span></sub> <span +class="cmsy-10"><span +class="underline">></span> </span>16. In order to speed the simulation, the maximum value is used for +<span +class="emmi-10"><img +src="emmi10-b.gif"alt="a"class="10--b"></span>. +<!--469--><p class="indent"> The number of collisions with energy loss in the interval B (the number of +interactions which has to be simulated directly) increases slowly with the total +number of collisions <span +class="emmi-10">n</span><sub ><span +class="emr-7">3</span></sub>. The maximum number of these collisions can be estimated +as <table width="100%" +class="equation"><tr><td> + <center> +<img +src="latexexa41x.gif"alt="nB,max = n3 -nA,min ~~ n3(<nA> - sA)"class="mathdisplay"><a + name="1-7011r27"></a></center></td><td width="5%">(27)</td></tr></table> +From the previous expressions for <span +class="cmsy-10"><</span><span +class="emmi-10">n</span><sub ><span +class="emmi-7">A</span></sub><span +class="cmsy-10">> </span>and <span +class="emmi-10"><img +src="emmi10-1b.gif"alt="s"class="10--1b"></span><sub ><span +class="emmi-7">A</span></sub> one can derive the condition +<table width="100%" +class="equation"><tr><td> + <center> +<img +src="latexexa42x.gif"alt=" -2n3c2- +nB < nB,max = n3 + c2"class="mathdisplay"><a + name="1-7012r28"></a></center></td><td width="5%">(28)</td></tr></table> +The following values are obtained with <span +class="emmi-10">c </span>= 4: + <div align="center"><table class="tabular" +cellspacing="0pt" cellpadding="0" +frame="void" ><colgroup><col +id="TBL-6-1"><col +id="TBL-6-2"><col +id="TBL-6-3"><col +id="TBL-6-4"><col +id="TBL-6-5"></colgroup><tr +valign="baseline" id="TBL-6-1-"><td align="left"nowrap id="TBL-6-1-1" +><div class="td11"><span +class="emmi-10">n</span><sub ><span +class="emr-7">3</span></sub> </div></td><td align="left"nowrap id="TBL-6-1-2" +><div class="td11"><span +class="emmi-10">n</span><sub ><span +class="emmi-7">B,max</span></sub></div></td><td align="center"nowrap id="TBL-6-1-3" +><div class="td11"></div></td><td align="right"nowrap id="TBL-6-1-4" +><div class="td11"> <span +class="emmi-10">n</span><sub ><span +class="emr-7">3</span></sub></div></td><td align="right"nowrap id="TBL-6-1-5" +><div class="td11"><span +class="emmi-10">n</span><sub ><span +class="emmi-7">B,max</span></sub></div></td> +</tr><tr +class="hline"><td><hr></td><td><hr></td><td><hr></td><td><hr></td><td><hr></td></tr><tr +valign="baseline" id="TBL-6-2-"><td align="left"nowrap id="TBL-6-2-1" +><div class="td11">16 </div></td><td align="left"nowrap id="TBL-6-2-2" +><div class="td11">16 </div></td><td align="center"nowrap id="TBL-6-2-3" +><div class="td11"></div></td><td align="right"nowrap id="TBL-6-2-4" +><div class="td11"> 200</div></td><td align="right"nowrap id="TBL-6-2-5" +><div class="td11"> 29.63</div></td> +</tr><tr +valign="baseline" id="TBL-6-3-"><td align="left"nowrap id="TBL-6-3-1" +><div class="td11">20 </div></td><td align="left"nowrap id="TBL-6-3-2" +><div class="td11">17.78 </div></td><td align="center"nowrap id="TBL-6-3-3" +><div class="td11"></div></td><td align="right"nowrap id="TBL-6-3-4" +><div class="td11"> 500</div></td><td align="right"nowrap id="TBL-6-3-5" +><div class="td11"> 31.01</div></td> +</tr><tr +valign="baseline" id="TBL-6-4-"><td align="left"nowrap id="TBL-6-4-1" +><div class="td11">50 </div></td><td align="left"nowrap id="TBL-6-4-2" +><div class="td11">24.24 </div></td><td align="center"nowrap id="TBL-6-4-3" +><div class="td11"></div></td><td align="right"nowrap id="TBL-6-4-4" +><div class="td11">1000</div></td><td align="right"nowrap id="TBL-6-4-5" +><div class="td11"> 31.50</div></td> +</tr><tr +valign="baseline" id="TBL-6-5-"><td align="left"nowrap id="TBL-6-5-1" +><div class="td11">100</div></td><td align="left"nowrap id="TBL-6-5-2" +><div class="td11">27.59 </div></td><td align="center"nowrap id="TBL-6-5-3" +><div class="td11"></div></td><td align="right"nowrap id="TBL-6-5-4" +><div class="td11"> <span +class="cmsy-10"><img +src="cmsy10-31.gif"alt=" oo "class="10--31"></span></div></td><td align="right"nowrap id="TBL-6-5-5" +><div class="td11"> 32.00</div></td> </tr></table> +</div> + <h3 class="subsectionHead">5.2 <a + name="1-80005.2"></a><a + name="QQ1-1-10"></a>Special sampling for lower part of the spectrum</h3> +<!--494--><p class="noindent">If the step length is very small (<span +class="cmsy-10"><span +class="underline"><</span> </span>5 mm in gases, <span +class="cmsy-10"><span +class="underline"><</span> </span>2-3 <span +class="emmi-10"><img +src="emmi10-16.gif"alt="m"class="emmi-10--16"align="middle"></span>m in solids) the model gives +0 energy loss for some events. To avoid this, the probability of 0 energy loss is +computed <table width="100%" +class="equation"><tr><td> + <center> +<img +src="latexexa43x.gif"alt=" -(<n >+<n >+<n >) +P( E = 0) = e 1 2 3"class="mathdisplay"><a + name="1-8001r29"></a></center></td><td width="5%">(29)</td></tr></table> +If the probability is bigger than 0.01 a special sampling is done, taking into +account the fact that in these cases the projectile interacts only with the outer +electrons of the atom. An energy level <span +class="emmi-10">E</span><sub ><span +class="emr-7">0</span></sub> = 10 eV is chosen to correspond to +the outer electrons. The mean number of collisions can be calculated from +<table width="100%" +class="equation"><tr><td> + <center> +<img +src="latexexa44x.gif"alt=" 1 dE +<n> = ----- x + E0 dx"class="mathdisplay"><a + name="1-8002r30"></a></center></td><td width="5%">(30)</td></tr></table> +The number of collisions <span +class="emmi-10">n </span>is sampled from Poisson distribution. In the case of the +thin layers, all the collisions are considered as ionisations and the energy loss is +computed as <table width="100%" +class="equation"><tr><td> + <center> +<img +src="latexexa45x.gif"alt=" n + sum -----E0------ +E = 1 - EEmax+E-ui + i=1 max 0"class="mathdisplay"><a + name="1-8003r31"></a></center></td><td width="5%">(31)</td></tr></table> + <h2 class="likesectionHead"><a + name="1-9000"></a><a + name="QQ1-1-11"></a>References</h2> + <div class="thebibliography"><p class="bibitem"> + [1] <a + name="Xbib-LAND"></a>L.Landau. On the Energy Loss of Fast Particles by Ionisation. Originally + published in <span +class="emti-10">J. Phys.</span>, 8:201, 1944. Reprinted in D.ter Haar, Editor, + <span +class="emti-10">L.D.Landau, Collected papers </span>, page 417. Pergamon Press, Oxford, 1965. + </p><p class="bibitem"> + [2] <a + name="Xbib-SCH1"></a>B.Schorr. Programs for the Landau and the Vavilov distributions and + the corresponding random numbers. <span +class="emti-10">Comp. Phys. Comm.</span>, 7:216, 1974. + </p><p class="bibitem"> + [3] <a + name="Xbib-SELT"></a>S.M.Seltzer and M.J.Berger. Energy loss straggling of protons and + mesons. In <span +class="emti-10">Studies in Penetration of Charged Particles in Matter </span>, Nuclear + Science Series 39, Nat. Academy of Sciences, Washington DC, 1964. + </p><p class="bibitem"> + [4] <a + name="Xbib-TALM"></a>R.Talman. On the statistics of particle identification using ionization. + <span +class="emti-10">Nucl. Inst. Meth.</span>, 159:189, 1979. + </p><p class="bibitem"> + [5] <a + name="Xbib-VAVI"></a>P.V.Vavilov. Ionisation losses of high energy heavy particles. <span +class="emti-10">Soviet</span> + <span +class="emti-10">Physics JETP </span>, 5:749, 1957.</p></div> + +</body> +</html> + |