diff options
Diffstat (limited to 'Master/texmf-dist/doc/latex/latex-web-companion/ch3bis/sampleMathThumb.tex')
-rw-r--r-- | Master/texmf-dist/doc/latex/latex-web-companion/ch3bis/sampleMathThumb.tex | 64 |
1 files changed, 0 insertions, 64 deletions
diff --git a/Master/texmf-dist/doc/latex/latex-web-companion/ch3bis/sampleMathThumb.tex b/Master/texmf-dist/doc/latex/latex-web-companion/ch3bis/sampleMathThumb.tex deleted file mode 100644 index b6c61782721..00000000000 --- a/Master/texmf-dist/doc/latex/latex-web-companion/ch3bis/sampleMathThumb.tex +++ /dev/null @@ -1,64 +0,0 @@ -\documentclass[a4paper,twoside]{article} -\usepackage{html} -\usepackage{amsmath} - -\renewcommand{\d}{\partial}\providecommand{\bm}[1]{\mathbf{#1}} -\providecommand{\Range}{\mathcal{R}}\providecommand{\Ker}{\mathcal{N}} -\providecommand{\Quat}{\vec{\mathbf{Q}}} - -\newcommand{\StAndrews}{\url{http://www-groups.dcs.st-and.ac.uk/~history}}% -\newcommand{\Pythagorians}{\htmladdnormallink - {Pythagorians}{\StAndrews/Mathematicians/Pythagoras.html}} -\newcommand{\Fermat}{\htmladdnormallink - {Fermat, c.1637}{\StAndrews/HistTopics/Fermat's_last_theorem.html}} -\newcommand{\Wiles}{\htmladdnormallink - {Wiles, 1995}{http://www.pbs.org:80/wgbh/nova/proof}} - -\begin{document} -\htmlhead[center]{section}{Math examples} -\begin{flushright} -\begin{makeimage} -\begin{eqnarray} - \phi(\lambda) & = & \frac{1} {2 \pi i}\int^{c+i\infty}_{c-i\infty} - \exp \left( u \ln u + \lambda u \right ) du \hspace{1cm}\mbox{for } c \geq 0 \\ - \lambda & = & \frac{\epsilon -\bar{\epsilon} }{\xi} - - \gamma' - \beta^2 - \ln \frac{\xi} {E_{\rm max}} \\ - \gamma & = & 0.577215\dots \mathrm{\hspace{5mm}(Euler's\ constant)} \\ - \gamma' & = & 0.422784\dots = 1 - \gamma \\ - \epsilon , \bar{\epsilon} & = & \mbox{actual/average energy loss} -\end{eqnarray} -\end{makeimage} -\end{flushright} - -Since~\eqref{eqn:stress-sr} or~\eqref{gdef} should hold for arbitrary $\delta\bm{c}$% --vectors, it is clear that $\Ker(A) = \Range(B)$ and that when $y=B(x)$ one has...\\ -...the \Pythagorians{} knew infinitely many solutions in integers to $a^2+b^2=c^2$. -That no non-trivial integer solutions exist for $a^n+b^n=c^n$ with integers $n>2$ has long -been suspected (\Fermat). Only during the current decade has this been proved (\Wiles). - -\begin{flushright} -\begin{eqnarray}\htmlimage{thumbnail=.4} -\label{eqn:stress-sr} - V \bm{\pi}^{sr} & = & \left< \sum_i M_i \bm{V}_i \bm{V}_i - + \sum_i \sum_{j>i} \bm{R}_{ij} \bm{F}_{ij}\right> \\ \nonumber - & = & \left< \sum_i M_i \bm{V}_i \bm{V}_i - + \sum_{i}\sum_{j>i}\sum_\alpha\sum_\beta \bm{r}_{i\alpha j\beta}\bm{f}_{i\alpha j\beta} - - \sum_i \sum_\alpha \bm{p}_{i\alpha} \bm{f}_{i\alpha} \right> -\end{eqnarray} -\end{flushright} - -\begin{flushright} -\begin{subequations}\htmlimage{thumbnail=.3} -\label{bgdefs} -\begin{align} B_{ij}^\alpha & = - \left(B_{ij}^\alpha\right)_0 + \left(B_{ij}^\alpha\right)_a \label{bdef} \\ - \left(B_{ij}^\alpha\right)_0 & = \frac{1}{2}\left(\frac{\d N_i^\alpha}{\d X_j} - + \frac{\d N_j^\alpha} {\d X_i} \right) \label{b0def} \\ - \left(B_{ij}^\alpha\right)_a & = H_{ij}^{\alpha \beta} a^\beta \label{budef} \\ - H_{ij}^{\alpha \beta} & = - \frac{1}{2}\left( \frac{\d N_k^\alpha}{\d X_i} \frac{\d N_k^\beta}{\d X_j} - + \frac{\d N_k^\beta}{\d X_i} \frac{\d N_k^\alpha}{\d X_j} \right) \label{gdef} -\end{align} -\end{subequations} -\end{flushright} -\end{document} |