diff options
Diffstat (limited to 'Master/texmf-dist/doc/latex/latex-web-companion/ch3bis/sampleAMS.tex')
-rw-r--r-- | Master/texmf-dist/doc/latex/latex-web-companion/ch3bis/sampleAMS.tex | 54 |
1 files changed, 54 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/latex-web-companion/ch3bis/sampleAMS.tex b/Master/texmf-dist/doc/latex/latex-web-companion/ch3bis/sampleAMS.tex new file mode 100644 index 00000000000..7a0f0ea4629 --- /dev/null +++ b/Master/texmf-dist/doc/latex/latex-web-companion/ch3bis/sampleAMS.tex @@ -0,0 +1,54 @@ +\documentclass[a4paper,twoside]{article} +\usepackage{html} +\usepackage{amsmath} + +\renewcommand{\d}{\partial}\providecommand{\bm}[1]{\mathbf{#1}} +\providecommand{\Range}{\mathcal{R}}\providecommand{\Ker}{\mathcal{N}} +\providecommand{\Quat}{\vec{\mathbf{Q}}} + +\newcommand{\StAndrews}{\htmlurl{http://www-groups.dcs.st-and.ac.uk/~history}}% +\newcommand{\Pythagorians}{\htmladdnormallink + {Pythagorians}{\StAndrews/Mathematicians/Pythagoras.html}} +\newcommand{\Fermat}{\htmladdnormallink + {Fermat, c.1637}{\StAndrews/HistTopics/Fermat's_last_theorem.html}} +\newcommand{\Wiles}{\htmladdnormallink + {Wiles, 1995}{\htmlurl{http://www.pbs.org:80/wgbh/nova/proof}}} + +\begin{document} +\htmlhead[center]{section}{Math examples} +\begin{eqnarray} + \phi(\lambda) & = & \frac{1} {2 \pi i}\int^{c+i\infty}_{c-i\infty} + \exp \left( u \ln u + \lambda u \right ) du \hspace{1cm}\mbox{for } c \geq 0 \\ + \lambda & = & \frac{\epsilon -\bar{\epsilon} }{\xi} + - \gamma' - \beta^2 - \ln \frac{\xi} {E_{\rm max}} \\ + \gamma & = & 0.577215\dots \mathrm{\hspace{5mm}(Euler's\ constant)} \\ + \gamma' & = & 0.422784\dots = 1 - \gamma \\ + \epsilon , \bar{\epsilon} & = & \mbox{actual/average energy loss} +\end{eqnarray} + +Since~\eqref{eqn:stress-sr} or~\eqref{gdef} should hold for arbitrary $\delta\bm{c}$% +-vectors, it is clear that $\Ker(A) = \Range(B)$ and that when $y=B(x)$ one has...\\ +...the \Pythagorians{} knew infinitely many solutions in integers to $a^2+b^2=c^2$. +That no non-trivial integer solutions exist for $a^n+b^n=c^n$ with integers $n>2$ has long +been suspected (\Fermat). Only during the current decade has this been proved (\Wiles). + +\begin{eqnarray}\label{eqn:stress-sr} + V \bm{\pi}^{sr} & = & \left< \sum_i M_i \bm{V}_i \bm{V}_i + + \sum_i \sum_{j>i} \bm{R}_{ij} \bm{F}_{ij}\right> \\ \nonumber + & = & \left< \sum_i M_i \bm{V}_i \bm{V}_i + + \sum_{i}\sum_{j>i}\sum_\alpha\sum_\beta \bm{r}_{i\alpha j\beta}\bm{f}_{i\alpha j\beta} + - \sum_i \sum_\alpha \bm{p}_{i\alpha} \bm{f}_{i\alpha} \right> +\end{eqnarray} + +\begin{subequations}\label{bgdefs} +\begin{align} B_{ij}^\alpha & = + \left(B_{ij}^\alpha\right)_0 + \left(B_{ij}^\alpha\right)_a \label{bdef} \\ + \left(B_{ij}^\alpha\right)_0 & = \frac{1}{2}\left(\frac{\d N_i^\alpha}{\d X_j} + + \frac{\d N_j^\alpha} {\d X_i} \right) \label{b0def} \\ + \left(B_{ij}^\alpha\right)_a & = H_{ij}^{\alpha \beta} a^\beta \label{budef} \\ + H_{ij}^{\alpha \beta} & = + \frac{1}{2}\left( \frac{\d N_k^\alpha}{\d X_i} \frac{\d N_k^\beta}{\d X_j} + + \frac{\d N_k^\beta}{\d X_i} \frac{\d N_k^\alpha}{\d X_j} \right) \label{gdef} +\end{align} +\end{subequations} +\end{document} |