diff options
Diffstat (limited to 'Master/texmf-dist/doc/latex/latex-referenz/fontDemo.tex')
-rw-r--r-- | Master/texmf-dist/doc/latex/latex-referenz/fontDemo.tex | 41 |
1 files changed, 0 insertions, 41 deletions
diff --git a/Master/texmf-dist/doc/latex/latex-referenz/fontDemo.tex b/Master/texmf-dist/doc/latex/latex-referenz/fontDemo.tex deleted file mode 100644 index 6cf3b7516de..00000000000 --- a/Master/texmf-dist/doc/latex/latex-referenz/fontDemo.tex +++ /dev/null @@ -1,41 +0,0 @@ -%% -%% Der Mathematiksatz mit LaTeX, 1. Auflage 2009 -%% -%% fontDemo.tex -%% -%% Copyright (C) 2009 Herbert Voss -%% -%% It may be distributed and/or modified under the conditions -%% of the LaTeX Project Public License, either version 1.3 -%% of this license or (at your option) any later version. -%% -%% See http://www.latex-project.org/lppl.txt for details. -%% -\newlength\Breite\setlength\Breite{\linewidth} -\addtolength\Breite{-2\fboxsep} -\addtolength\Breite{-2\fboxrule} -\fbox{% -\begin{minipage}{\Breite} -\textbf{Theorem 1 (Residuum).} -F\"ur eine in einer \textsf{punktierten Kreisscheibe} $D\backslash\{a\}$ analytische Funktion $f$ definiert man -das \emph{Residuum} im Punkt $a$ als -\[ -\mathop{\mathrm{Res}}\limits_{z=a}f(z) = \mathop{\mathrm{Res}}\limits_a f - = \frac{1}{2\pi\mathrm{i}} \int\limits_C f(z)\,\mathrm{d}z, -\] -wobei $C\subset D\backslash\{a\}$ ein geschlossener Weg mit -$ n(C,a)=1$ ist (z.\,B. ein entgegen dem Uhrzeigersinn durchlaufener Kreis). - -\medskip -$\mathrm{A} \Lambda \Delta \nabla \mathrm{B C D} \Sigma \mathrm{E F} \Gamma \mathrm{G H I J} K L M N O - \Theta \Omega \mathrm{P} \Phi \Pi \Xi \mathtt{Q R S T} U V W X Y \Upsilon \Psi \mathrm{Z}$ -$\mathsf{ABCDabcd1234}$ - -$a\alpha b \beta c \partial d \delta e \epsilon \varepsilon f \zeta \xi g \gamma h \hbar \iota i \imath j -k \kappa l \ell \lambda m n \eta \theta \vartheta o \sigma \varsigma \phi \varphi \wp p -\rho \varrho q r s t \tau \pi u \mu \nu v \upsilon w \omega \varpi $ - -\boldmath$xyz \infty \propto \emptyset y=f(x)$ \unboldmath -\hfill$\sum\int\prod\displaystyle~\prod\int\sum~ - \textstyle\sum_a^b\int_a^b\prod_a^b~ \displaystyle\sum_a^b\int\limits_a^b\prod_a^b$ -\end{minipage}} |