summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/jeopardy/example/game2.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/latex/jeopardy/example/game2.tex')
-rw-r--r--Master/texmf-dist/doc/latex/jeopardy/example/game2.tex301
1 files changed, 301 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/jeopardy/example/game2.tex b/Master/texmf-dist/doc/latex/jeopardy/example/game2.tex
new file mode 100644
index 00000000000..0166a90e97f
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/jeopardy/example/game2.tex
@@ -0,0 +1,301 @@
+\pdfoutput=1
+
+\documentclass{article}
+
+
+\usepackage[czech]{babel}
+\usepackage[IL2]{fontenc}
+\usepackage{color}
+
+\usepackage{amsmath}
+\DeclareMathOperator{\arctg}{arctg}
+\everymath{\displaystyle}
+
+%\usepackage[pdftex,designi]{web}
+\usepackage[noxcolor,pdftex]{exerquiz}
+\usepackage[ImplMulti]{dljslib}
+
+\parindent 0pt
+\usepackage[screen,gray, panelright, paneltoc]{pdfscreen}
+\panelwidth=0.5in
+\setlength\buttonwidth{.9\panelwidth}
+\setlength\smallbuttonwidth{.45\panelwidth}
+\addtolength{\smallbuttonwidth}{-1.2pt}
+\margins{0.2in}{0.2in}{0.2in}{0.2in}
+\screensize{3in}{4in}
+\urlid{www.mendelu.cz/user/marik}
+\backgroundcolor{black}
+\color{white}
+\def\correctColor{color.green}
+\def\wrongColor{color.red}
+
+\usepackage[twoplayers]{jeopardy}
+
+\everyCategoryHead{\color{yellow}\tiny}
+
+\def\logoB{\rotatebox{90}{%
+ \vbox{\normalsize\hbox{\color{red}{Robert Ma\v{r}\'{i}k}}
+ \hbox{\color{green}Jeopardy game}}}
+ \vfill}
+
+\let\rmdefault\sfdefault
+\hypersetup{pdfpagemode=Window, pdfnewwindow=true, pdfmenubar=true,%
+ pdftoolbar=true,colorlinks, pdfwindowui=false,
+ pdfpagemode=Window}
+
+
+\begin{document}
+%\CellHeight=24bp
+\SetGameHeight{0.4\textheight}
+\ScoreCellHeight=0.5\CellHeight
+
+\everyRadioButton{%\BG{1 1 1}
+\BC{1 1 0} \textColor{0 1 0 rg}
+}
+
+\Playertoks{\BC{1 0 0}\textColor{0 1 0 rg}}
+
+
+\MakeGameBoard
+
+\begin{category}{Precalculus}
+
+\begin{question}
+$\ln \frac xy=$
+\Ans0 $\ln x+\ln y$
+\Ans1 $\ln x-\ln y$
+\Ans0 $x\ln y$
+\Ans0 $y\ln x$
+\Ans0 none of them
+\end{question}
+
+\begin{question}
+The function $y=x^2\cdot \sin x$ is
+\Ans1 odd
+\Ans0 even
+\Ans0 neither odd nor even
+\end{question}
+
+\begin{question}
+$\arctan 1=$
+\Ans0 $\infty$
+\Ans0 $\frac \pi3$
+\Ans1 $\frac \pi4$
+\Ans0 $\frac \pi6$
+\Ans0 none of them
+\end{question}
+
+\begin{question}
+The equivalence "$a<b$ if and only if $f(a)<f(b)$" is the property of
+\Ans0 even functions
+\Ans0 one-to-one functions
+\Ans0 continuous functions
+\Ans1 increasing functions
+\Ans0 none of them
+\end{question}
+
+\end{category}
+
+
+\begin{category}{Functions}
+
+\begin{question}
+How many points of inflection is on the graph of the function $y=\sin x$ in
+the open interval $(0,2\pi)$
+\Ans0 none
+\Ans1 one
+\Ans0 two
+\Ans0 three
+\Ans0 none of them
+\end{question}
+
+\begin{question}
+Find points of discontinuity of the function $y=\frac {x-4}{(x-2)\ln x}$
+\Ans0 none
+\Ans0 $0$
+\Ans0 $0$, $1$
+\Ans1 $0$, $1$, $2$
+\Ans0 $0$, $2$
+\Ans0 $0$, $1$, $4$
+\Ans0 $0$, $4$
+\Ans0 none of them
+\end{question}
+
+\begin{question}
+Let $f$ be a function and $f^{-1}$ be its inverse. Then $f^{-1}\bigl(f(x)\bigr)=$
+\Ans0 $0$
+\Ans0 $1$
+\Ans1 $x$
+\Ans0 $f(x)$
+\Ans0 $f^{-1}(x)$
+\Ans0 none of them
+\end{question}
+
+\begin{question}
+$\arcsin(\sin x)=x$ for every $x\in\mathbf{R}$
+\Ans0 Yes
+\Ans1 No
+\end{question}
+
+\end{category}
+
+
+\begin{category}{Limits}
+
+\begin{question}
+$\lim_{x\to-\infty} \arctg x=$
+\Ans0 $0$
+\Ans0 $\frac\pi2$
+\Ans1 $-\frac\pi2$
+\Ans0 $\infty$
+\Ans0 $-\infty$
+\Ans0 none of them
+\end{question}
+
+\begin{question}
+$\lim_{x\to\infty}\sin x=$
+\Ans0 $1$
+\Ans0 $-1$
+\Ans1 does not exist
+\Ans0 none of them
+\end{question}
+
+\begin{question}
+$\lim_{x\to\infty}\frac{2x^3+x^2+4}{x^2-x+2}=$
+\Ans1 $\infty$
+\Ans0 $2$
+\Ans0 $0$
+\Ans0 none of them
+\end{question}
+
+\begin{question}
+$\lim_{x\to 0^+}\frac{e^{1/x}(x-1)}{x}$
+\Ans0 $0$
+\Ans0 $1$
+\Ans0 $e$
+\Ans0 $\infty$
+\Ans0 $-1$
+\Ans0 $-e$
+\Ans1 $-\infty$
+\Ans0 none of them
+\end{question}
+
+\end{category}
+
+\begin{category}{Derivative}
+
+
+\begin{question}
+$\left(\frac 1{\sqrt[3]x}\right)'=$
+\Ans0 $\frac 13 x^{-2/3}$
+\Ans0 $-\frac 13 x^{-2/3}$
+%\Ans0 $\frac 13 x^{1/3}$
+\Ans0 $-\frac 13 x^{1/3}$
+\Ans0 $\frac 13 x^{-4/3}$
+\Ans1 $-\frac 13 x^{-4/3}$
+\Ans0 none of them
+\end{question}
+
+
+\begin{question}
+$(x-x\ln x)'=$
+\Ans0 $\ln x$
+\Ans1 $-\ln x$
+\Ans0 $1+\ln x$
+\Ans0 $1-\ln x$
+\Ans0 $0$
+\Ans0 $1-\frac 1x$
+\Ans0 none of them
+\end{question}
+
+\begin{question}
+$\left(x^2e^{x^2}\right)'$
+\Ans0 $2xe^{2x}$
+\Ans0 $2xe^{x^2}2x$
+\Ans0 $2xe^{x^2}+x^2e^{x^2}$
+\Ans1 $2xe^{x^2}+x^2e^{x^2}2x$
+\Ans0 $2xe^{x^2}2x+x^2e^{x^2}2x$
+\Ans0 none of them
+\end{question}
+
+\begin{question}
+The definition of the derivative of the function $f$ at the point $a$ is
+\Ans0 $\lim_{h\to 0}\frac{f(x+h)+f(x)}{h}$
+\Ans0 $\lim_{h\to 0}\frac{f(x+h)}{h}$
+\Ans1 $\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$
+\Ans0 $\lim_{h\to 0}\frac{f(x)-f(x+h)}{h}$
+\Ans0 $\lim_{h\to 0}\frac{f(x-h)-f(x)}{h}$
+\Ans0 none of them
+\end{question}
+
+\end{category}
+
+\everyRespBoxMath{\BG{1 1 1}}
+\begin{category}{Evaluation of derivatives}
+ \begin{question}$(x^2+1)'=$
+ \RespBoxMath{2x}{3}{0.001}{[1,5]}
+ \end{question}
+ \begin{question}$(xe^x)'=$
+ \RespBoxMath{(x+1)e^x}{3}{0.001}{[1,5]}
+ \end{question}
+ \begin{question}$\ln(\sin x)=$
+ \RespBoxMath{cos(x)/sin(x)}{3}{0.001}{[1,2]}
+ \end{question}
+ \begin{question}$(xe^{-x})'=$
+ \RespBoxMath{(1-x)e^{-x}}{3}{0.001}{[1,5]}
+ \end{question}
+\end{category}
+
+
+
+\begin{category}{Theory}
+
+\begin{question} By theorem of Bolzano, the polynomial $y=x^3+2x+4$ has zero on
+\Ans0 $(0,1)$
+\Ans0 $(1,2)$
+\Ans0 $(2,3)$
+\Ans0 $(-1,0)$
+\Ans1 $(-2,-1)$
+\Ans0 $(-3,-2)$
+\Ans0 none of them
+\end{question}
+
+
+\begin{question}
+Let $a\in Im(f)$. Then the solution of the equation $f(x)=a$ exists. This
+solution is unique if and only if
+\Ans1 $f$ is one-to-one
+\Ans0 $f$ is increasing
+\Ans0 $f$ continuous
+\Ans0 $f$ differentiable
+\Ans0 none of them
+\end{question}
+
+
+\begin{question}
+If the function has a derivative at the point $x=a$, then it is
+\Ans0 increasing at $a$.
+\Ans0 decreasing at $a$.
+\Ans0 one-to-one at $a$.
+\Ans1 continuous at $a$.
+\Ans0 undefined at $a$.
+\end{question}
+
+\begin{question}
+If both $y(a)=y'(a)=y''(a)=0$, then the function
+\Ans0 has local maximum at $a$.
+\Ans0 has local minimum at $a$.
+\Ans0 has point of inflection at $a$.
+\Ans1 any of these possibilites may be true, we need more informations.
+\end{question}
+
+\end{category}
+
+
+\end{document}
+%%% Local Variables:
+%%% mode: latex
+%%% TeX-master: t
+%%% End:
+
+