diff options
Diffstat (limited to 'Master/texmf-dist/doc/latex/glossary/sampleEqPg.tex')
-rw-r--r-- | Master/texmf-dist/doc/latex/glossary/sampleEqPg.tex | 290 |
1 files changed, 0 insertions, 290 deletions
diff --git a/Master/texmf-dist/doc/latex/glossary/sampleEqPg.tex b/Master/texmf-dist/doc/latex/glossary/sampleEqPg.tex deleted file mode 100644 index f5ca353ec4f..00000000000 --- a/Master/texmf-dist/doc/latex/glossary/sampleEqPg.tex +++ /dev/null @@ -1,290 +0,0 @@ -%% -%% This is file `sampleEqPg.tex', -%% generated with the docstrip utility. -%% -%% The original source files were: -%% -%% glossary.dtx (with options: `sampleEqPg.tex,package') -%% Copyright (C) 2006 Nicola Talbot, all rights reserved. -%% If you modify this file, you must change its name first. -%% You are NOT ALLOWED to distribute this file alone. You are NOT -%% ALLOWED to take money for the distribution or use of either this -%% file or a changed version, except for a nominal charge for copying -%% etc. -%% \CharacterTable -%% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z -%% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z -%% Digits \0\1\2\3\4\5\6\7\8\9 -%% Exclamation \! Double quote \" Hash (number) \# -%% Dollar \$ Percent \% Ampersand \& -%% Acute accent \' Left paren \( Right paren \) -%% Asterisk \* Plus \+ Comma \, -%% Minus \- Point \. Solidus \/ -%% Colon \: Semicolon \; Less than \< -%% Equals \= Greater than \> Question mark \? -%% Commercial at \@ Left bracket \[ Backslash \\ -%% Right bracket \] Circumflex \^ Underscore \_ -%% Grave accent \` Left brace \{ Vertical bar \| -%% Right brace \} Tilde \~} -\documentclass[a4paper,12pt]{report} - -\usepackage{amsmath} -\usepackage[colorlinks]{hyperref} -\usepackage[header,toc,border=none,cols=3, - number=equation]{glossary}[2006/07/20] - -\newcommand{\erf}{\operatorname{erf}} -\newcommand{\erfc}{\operatorname{erfc}} - -\renewcommand{\glossaryname}{Index of Special Functions and Notations} - -\renewcommand{\glossarypreamble}{Numbers in italic indicate the equation number, -numbers in bold indicate page numbers where the main definition occurs.\par} - -\setglossary{glsnumformat=hyperit} - -\renewcommand{\entryname}{Notation} - -\renewcommand{\descriptionname}{Function Name} - -\newcommand{\glossarysubheader}{ & & \\} - - -\storeglosentry{Gamma}{name=\ensuremath{\Gamma(z)}, -description=Gamma function,sort=Gamma} - -\storeglosentry{gamma}{name=\ensuremath{\gamma(\alpha,x)}, -description=Incomplete gamma function,sort=gamma} - -\storeglosentry{iGamma}{name=\ensuremath{\Gamma(\alpha,x)}, -description=Incomplete gamma function,sort=Gamma} - -\storeglosentry{psi}{name=\ensuremath{\psi(x)}, -description=Psi function,sort=psi} - -\storeglosentry{erf}{name=\ensuremath{\erf(x)}, -description=Error function,sort=erf} - -\storeglosentry{erfc}{name=\ensuremath{\erfc(x)}, -description=Complementary error function,sort=erfc} - -\storeglosentry{beta}{name=\ensuremath{B(x,y)}, -description=Beta function,sort=B} - -\storeglosentry{Bx}{name=\ensuremath{B_x(p,q)}, -description=Incomplete beta function,sort=Bx} - -\storeglosentry{Tn}{name=\ensuremath{T_n(x)}, -description=Chebyshev's polynomials of the first kind, -sort=Tn} - -\storeglosentry{Un}{name=\ensuremath{U_n(x)}, -description=Chebyshev's polynomials of the second kind, -sort=Un} - -\storeglosentry{Hn}{name=\ensuremath{H_n(x)}, -description=Hermite polynomials,sort=Hn} - -\storeglosentry{Lna}{name=\ensuremath{L_n^\alpha(x)}, -description=Laguerre polynomials,sort=Lna} - -\storeglosentry{Znu}{name=\ensuremath{Z_\nu(z)}, -description=Bessel functions,sort=Z} - -\storeglosentry{Pagz}{name=\ensuremath{\Phi(\alpha,\gamma;z)}, -description=confluent hypergeometric function,sort=Pagz} - -\storeglosentry{kv}{name=\ensuremath{k_\nu(x)}, -description=Bateman's function,sort=kv} - -\storeglosentry{Dp}{name=\ensuremath{D_p(z)}, -description=Parabolic cylinder functions,sort=Dp} - -\storeglosentry{Fpk}{name=\ensuremath{F(\phi,k)}, -description=Elliptical integral of the first kind,sort=Fpk} - -\storeglosentry{C}{name=\ensuremath{C}, -description=Euler's constant,sort=C} - -\storeglosentry{G}{name=\ensuremath{G}, -description=Catalan's constant,sort=G} - -\renewcommand{\shortglossaryname}{Special Functions} - -\makeglossary - -\pagestyle{headings} - -\begin{document} - -\title{Sample Document Using Interchangable Numbering} -\author{Nicola Talbot} -\maketitle - -\begin{abstract} -This is a sample document illustrating the use of the \textsf{glossary} -package. The functions here have been taken from ``Tables of -Integrals, Series, and Products'' by I.S.~Gradshteyn and I.M~Ryzhik. - -The glossary lists both page numbers and equation numbers. -Since the majority of the entries use the equation number, -\texttt{number=equation} was used as a package option. -The entries that should refer to the page number instead -use the \texttt{number=equation} glossary key. -Note that this example will only work where the -page number and equation number compositor is the same. So -it won't work if, say, the page numbers are of the form -2-4 and the equation numbers are of the form 4.6. -As most of the glossary entries should have an italic -format, it is easiest to set the default format to -italic. - -\end{abstract} - -\tableofcontents - -\printglossary - -\chapter{Gamma Functions} - -The \useGlosentry[number=page,format=hyperbf]{Gamma}{gamma function} is -defined as -\begin{equation} -\gls{Gamma} = \int_{0}^{\infty}e^{-t}t^{z-1}\,dt -\end{equation} - -\begin{equation} -\useGlosentry{Gamma}{\ensuremath{\Gamma(x+1)}} = x\Gamma(x) -\end{equation} - -\begin{equation} -\gls{gamma} = \int_0^x e^{-t}t^{\alpha-1}\,dt -\end{equation} - -\begin{equation} -\gls{iGamma} = \int_x^\infty e^{-t}t^{\alpha-1}\,dt -\end{equation} - -\newpage - -\begin{equation} -\useGlosentry{Gamma}{\ensuremath{\Gamma(\alpha)}} = \Gamma(\alpha, x) + \gamma(\alpha, x) -\end{equation} - -\begin{equation} -\gls{psi} = \frac{d}{dx}\ln\Gamma(x) -\end{equation} - -\chapter{Error Functions} - -The \useGlosentry[number=page,format=hyperbf]{erf}{error -function} is defined as: -\begin{equation} -\gls{erf} = \frac{2}{\surd\pi}\int_0^x e^{-t^2}\,dt -\end{equation} - -\begin{equation} -\gls{erfc} = 1 - \erf(x) -\end{equation} - -\chapter{Beta Function} - -\begin{equation} -\gls{beta} = 2\int_0^1 t^{x-1}(1-t^2)^{y-1}\,dt -\end{equation} -Alternatively: -\begin{equation} -\gls{beta} = 2\int_0^{\frac\pi2}\sin^{2x-1}\phi\cos^{2y-1}\phi\,d\phi -\end{equation} - -\begin{equation} -\gls{beta} = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} = B(y,x) -\end{equation} - -\begin{equation} -\gls{Bx} = \int_0^x t^{p-1}(1-t)^{q-1}\,dt -\end{equation} - -\chapter{Chebyshev's polynomials} - -\begin{equation} -\gls{Tn} = \cos(n\arccos x) -\end{equation} - -\begin{equation} -\gls{Un} = \frac{\sin[(n+1)\arccos x]}{\sin[\arccos x]} -\end{equation} - -\chapter{Hermite polynomials} - -\begin{equation} -\gls{Hn} = (-1)^n e^{x^2} \frac{d^n}{dx^n}(e^{-x^2}) -\end{equation} - -\chapter{Laguerre polynomials} - -\begin{equation} -\gls{Lna} = \frac{1}{n!}e^x x^{-\alpha} -\frac{d^n}{dx^n}(e^{-x}x^{n+\alpha}) -\end{equation} - -\chapter{Bessel Functions} - -Bessel functions $Z_\nu(z)$ are solutions of -\begin{equation} -\frac{d^2Z_\nu}{dz^2} + \frac{1}{z}\,\frac{dZ_\nu}{dz} + -\left( -1-\frac{\nu^2}{z^2}Z_\nu = 0 -\right) -\end{equation} -\useglosentry{Znu} - -\chapter{Confluent hypergeometric function} - -\begin{equation} -\gls{Pagz} = 1 + \frac{\alpha}{\gamma}\,\frac{z}{1!} -+ \frac{\alpha(\alpha+1)}{\gamma(\gamma+1)}\,\frac{z^2}{2!} -+\frac{\alpha(\alpha+1)(\alpha+2)} - {\gamma(\gamma+1)(\gamma+2)} -\,\frac{z^3}{3!} -+ \cdots -\end{equation} - -\begin{equation} -\gls{kv} = \frac{2}{\pi}\int_0^{\pi/2} -\cos(x \tan\theta - \nu\theta)\,d\theta -\end{equation} - -\chapter{Parabolic cylinder functions} - -\begin{equation} -\gls{Dp} = 2^{\frac{p}{2}}e^{-\frac{z^2}{4}} -\left\{ -\frac{\surd\pi}{\Gamma\left(\frac{1-p}{2}\right)} -\Phi\left(-\frac{p}{2},\frac{1}{2};\frac{z^2}{2}\right) --\frac{\sqrt{2\pi}z}{\Gamma\left(-\frac{p}{2}\right)} -\Phi\left(\frac{1-p}{2},\frac{3}{2};\frac{z^2}{2}\right) -\right\} -\end{equation} - -\chapter{Elliptical Integral of the First Kind} - -\begin{equation} -\gls{Fpk} = \int_0^\phi -\frac{d\alpha}{\sqrt{1-k^2\sin^2\alpha}} -\end{equation} - -\chapter{Constants} - -\begin{equation} -\gls{C} = 0.577\,215\,664\,901\ldots -\end{equation} - -\begin{equation} -\gls{G} = 0.915\,965\,594\ldots -\end{equation} - -\end{document} -\endinput -%% -%% End of file `sampleEqPg.tex'. |