summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/einfuehrung/10-08-7.ltx2
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/latex/einfuehrung/10-08-7.ltx2')
-rw-r--r--Master/texmf-dist/doc/latex/einfuehrung/10-08-7.ltx260
1 files changed, 60 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/einfuehrung/10-08-7.ltx2 b/Master/texmf-dist/doc/latex/einfuehrung/10-08-7.ltx2
new file mode 100644
index 00000000000..4fad677bf08
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/einfuehrung/10-08-7.ltx2
@@ -0,0 +1,60 @@
+%%
+%% Ein Beispiel der DANTE-Edition
+%%
+%% Beispiel 10-08-7 auf Seite 556.
+%%
+%% Copyright (C) 2012 Herbert Voss
+%%
+%% It may be distributed and/or modified under the conditions
+%% of the LaTeX Project Public License, either version 1.3
+%% of this license or (at your option) any later version.
+%%
+%% See http://www.latex-project.org/lppl.txt for details.
+%%
+%%
+%% ==makeglossaries==
+% Show page(s) 1,2
+%%
+\documentclass[ngerman,paper=a6,DIV=16,pagesize]{screxa}
+\pagestyle{empty}
+\setlength\parindent{0pt}
+\usepackage[utf8]{inputenc}
+\usepackage[T1]{fontenc}
+\usepackage{microtype}
+\usepackage{babel}
+\usepackage{amsmath} \allowdisplaybreaks
+\makeatletter\@addtoreset{equation}{section}\makeatother
+\newcommand\erf{\operatorname{erf}}
+\newcommand\erfc{\operatorname{erfc}}
+\newcommand\dt{\,\mathrm{d}t}
+
+\usepackage[colorlinks]{hyperref}
+\usepackage[style=long3colheader,counter=equation]{glossaries} \makeglossaries
+\loadglsentries{data/verzeichnisse/glossdata3.txt}
+\renewcommand\entryname{Funktion}\renewcommand\descriptionname{Beschreibung}
+\renewcommand\pagelistname{Gl.}\renewcommand*\theHequation{\theHsection.\arabic{equation}}
+\renewcommand\theequation{\thesection.\arabic{equation}}
+
+\begin{document}
+\printglossary[title={Index der mathematischen Gleichungen}]
+\section{Gammafunktionen}
+\begin{equation}\gls{Gamma}=\int_{0}^{\infty}e^{-t}t^{z-1}\dt\end{equation}
+\begin{equation}\glslink{Gamma}{\ensuremath{\Gamma(x+1)}}=x\Gamma(x)\end{equation}
+\begin{equation}\gls{gamma}=\int_0^x e^{-t}t^{\alpha-1}\dt\end{equation}
+\begin{equation}\gls{iGamma}=\int_x^\infty e^{-t}t^{\alpha-1}\dt\end{equation}
+\section{Fehlerfunktionen}
+\begin{equation}\gls{erf}=\frac{2}{\surd\pi}\int_0^x e^{-t^2}\dt\end{equation}
+\begin{equation}\gls{erfc}=1 - \erf(x)\end{equation}
+\section{Betafunktionen}
+\begin{equation}\gls{B}=2\int_0^1 t^{x-1}(1-t^2)^{y-1}\dt\end{equation}
+\begin{equation}\gls{B}=2\int_0^{\frac\pi2}\sin^{2x-1}\phi\cos^{2y-1}\phi\mathrm{d}\phi
+\end{equation}
+\begin{equation}\gls{B}=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}=B(y,x)\end{equation}
+\begin{equation}\gls{Bx}=\int_0^x t^{p-1}(1-t)^{q-1}\dt\end{equation}
+\section{Hypergeometrische Funktionen}
+\begin{align} \gls{Phi} &= 1 + \frac{\alpha}{\gamma}\,\frac{z}{1!}
+ +\frac{\alpha(\alpha+1)}{\gamma(\gamma+1)}\,\frac{z^2}{2!}
+ +\frac{\alpha(\alpha+1)(\alpha+2)}{\gamma(\gamma+1)(\gamma+2)}\\\nonumber
+ &\,\frac{z^3}{3!} + \cdots
+\end{align}
+\end{document}