diff options
Diffstat (limited to 'Master/texmf-dist/doc/latex/codebox/hellopy.py')
-rwxr-xr-x | Master/texmf-dist/doc/latex/codebox/hellopy.py | 32 |
1 files changed, 32 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/codebox/hellopy.py b/Master/texmf-dist/doc/latex/codebox/hellopy.py new file mode 100755 index 00000000000..af687ef3847 --- /dev/null +++ b/Master/texmf-dist/doc/latex/codebox/hellopy.py @@ -0,0 +1,32 @@ +import tensorflow as tf +import numpy as np +import os +os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' + +# Create 100 phony x, y data points in Numpy, y = x * 0.1 + 0.3 +x_data = np.random.random(100).astype("float32") +y_data = x_data * 0.1 + 0.3 + +# Try to find values for W and b that compute y_data = W * x_data + b +W = tf.Variable(tf.random_uniform([1], -1.0, 1.0)) +b = tf.Variable(tf.zeros([1])) +y = W * x_data + b + +# Minimize the mean squared errors. +loss = tf.reduce_mean(tf.square(y -y_data)) +optimizer = tf.train.GradientDescentOptimizer(0.5) +train = optimizer.minimize(loss) + +# Before starting, initialize the variables. We will 'run' this first +init = tf.global_variables_initializer() + +# Launch the graph. +sess = tf.Session() +sess.run(init) + +# Fit the line. +for step in range(201): + sess.run(train) + if step % 20 == 0: + print(step, sess.run(W), sess.run(b)) + |