summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/classicthesis/Chapters/Chapter03.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/latex/classicthesis/Chapters/Chapter03.tex')
-rw-r--r--Master/texmf-dist/doc/latex/classicthesis/Chapters/Chapter03.tex26
1 files changed, 13 insertions, 13 deletions
diff --git a/Master/texmf-dist/doc/latex/classicthesis/Chapters/Chapter03.tex b/Master/texmf-dist/doc/latex/classicthesis/Chapters/Chapter03.tex
index c06b7e5d58a..d7fdeeec58e 100644
--- a/Master/texmf-dist/doc/latex/classicthesis/Chapters/Chapter03.tex
+++ b/Master/texmf-dist/doc/latex/classicthesis/Chapters/Chapter03.tex
@@ -23,30 +23,30 @@ energy transfer in a single collision with an atomic electron:
\graffito{You might get unexpected results using math in chapter or
section heads. Consider the \texttt{pdfspacing} option.}
\begin{equation}
-\kappa =\frac{\xi}{E_{\mathrm{max}}} %\mathbb{ZNR}
+\kappa =\frac{\xi}{E_{\textrm{max}}} %\mathbb{ZNR}
\end{equation}
-$E_{\mathrm{max}}$ is the maximum transferable energy in a single
+$E_{\textrm{max}}$ is the maximum transferable energy in a single
collision with an atomic electron.
\[
-E_{\mathrm{max}} =\frac{2 m_{\mathrm{e}} \beta^2\gamma^2 }{1 +
-2\gamma m_{\mathrm{e}}/m_{\mathrm{x}} + \left ( m_{\mathrm{e}}
-/m_{\mathrm{x}}\right)^2}\ ,
+E_{\textrm{max}} =\frac{2 m_{\textrm{e}} \beta^2\gamma^2 }{1 +
+2\gamma m_{\textrm{e}}/m_{\textrm{x}} + \left ( m_{\textrm{e}}
+/m_{\textrm{x}}\right)^2}\ ,
\]
-where $\gamma = E/m_{\mathrm{x}}$, $E$ is energy and
-$m_{\mathrm{x}}$ the mass of the incident particle,
-$\beta^2 = 1 - 1/\gamma^2$ and $m_{\mathrm{e}}$ is the electron mass.
+where $\gamma = E/m_{\textrm{x}}$, $E$ is energy and
+$m_{\textrm{x}}$ the mass of the incident particle,
+$\beta^2 = 1 - 1/\gamma^2$ and $m_{\textrm{e}}$ is the electron mass.
$\xi$ comes from the Rutherford scattering cross section
and is defined as:
-\begin{eqnarray*} \xi = \frac{2\pi z^2 e^4 N_{\mathrm{Av}} Z \rho
-\delta x}{m_{\mathrm{e}} \beta^2 c^2 A} = 153.4 \frac{z^2}{\beta^2}
+\begin{eqnarray*} \xi = \frac{2\pi z^2 e^4 N_{\textrm{Av}} Z \rho
+\delta x}{m_{\textrm{e}} \beta^2 c^2 A} = 153.4 \frac{z^2}{\beta^2}
\frac{Z}{A}
- \rho \delta x \quad\mathrm{keV},
+ \rho \delta x \quad\textrm{keV},
\end{eqnarray*}
where
\begin{tabular}{ll}
$z$ & charge of the incident particle \\
-$N_{\mathrm{Av}}$ & Avogadro's number \\
+$N_{\textrm{Av}}$ & Avogadro's number \\
$Z$ & atomic number of the material \\
$A$ & atomic weight of the material \\
$\rho$ & density \\
@@ -54,7 +54,7 @@ $ \delta x$ & thickness of the material \\
\end{tabular}
$\kappa$ measures the contribution of the collisions with energy
-transfer close to $E_{\mathrm{max}}$. For a given absorber, $\kappa$
+transfer close to $E_{\textrm{max}}$. For a given absorber, $\kappa$
tends
towards large values if $\delta x$ is large and/or if $\beta$ is
small. Likewise, $\kappa$ tends towards zero if $\delta x $ is small