diff options
Diffstat (limited to 'Master/texmf-dist/doc/latex/chemmacros/chemmacros_de.tex')
-rw-r--r-- | Master/texmf-dist/doc/latex/chemmacros/chemmacros_de.tex | 3544 |
1 files changed, 0 insertions, 3544 deletions
diff --git a/Master/texmf-dist/doc/latex/chemmacros/chemmacros_de.tex b/Master/texmf-dist/doc/latex/chemmacros/chemmacros_de.tex deleted file mode 100644 index d9363e0dadb..00000000000 --- a/Master/texmf-dist/doc/latex/chemmacros/chemmacros_de.tex +++ /dev/null @@ -1,3544 +0,0 @@ -% arara: xelatex -% arara: biber -% arara: xelatex -% arara: xelatex -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% ----------------------------------------------------------------------------- -% - the CHEMMACROS bundle -% - chemmacros_de.tex -% - macros and commands for chemists -% ----------------------------------------------------------------------------- -% - Clemens Niederberger -% - -% ----------------------------------------------------------------------------- -% - https://bitbucket.org/cgnieder/chemmacros/ -% - contact@mychemistry.eu -% ----------------------------------------------------------------------------- -% - If you have any ideas, questions, suggestions or bugs to report, please -% - feel free to contact me. -% ----------------------------------------------------------------------------- -% - Copyright 2011-2013 Clemens Niederberger -% - -% - This work may be distributed and/or modified under the -% - conditions of the LaTeX Project Public License, either version 1.3 -% - of this license or (at your option) any later version. -% - The latest version of this license is in -% - http://www.latex-project.org/lppl.txt -% - and version 1.3 or later is part of all distributions of LaTeX -% - version 2005/12/01 or later. -% - -% - This work has the LPPL maintenance status `maintained'. -% - -% - The Current Maintainer of this work is Clemens Niederberger. -% ----------------------------------------------------------------------------- -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% -% if you want to compile this documentation -% a) you'll need the document class `cnpkgdoc' which you can get here: -% https://bitbucket.org/cgnieder/cnpkgdoc/ -% the class is licensed LPPL 1.3 or later -% b) you need the following compilation order: -% > xelatex chemmacros_de (2 or probably 3 times) -% > biber chemmacros_de -% > xelatex chemmacros_de (2 times) -% -% -\documentclass[DIV11,toc=index,toc=bib]{cnpkgdoc} -\docsetup{ - pkg = chemmacros, - title = Das \Chemmacros-Bundle, - language = de, - subtitle = {Pakete \Chemmacros, \Chemformula\ und \Ghsystem}, - modules = true, - code-box = {skipabove=1ex,skipbelow=1ex}, - label = {}, -} - -\usepackage{chemfig,upgreek,textgreek,booktabs,cancel} -\usepackage[version=3]{mhchem} -\usepackage{hologo} -\newcommand*\pdfTeX{\hologo{pdfTeX}} -\newcommand*\XeTeX{\hologo{XeTeX}} -\newcommand*\LuaTeX{\hologo{LuaTeX}} -\newcommand*\XeLaTeX{\hologo{XeLaTeX}} -\newcommand*\LuaLaTeX{\hologo{LuaLaTeX}} - -\usepackage{fnpct} -\usepackage[biblatex]{embrac} -\ChangeEmph{[}[,.02em]{]}[.055em,-.08em] -\ChangeEmph{(}[-.01em,.04em]{)}[.04em,-.05em] - -\pagestyle{headings} - -\usepackage{acro} -\acsetup{long-format=\scshape} -\DeclareAcronym{ghs}{ - short = GHS , - long = Globally Harmonized System of Classification and Labelling of Chemicals -} -\DeclareAcronym{eu}{ - short = EU , - long = European Union -} -\DeclareAcronym{iupac}{ - short = IUPAC , - long = International Union of Pure and Applied Chemistry -} -\DeclareAcronym{UN}{ - short = UN , - long = United Nations -} -\DeclareAcronym{dvi}{ - short = dvi , - long = device independent file format , - format = \scshape -} -\DeclareAcronym{pdf}{ - short = pdf , - long = portable document file , - format = \scshape -} - -\chemsetup[option]{synchronize,language=german} -\colorlet{chemformula}{darkgray} - -\sisetup{ - detect-mode=false, - mode=text, - text-rm=\addfontfeatures{Numbers={Proportional,Lining}} -} - -\usepackage{filecontents} - -\begin{filecontents*}{\jobname.ist} - preamble "\\begin{theindex}\n Überschriften werden \\textbf{fett}, Pakete - \\textsf{serifenlos}, Befehle \\code{\\textbackslash\\textcolor{code}{braun}}, - Optionen \\textcolor{key}{\\code{grün}} und Module (nur \\chemmacros) - \\textcolor{module}{\\code{rot}} gesetzt.\\newline\n\n" - heading_prefix "{\\bfseries " - heading_suffix "\\hfil}\\nopagebreak\n" - headings_flag 1 - delim_0 "\\dotfill\\hyperpage{" - delim_1 "\\dotfill\\hyperpage{" - delim_2 "\\dotfill\\hyperpage{" - delim_r "}\\textendash\\hyperpage{" - delim_t "}" - suffix_2p "\\nohyperpage{\\,f.}" - suffix_3p "\\nohyperpage{\\,ff.}" -\end{filecontents*} - -\usepackage[backend=biber,style=alphabetic,maxbibnames=20]{biblatex} -\addbibresource{\jobname.bib} -\begin{filecontents*}{\jobname.bib} -@book{iupac:greenbook, - author = {E. Richard Cohan and Tomislav Cvita\v{s} and Jeremy G. Frey and - Bertil Holmström and Kozo Kuchitsu and Roberto Marquardt and Ian Mills and - Franco Pavese and Martin Quack and Jürgen Stohner and Herbert L. Strauss and - Michio Takami and Anders J Thor}, - title = {“Quantities, Symbols and Units in Physical Chemistry”, \ac{iupac} Green - Book}, - edition = {3rd Edition. 2nd Printing}, - year = {2008}, - publisher = { \ac{iupac} \&\ RSC Publishing, Cambridge} -} -@book{iupac:redbook, - author = {Neil G. Connelly and Ture Damhus and Richard M. Hartshorn and - Alan T. Hutton}, - title = {“Nomenclature of Inorganic Chemistry”, \ac{iupac} Red Book}, - year = {2005}, - publisher = { \ac{iupac} \&\ RSC Publishing, Cambridge}, - isbn = {0-85404-438-8} -} -@misc{eu:ghsystem_regulation, - author = {{The European Parliament and The Council of the European Union}}, - title = {Regulation (EC) No 1272/2008 of the European Parliament and of the - Council}, - subtitle = {on classification, labelling and packaging of substances and mixtures, - amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation - (EC) No 1907/2006}, - journal = {Official Journal of the European Union}, - date = {2008-12-16} -} -@online{unece:ghsystem_implementation, - author = {United Nations Economic Commission for Europe}, - title = {GHS Implementation}, - url = {http://www.unece.org/trans/danger/publi/ghs/implementation_e.html}, - urldate = {2012-03-20}, - date = {2012-03-20} -} -\end{filecontents*} - -\DeclareInstance{xfrac}{chemformula-text-frac}{text} - { - scale-factor = 1 , - denominator-bot-sep = -.2ex , - denominator-format = \scriptsize #1 , - numerator-top-sep = -.2ex , - numerator-format = \scriptsize #1 , - slash-right-kern = .05em , - slash-left-kern = .05em - } - -\newcommand*\chemformula{{\scshape\textcolor{cnpkgblue}{chemformula}}\xspace} -\newcommand*\ghsystem{{\scshape\textcolor{cnpkgblue}{ghsystem}}\xspace} - -\newcommand*\Chemmacros{{\fontspec[Color=cnpkgblue,Scale=1.2]{Linux Biolinum Shadow O}chemmacros}} -\newcommand*\Chemformula{{\fontspec[Color=cnpkgblue,Scale=1.2]{Linux Biolinum Shadow O}chemformula}} -\newcommand*\Ghsystem{{\fontspec[Color=cnpkgblue,Scale=1.2]{Linux Biolinum Shadow O}ghsystem}} - -\renewcommand*\AmS{\hologo{AmS}} - -\TitlePicture{% - \ch[font-spec={[Color=chemformula]Augie}]{ 2 "\OX{o1,\ox{0,Na}}" + "\OX{r1,\ox{0,Cl}}" {}2 -> 2 "\OX{o2,\ox{+1,Na}}" {}+ + 2 "\OX{r2,\ox{-1,Cl}}" {}- } - \redox(o1,o2)[red,-cf]{\small\ch[font-spec={[Color=red]Augie},math-space=.3em]{$-$ 2 e-}} - \redox(r1,r2)[blue,-cf][-1]{\small\ch[font-spec={[Color=blue]Augie},math-space=.3em]{$+$ 2 e-}}} - -\addcmds{ - a,abinitio,AddRxnDesc,anti,aq,aqi, - b,ba,bond,bottomrule,bridge, - cancel,cd,cdot,ce,cee,celsius,centering,chemabove,Chemalpha,Chembeta,Chemgamma, - Chemdelta,ChemDelta,chemfig,chemname,Chemomega,chemsetup,cip,cis,ch,cnsetup, - CNMR,color,cstsetup, - d,D,data,DeclareChemArrow,DeclareChemBond,DeclareChemBondAlias,DeclareChemIUPAC, - DeclareChemLatin,DeclareChemNMR,DeclareChemParticle,DeclareChemPhase, - DeclareChemReaction,DeclareChemState,DeclareInstance,DeclareSIUnit,definecolor, - delm,delp,Delta,Dfi,draw, - E,el,electronvolt,ElPot,endo,Enthalpy,enthalpy,Entropy, - footnotesize,fmch,fpch,fscrm,fscrp, - g,gas,ghs,ghslistall,ghspic,Gibbs,glqq,gram,grqq, - H,hapto,HNMR,Helmholtz,hertz,hspace, - includegraphics,insitu,intertext,invacuo,iupac,IUPAC,J,joule, - Ka,Kb,kilo,Kw, - L,latin,lewis,Lewis,Lfi,listofreactions,lqd,ltn, - mch,mega,meta,metre,mhName,midrule,milli,mmHg,mole, - N,nano,nicefrac,newman,NMR,Nu,Nuc,num,numrange, - O,ominus,orbital,ortho,oplus,ox,OX, - p,P,para,pch,per,percent,pgfarrowsdeclarealias,pgfarrowsrenewalias,pH,phase, - photon,pKa,pKb,pOH,pos,positron,Pot,prt, - R,Rad,redox,RenewChemArrow,RenewChemBond,RenewChemIUPAC,RenewChemLatin,RenewChemNMR, - RenewChemParticle,RenewChemPhase,RenewChemState,renewtagform,rightarrow, - S,Sf,sample,scriptscriptstyle,scrm,scrp,second,setatomsep,setbondoffset,sfrac, - shorthandoff,ShowChemArrow,ShowChemBond,si,SI,sisetup,sld,Sod,square,State, - subsection, - textcolor,textendash,textsuperscript,tiny,toprule,trans, - upbeta,upeta,upgamma, - val,volt,vphantom,vspave, - w,xspace,Z} - -\usepackage{imakeidx} -\indexsetup{othercode=\footnotesize} -\makeindex[columns=3,intoc,options={-sl \jobname.ist}] - -\begin{document} -\chemsetup[chemformula]{ - font-spec = - {[Color=chemformula,Numbers={Proportional,Lining}]Latin Modern Sans} -} -\def\glqq{„} -\def\grqq{“} - -\part{Bevor es los geht}\secidx{BEVOR ES LOS GEHT} -\section{Lizenz, Voraussetzungen und README} -Das \chemmacros-Bundle steht unter der \LaTeX\ Project Public License (LPPL) Version -1.3 oder später (\url{http://www.latex-project.org/lppl.txt}) und hat den Status -„maintained“. - -Das \chemmacros-Bundle benötigt aktuelle Versionen der \paket{l3kernel}- und -\paket{l3packages}-Bundles. Außerdem werden die Pakete \paket{siunitx}, -\paket{mathtools}, \paket{bm}, \paket{nicefrac} und \paket{environ} sowie -\paket*{tikz}\footnote{CTAN: \href{http://www.ctan.org/pkg/pgf/}{pgf}} und die -\TikZ libraries \code{calc} und \code{arrows} benötigt. - -Die Paketoption \key{bpchem} (Abschnitt \ref{sec:optionen}) benötigt \paket{bpchem}, -die Paketoption \key{xspace} benötigt \paket{xspace} und die Paketoption -\key{method}{mhchem} benötigt \paket{mhchem}. - -Mit v3.0 wurde das \chemmacros-Paket mit den neuen Paketen \chemformula und \ghsystem -gebündelt. \chemformula ist eine Alternative zu \paket{mhchem}. Das führte zu -einigen internen Änderungen bei \chemmacros. Gleichzeitig wurde die Dokumentation -komplett überarbeitet. - -Vielleicht erinnern Sie Sich, dass \chemmacros' Optionen alle verschiedenen Modulen -angehören, siehe Abschnitt \ref{sec:setup} für weitere Informationen. Sie werden -in den linken Rand geschrieben, wenn die Option das erste Mal erwähnt wird. Abschnitt -\ref{sec:overview} listet alle Optionen von \chemmacros und ihre Module auf. In -diesem Dokument werden Optionen \textcolor{key}{\code{grün}} und Module -\textcolor{module}{\code{rot}} dargestellt. - -Das Paket \ghsystem benötigt die Pakete \chemmacros, \paket{tabu}, \paket{longtable}, -\paket{ifpdf} und \paket{graphicx}. - -\achtung{Es gibt einige veraltete Befehle und Optionen, die in dieser Dokumentation -nicht mehr beschrieben werden. Um Kompatibilität mit älteren Dokumenten zu -gewährleisten, sind sie immer noch definiert. Diese Befehle geben eine Warnung aus. -In Zukunft könnten sie nicht mehr definiert sein.} - -\section{Motivation und Hintergrund} -\chemmacros entstand vor einigen Jahren als wachsende Liste von Makros, die ich -häufig verwendete. Ich kann mich nicht mehr genau erinnern, wann und warum ich -entschied, sie als Paket zu veröffentlichen. Nun \textendash\ hier ist es und ich -hoffe, Sie werden das eine oder andere ebenfalls nützlich finden. - -Die Makros und ihre Funktionsweise haben sich im Laufe der Zeit leicht verändert. -Es sind außerdem eine ganze Reihe hinzugekommen. Insgesamt hat sich mit der Zeit -vieles vereinheitlicht und es sind viele Anpassungsmöglichkeiten hinzugekommen. - -Wohl fast jeder Chemiker, der \LaTeX\ für seine Dokumente verwendet, dürfte das -großartige Paket \paket{mhchem} von Martin Hensel kennen. Es gab immer ein paar -Schwierigkeiten, \paket{mhchem} und \chemmacros zur Zusammenarbeit zu bewegen. -Ein paar Kleinigkeiten in \paket{mhchem} haben mich zudem immer gestört, aber sie -schienen nicht genug für ein neues Paket. Noch nicht einmal genug, um ein -\enquote{feature request} an den Autoren von \paket{mhchem} zu senden. Die -Herausforderung und der Spaß, ein neues Paket zu erschaffen, sowie der Wunsch nach -größtmöglicher Flexibilität führten so doch noch zu \chemformula. - -\chemformula funktioniert sehr ähnlich wie \paket{mhchem}, ist aber strenger was -das Eingeben von Verbindungen, stöchiometrischen Faktoren und Pfeilen angeht. -Gleichzeitig bietet \chemformula ein paar Möglichkeiten, den Output anzupassen, -die \paket{mhchem} nicht bietet. Da \chemformula als Alternative zu \paket{mhchem} -gedacht ist, bietet \chemmacros eine Option, mit der Sie zwischen \paket{mhchem} -und \chemformula wählen können. - -Als Chemiker wissen Sie vermutlich, dass die \acl{UN} das \ac{ghs} als weltweiten -Ersatz für die zahlreichen ähnlichen aber doch verschiedenen Systeme der einzelnen -Länder entwickelt haben. Obwohl es noch nicht in allen Ländern umgesetzt -wurde~\cite{unece:ghsystem_implementation}, ist das nur eine Frage der Zeit. -Das Paket \ghsystem gibt Ihnen nun die Möglichkeit, alle \enquote{hazard and -precautionary statements} auf einfache Weise einzugeben und aufzurufen. Die Sätze -wurden der EU-Verordnung 1272/2008 entnommen~\cite{eu:ghsystem_regulation}. - -Ich hoffe, folgende vier Punkte in diesem Bundle umgesetzt zu haben: -\begin{itemize} - \item intuitive Verwendung, vor allem im Hinblick auf die Syntax der Befehle - \item die Befehle sollen nicht nur das Schreiben erleichtern sondern auch den - Quelltext besser lesbar machen, indem er semantisch logischer wird - (\lstinline=\ortho-dichlorobenzene= kann man leichter lesen und verstehen als - \lstinline=\textsl{o}-dichlorobenzene=) - \item so große Flexibilität und so viele Anpassungsmöglichkeiten wie möglich, - damit jeder Anwender die Befehle nach eigenen Bedürfnissen anpassen kann. - \item mit \ac{iupac} konforme Voreinstellungen -\end{itemize} -Vor allem der letzte Punkt benötigte zwar einige Schubser von Anwendern\footnote{% -Vielen Dank an Dr.~Paul~King!}, um die richtigen Einstellungen an vielen Stellen -zu bekommen. Wenn Ihnen etwas auf\-fällt, das nicht der \ac{iupac}-Empfehlung -entspricht\footnote{Das gilt nicht für den \cmd{ox}-Befehl. Die \ac{iupac}-Fassung dazu -ist \cmd[oxa]{ox*}.}, würde ich mich über eine E-Mail sehr freuen! - -Bei einem Paket dieser Größe mit alten und neuen Teilen (die man noch als in der -Beta-Phase befindlich betrachten muss) ist es unvermeidbar, dass es Fehler und Bugs -gibt. Ich bin sehr daran interessiert, dieses Paket zu korrigieren und verbessern, -daher eine Bitte: wenn Ihnen etwas auf{}fällt, das Sie stört, egal wie geringfügig -es erscheint, senden Sie mir bitte eine E-Mail und ich werde sehen, was ich tun -kann. Besonders interessiert bin ich an Feedback zu \chemformula (siehe -Teil~\ref{part:chemformula}) und \ghsystem (siehe Teil~\ref{part:ghsystem}), freue -mich aber natürlich auch über Feedback zu jedem anderen Teil des Bundles. - -\section{Installation und Laden des Bundles}\secidx{Laden des Bundles}\secidx{Installation} -Das Bundle enthält drei Style-Dateien\footnote{Die mit der Endung \code{sty}.}, -einem Ordner namens \code{language/}, der die Sprach-De\-fi\-ni\-tions-Dateien für -\ac{ghs} enthält (Endung \code{def}) und einem Ordner \code{pictures/}, der \code{eps}-, -\code{jpg}-, \code{pdf} und \code{png}-Dateien enthält (die \ac{ghs} Piktogramme). -Wenn Sie das Bundle von Hand installieren, \emph{bitte achten Sie darauf, die Ordner -\code{language/} und \code{pictures/} in den \emph{gleichen} Ordner wie die -Style-Dateien zu kopieren}. - -Das Laden von \chemmacros via -\begin{beispiel}[code only] - \usepackage{chemmacros} % `chemmacros', `chemformula' and `ghsystem' are loaded -\end{beispiel} -wird ebenso \chemformula und \ghsystem laden. Sie können jedoch \chemmacros davon -abhalten, \ghsystem zu laden: -\begin{beispiel}[code only] - \usepackage[ghsystem=false]{chemmacros} % `chemmacros' and `chemformula' are loaded -\end{beispiel} -Das Laden von \chemformula kann nicht verhindert werden, da \chemmacros und -\chemformula miteinander interagieren. - -Das explizite Laden von \chemformula \bzw\ \ghsystem ist möglich und wird -\chemmacros in jedem Fall laden, falls das noch nicht geschehen ist. Dadurch -laden sie sich implizit gegenseitig. -\begin{beispiel}[code only] - \usepackage{chemformula} - or - \usepackage{ghsystem} -\end{beispiel} - -Es wird jedoch empfohlen, lediglich \lstinline=\usepackage{chemmacros}= zu -verwenden und die gewünschten Optionen mit \lstinline=\chemsetup= vorzunehmen -(siehe auch Abschnitt \ref{sec:setup}). -\secidx*{Installation}\secidx*{Laden des Bundles} - -\section{Paketoptionen}\label{sec:optionen}\secidx{Paketoptionen} -\chemmacros hat einige Optionen. Sie alle folgen einen Schlüssel/Wert-Prinzip: -\begin{beispiel}[code only] - \usepackage[option1 = <value1>, option2 = <value2>]{chemmacros} -\end{beispiel} -Die meisten können auch ohne Wert verwendet werden -(\lstinline+\usepackage[option]{chemmacros}+). Sie verwenden dann den -\default{unter\-stri\-che\-nen} Wert. - -Sowohl \chemformula als auch \ghsystem haben keine eigenen Paketoptionen. Wenn Sie -sie explizit laden, verpuffen alle als Paketoptionen gegebenen Optionen. Sie können -dann nur mit dem Setup-Befehl gesetzt werden. -\begin{beschreibung} - % bpchem - \option[option]{bpchem}{\default{true}|false} Diese Option lädt \paket{bpchem} - und passt das Layout von \cmd{NMR} den \paket{bpchem}-Befehlen \lstinline+\HNMR+ - und \lstinline+\CNMR+ an. Default = \code{false} - % circled - \option[option]{circled}{\default{formal}|all|none} \chemmacros unterscheidet - zwischen zwei Typen von Ladungen\footnote{Vielen Dank an Christoph Schäfer, - der mich darauf aufmerksam machte, dass v1.1 die Ladungen zu nachlässig behandelte!}: - reale ($+/-$) und formale (\fplus/\fminus) Ladungen. Die Option \code{formal} - unterscheidet zwischen ihnen, \code{none} stellt alle ohne Umkreisung dar, - \code{all} umkreist alle. Default = \code{formal} - % circletype - \option[option]{circletype}{\default{chem}|math} Diese Option schaltet zwischen - zwei Darstellungsmöglichkeiten für formale Ladungen hin und her: \cmd{fplus} - \fplus\ und \lstinline+$\oplus$+ $\oplus$. Default = \code{chem} - % cmversion - \option[option]{cmversion}{1|2|bundle} Diese Option stellt die Definition einiger - Befehle wieder her, so dass Dokumente, die mit v1.* gesetzt wurden, Korrekt - kompilieren. Default = \code{bundle}. Eigentlich sind \code{2} und \code{bundle} - Aliase. Diese Option kann nur in der Präambel gesetzt werden. - % ghsystem - \option[option]{ghsystem}{\default{true}|false} Das Paket \ghsystem abschalten. - Die Einstellung \key{ghs}{false} wird das Laden von \ghsystem unterbinden. - Default = \code{true} - % greek - \option[option]{greek}{auto|math|textgreek|\default{upgreek}} Diese Option bestimmt, - wie die Buchstaben \cmd{Chemalpha} und seine Verwandten dargestellt werden. - Siehe Seite~\pageref{desc:upgreek} für weitere Informationen. Diese Option - kann nur in der Präambel gesetzt werden. Bitte beachten Sie, dass diese - Option weder \paket{upgreek} noch \paket{textgreek} lädt! Sie bestimmt - lediglich welches verwendet wird, falls es geladen wurde. Wenn Sie beispielsweise - \code{upgreek} wählen, müssen Sie auch das entsprechende Paket laden. - Default = \code{auto} - % iupac - \option[option]{iupac}{auto|restricted|strict} Einstellen, wie die Nomenklatur-Befehle - definiert werden. Siehe Seite~\pageref{desc:iupac}. Default = \code{auto} - % language - \option[option]{language}{american|british|english|french|german|italian|ngerman} - Sprachspezifische Einstellungen laden. \code{english}, \code{american} und - \code{british} sind Aliase, ebenso \code{german} und \code{ngerman}. Diese - Option kann nur in der Präambel gesetzt werden. Default = \code{english} - % method - \option[option]{method}{\default{chemformula}|mhchem} Sie können wählen, ob - \chemmacros \paket{mhchem} oder \chemformula für die Reaktionsumgebungen - (siehe Abschnitt~\ref{sec:reactions}) und die Teilchen (siehe - Abschnitt~\ref{sec:teilchen}) verwendet. Default = \code{chemformula}. Diese - Option kann nur in der Präambel gesetzt werden. - % Nu - \option[option]{Nu}{\default{chemmacros}|mathspec} Das Paket \paket{mathspec} - definiert ebenfalls ein Makro \cmd{Nu}. Diese Option entscheidet, welche - Definition gilt, siehe Seite~\pageref{Nu}. Default = \code{chemmacros}. Diese - Option kann nur in der Präambel gesetzt werden. - % strict - \option[option]{strict}{\default{true}|false} Die Einstellung \key{strict}{true} - wird alle Warnungen in Fehlermeldungen ändern. Default = \code{false} - % synchronize - \option[option]{synchronize}{\default{true}|false} Mit der Einstellung \code{true} - wird \chemmacros die Schrifteinstellungen von \chemformula übernehmen, falls - \chemformula als Methode gewählt wurde. Default = \code{false}. Um diese Option - zu demonstrieren, wurde dieses Dokument mit \key{synchronize}{true} und der - \chemformula Einstellung - \lstinline+\chemsetup[chemformula]{font-spec={[Color=darkgray]Latin Modern Sans}}+ - gesetzt. - % xspace - \option[option]{xspace}{\default{true}|false} Mit dieser Option werden die - meisten Makros mit einem \lstinline+\xspace+ definiert. Default = \code{true} -\end{beschreibung} -\secidx*{Paketoptionen} - -\section{Setup}\label{sec:setup}\secidx{Setup} -Zahlreiche der Befehle von \chemmacros, \chemformula und \ghsystem haben -Schlüssel/Wert-Paare als Optionen, mit denen sie angepasst werden können. Meistens -können sie als (optionales) Argument des entsprechenden Befehls verwendet werden. -Meistens können Sie auch mit dem \cmd{chemsetup} Befehl verwendet werden. -\begin{beschreibung} - \Befehl{chemsetup}[<module>]{<key> = <value>} oder - \Befehl{chemsetup}{<module>/<key> = <value>} -\end{beschreibung} -Die Optionen gehören alle zu einem Modul, das anzeigt, auf welchen Befehl sie -sich auswirken. Wenn eine Option vorgestellt wird, wird das dazugehörige Modul -in den linken Rand geschrieben. Sie können die Optionen mit \cmd{chemsetup} auf -zwei Weisen verwenden, wie oben dargestellt. - -Die Paketoptionen können ebenfalls als Optionen betrachtet werden, die zum Modul -\textcolor{module}{\ttfamily option} gehören. Das bedeutet, sie können auch mit -\cmd{chemsetup} aufgerufen werden. -\begin{beispiel} - \chemsetup[option]{circled=none}\mch\ \pch\ \fmch\ \fpch\ \el\ \prt \\ - \chemsetup[option]{circled=formal}\mch\ \pch\ \fmch\ \fpch\ \el\ \prt \\ - \chemsetup[option]{circletype=math}\mch\ \pch\ \fmch\ \fpch\ \el\ \prt \\ - \chemsetup{option/circletype=chem,option/circled=all}\mch\ \pch\ \fmch\ \fpch\ \el\ \prt \\ - \chemsetup{option/circletype=math}\mch\ \pch\ \fmch\ \fpch\ \el\ \prt -\end{beispiel} -Optionen, die \emph{keinem} Modul angehören, können \emph{nicht} mit -\cmd{chemsetup} verwendet werden! - -Alle Optionen von \chemformula gehören dem Modul \textcolor{module}{\code{chemformula}} -an und alle Optionen von \ghsystem gehören dem Modul \textcolor{module}{\code{ghs}} -an. -\secidx*{Setup} - -\section{Spracheinstellungen}\label{sec:languages}\secidx{Spracheinstellung} -\subsection{Unterstützte Sprachen} -Durch die Wahl der Option -\begin{beispiel}[code only] - \chemsetup[option]{language=<language>} -\end{beispiel} -kann eine der folgenden Sprachen gewählt werden: \code{american}, \code{british}, -\code{english}, \code{french}, \code{german}, \code{italian} und \code{ngerman}. -Die Sprachen \code{american}, \code{british}, \code{english} sind Aliase, ebenso -die Sprachen \code{german} und \code{ngerman}. - -Übersetzt werden -\begin{itemize} - \item Die Überschrift der Liste der Reaktionen. - \item Die Einträge bei der Liste der Reaktionen. - \item Die H- und P-Sätze. -\end{itemize} - -\achtung{Bitte beachten Sie, dass die \ac{ghs}-Sätze nicht in allen Sprachen angeboten -werden, siehe auch Abschnitt~\ref{sec:ghsystem_language}.} - -\subsection{Besonderheiten} -\subsubsection{Deutsch} -Bei der Sprachwahl \code{german/ngerman} werden zusätzlich die Phasen-Befehle -\cmd{sld}, \cmd{lqd} und \cmd{pKa} übersetzt. - -\subsubsection{Italienisch} -\DeclareChemIUPAC{\ter}{\textit{ter}}\DeclareChemIUPAC{\sin}{\textit{sin}}% -Bei der Sprachwahl \code{italian} werden zusätzliche IUPAC-Befehle definiert: -\begin{beschreibung} - \befehl{ter} \iupac{\ter} - \befehl{sin} \iupac{\sin} -\end{beschreibung} -\secidx*{Spracheinstellung} - -\section{Neues}\secidx{Neues} -\subsection{Version 3.3} -\begin{itemize} - \item Ab Version 3.3 gibt es die Umgebung \env{experimental}{}, siehe - Abschnitt~\ref{sec:spektroskopie}, die mit einigen neuen Befehlen und Optionen - verwendet werden kann, um Messdaten konsistent darzustellen. - \item Die Umgebung \env{reaction}{} und ihre Verwandten können nun mit - \lstinline+\label+, \lstinline+\ref+ und \lstinline+\intertext+ umgehen, siehe - Abschnitt~\ref{sec:reactions}. - \item Die Paketoptionen \key{german} und \key{ngerman} entfallen, dafür gibt es - die neue Option \key{language}, siehe Seite~\pageref{key:option_language} und - Abschnitt~\ref{sec:languages} ab Seite~\pageref{sec:languages}. - \item Die Paketoption \key{upgreek} wurde umbenannt in \key{greek}. - \item Die \code{\textbackslash\textcolor{code}{Chem<greekletter>}}-Befehle wurden - um einige Buchstaben erweitert, siehe Abschnitt \ref{sec:teilchen}. -\end{itemize} - -\subsection{Version 3.3a} -\begin{itemize} - \item Die IUPAC-Befehle \cmd{hapto} und \cmd{bridge} sind neu. - \item Die H- und P-Sätze sind jetzt auch auf italienisch verfügbar. -\end{itemize} - -\subsection{Verison 3.3d} -\begin{itemize} - \item \code{pdf}-Versionen der \ac{ghs}-Piktogramme. - \item Neue Voreinstellungen für Bindungslänge und Bindungs-Offset, siehe Seite - \pageref{ssec:compounds:customization}. - \item Neue Option \key{bond-style}, siehe Seite~\pageref{ssec:compounds:customization}. - \item neue Option \key{cip-kern}, siehe Seite~\pageref{par:cip} -\end{itemize} - -\subsection{Version 3.4} -\begin{itemize} - \item \chemmacros bekam ein italienisches Manual, vielen herzlichen Dank an Jonas - Rivetti, der sich nicht nur freiwillig meldete, die H- \&\ P-Sätze zu übersetzen, - sondern auch diese Dokumentation! - \item der Befehl \cmd{bond}, der es ermöglicht, andere als Einfach-, Doppel- und - Dreifachbindungen zu verwenden, siehe Abschnitt~\ref{ssec:bonds}. Dieses Feature - wollte ich schon lange einbauen! - \item ein paar Änderungen am Aussehen des Radikalpunktes und neue Optionen, um es - anzupassen, siehe Abschnitt~\ref{ssec:compounds:customization}. -\end{itemize} - -\subsection{Versionen 3.5 und 3.6} -\begin{itemize} - \item Zeilenumbrüche vor und nach Bindungen in Formeln sind nicht mehr möglich. - \item Zeilenumbrüche nach Pfeilen in Formeln sind erlaubt. - \item Einige der horizontalen Leerräume in Formeln haben jetzt dehnbare Anteile. - \item In Formeln ist geschützte Methe-EIngabe jetzt auch mit \cmd*{(} und - \cmd*{)} möglich. - \item Neue Optionen: \key{radical-vshift}, \key{radical-hshift} und - \key{radical-space} erlauben Feinkontrolle über den Radikalpunkt. - \item In stöchiometrischen Faktoren wird eine führende Null hinzugefügt, wenn - sie fehlt. - \item Neue Option: \key{stoich-paren-parse}. - \item Zahlreiche interne Änderungen am Code. - \item Neue Option: \key{arrow-min-length}. -\end{itemize} -\secidx*{Neues}\secidx*{BEVOR ES LOS GEHT} - -\part{\texorpdfstring{\Chemmacros}{chemmacros}}\secidx{CHEMMACROS} -\section{Teilchen, Ionen und Symbole}\label{sec:teilchen}\secidx{Teilchen, Ionen und Symbole} -\subsection{Vordefiniert}\secidx[vordefiniert]{Teilchen, Ionen und Symbole} -\chemmacros definiert einige einfache Makros, um häufig verwendete Teilchen und -Symbole darzustellen. Bitte beachten Sie, dass sie unterschiedlich dargestellt -werden, je nach dem, welche Paketoptionen Sie verwenden. Diese Befehle können -auch im Mathematikmodus eingesetzt werden. -\begin{beschreibung} - \befehl{Hpl} \Hpl (Proton) - \befehl{Hyd} \Hyd (Hydroxid) - \befehl{HtO} \HtO (Oxoniumion) (\textbf{H} \textbf{t}hree \textbf{O}) - \befehl{water} \water - \befehl{el} \el (Elektron) - \befehl{prt} \prt (Proton) - \befehl{ntr} \ntr (Neutron) - \befehl{Nu} \Nu (Nukleophil). Das Paket \paket{mathspec} definiert ebenfalls - ein Makro \cmd{Nu}. Wenn Sie die Paketoption \key[option]{Nu}{mathspec} wählen, - definiert \chemmacros stattdessen \cmd{Nuc}\label{Nu}. - \befehl{El} \El (Elektrophil) - \befehl{ba} \ba (Base) - \befehl{fplus} \fplus - \befehl{fminus} \fminus - \befehl{transitionstatesymbol} \transitionstatesymbol - \befehl{standardstate} \standardstate. Dieses Symbol wird nur dann von \chemmacros - bereitgestellt, wenn das Paket \paket{chemstyle} nicht geladen wurde. Die Idee - ist von dort ausgeliehen\footnote{Vielen Dank an den Paketautoren - \href{http://www.texdev.net/}{Joseph Wright}.}. - \befehl{Chemalpha} \Chemalpha - \befehl{Chembeta} \Chembeta - \befehl{Chemgamma} \Chemgamma - \befehl{Chemdelta} \Chemdelta - \befehl{Chemepsilon} \Chemepsilon - \befehl{Chemeta} \Chemeta - \befehl{Chemkappa} \Chemkappa - \befehl{Chemmu} \Chemmu - \befehl{Chemnu} \Chemnu - \befehl{Chemrho} \Chemrho - \befehl{Chempi} \Chempi - \befehl{Chemsigma} \Chemsigma - \befehl{Chemomega} \Chemomega - \befehl{ChemDelta} \ChemDelta -\end{beschreibung} - -\achtung{Der Befehl \cmd{Rad} wird nicht mehr bereitgestellt!} - -Die beiden Teilchen \cmd{Nu} und \cmd{ba} können angepasst werden. Dafür verwenden -Sie die Option -\begin{beschreibung} - \Option[particle]{elpair}{false|\default{dots}|dash} -\end{beschreibung} -Sie hat nur dann Auswirkungen, wenn das Paket \paket{chemfig} geladen wurde, da -sie dessen Befehl \lstinline+\Lewis+ verwendet. -\begin{beispiel} - % needs package `chemfig' - \ba[elpair] \Nu[elpair=dash] - - \chemsetup[particle]{elpair} - \ba \Nu -\end{beispiel} - -\label{desc:upgreek}Die griechischen Buchstaben sind keine neu definierten Zeichen -sondern werden abhängig von den Paketen, die sie geladen haben, definiert. Die -Default-Version entspricht den entsprechenden kursiven „Mathematik“-Buchstaben. -Wenn Sie das Paket \paket{textgreek} geladen haben, werden dessen Buchstaben verwendet. -Wenn Sie das Paket \paket{upgreek} geladen haben, werden dessen Buchstaben verwendet. -Diese Dokumentation verwendet \paket{upgreek}. Haben Sie sowohl \paket{textgreek} -als auch \paket{upgreek} geladen haben, wird \paket{upgreek} verwendet. - -Wenn Sie nicht wollen, dass \chemmacros automatisch wählt, sondern selbst entscheiden -wollen, verwenden Sie die Paketoption \key[option]{greek}. Tabelle~\ref{tab:upgreek_mode} -zeigt die verschiedenen Varianten einiger Buchstaben. - -\begin{table}[h] - \centering - \begin{tabular}{lccc}\toprule - & math & upgreek & textgreek \\\midrule - \cmd{Chemalpha} & $\alpha$ & $\upalpha$ & \textalpha \\ - \cmd{Chembeta} & $\beta$ & $\upbeta$ & \textbeta \\ - \cmd{ChemDelta} & $\Delta$ & $\Updelta$ & \textDelta \\ \bottomrule - \end{tabular} - \caption{Die griechischen Buchstaben}\label{tab:upgreek_mode} -\end{table} - -Der Grund dafür, dass \chemmacros diese Makros überhaupt definiert, ist \ac{iupac}-Konformität. -\ac{iupac} empfiehlt, aufrechte griechische Buchstaben in der Nomenklatur verwenden. - -\begin{zitat}[{\ac{iupac} Green Book {\cite[][p.\,9]{iupac:greenbook}}}] - Greek letters are used in systematic organic, inorganic, macromolecular and - biochemical nomenclature. These should be roman (upright), since they are not - symbols for physical quantities. -\end{zitat} - -\chemmacros verwendet diese Befehle nun, um Nomenklatur-Befehle zu definieren, siehe -Seite~\pageref{par:greek_letters}. - -\subsection{Eigene Teilchen definieren}\secidx[eigene]{Teilchen, Ionen und Symbole} -Manchmal kann es sicherlich nützlich sein, andere Teilchen als Makro zur Verfügung -zu haben, etwa \lstinline+\positron+ oder \lstinline+\photon+. Mit diesem Befehl -kann das einfach erreicht werden: -\begin{beschreibung} - \Befehl{DeclareChemParticle}{<cmd>}\ma{<definition>} - \Befehl{RenewChemParticle}{<cmd>}\ma{<definition>} -\end{beschreibung} -Abhängig von der \key{method}, die Sie als Option gewählt haben, wird die -\code{<definition>} entweder mit \paket{mhchem} oder mit \chemformula erfolgen. -Das Teilchen verhält sich wie die vordefinierten mit einer Ausnahme: das Teilchen, -das auf diese Weise definiert wurde, gehorcht der Option \key{circled} nur, wenn -Sie \key{method}{chemformula} gewählt haben. Wenn Sie mit \key{method}{mhchem} -formale Ladungen wollen, müssen Sie \chemmacros' Befehle (siehe -Abschnitt~\ref{sec:ladungen}) explizit einsetzen. -\begin{beispiel} - % uses the `upgreek' package - \DeclareChemParticle{\positron}{$\upbeta$+} - \DeclareChemParticle{\photon}{$\upgamma$} - \RenewChemParticle{\el}{$\upbeta$-} - \positron\ \photon\ \el -\end{beispiel} -\cmd{DeclareChemParticle} definiert das Teilchen nur dann, wenn \code{<cmd>} noch -nicht existiert. Andernfalls wird \chemmacros entweder eine Warnung oder einen -Fehler ausgeben, abhängig von der Option \key{strict}. \cmd{RenewChemParticle} -definiert ein Teilchen \emph{nur}, wenn \code{<cmd>} schon existiert und gibt -andernfalls eine Warnung/einen Fehler. -\secidx*{Teilchen, Ionen und Symbole} - -\section{Nomenklatur, Stereodeskriptoren und lateinische Ausdrücke}\label{sec:stereo} -\subsection{IUPAC-Namen}\secidx{IUPAC-Namen} -Ähnlich wie das Paket \paket{bpchem} stellt \chemmacros einen Befehl\footnote{Die -Idee und die Umsetzung stammt aus dem Paket \paket*{bpchem} von Bjørn Pedersen.} -bereit, um \ac{iupac}-Namen zu setzen. Wieso ist das nützlich? \ac{iupac}-Namen können -sehr lang werden. So lang, dass sie auch mal über mehr als zwei Zeilen gehen können, -vor allem in zweispaltigen Dokumenten. Das bedeutet, sie müssen sich mehr als -einmal umbrechen dürfen. Dabei hilft folgender Befehl: -\begin{beschreibung} - \befehl{iupac}{<IUPAC name>} Innerhalb dieses Befehls werden {\catcode`\|=11\cmd{|}} - und \cmd{-} verwendet, um Umbruchstellen oder einen umbrechenden Bindestrich - anzugeben. {\catcode`\^=11\cmd{^}} kann als Abkürzung für\\ - \lstinline=\textsuperscript= eingesetzt werden. -\end{beschreibung} -\begin{beispiel} - \begin{minipage}{.4\linewidth} - \iupac{Tetra\|cyclo[2.2.2.1\^{1,4}]\-un\|decane-2\-dodecyl\-5\-(hepta\|decyl\|iso\|dodecyl\|thio\|ester)} - \end{minipage} -\end{beispiel} -Der Befehl \cmd{iupac} ist dennoch mehr ein semantischer Befehl. Meistens kann man -(beinahe) dasselbe erreichen, indem man \cmd{-} anstelle von {\catcode`\|=11\cmd{|}} -verwendet, \code{-} anstelle von \cmd{-} und \lstinline=\textsuperscript= anstelle -von {\catcode`\^=11\cmd{^}}. - -Es gibt subtile Unterschiede: \cmd{-} fügt einen kleinen Leerraum vor dem Bindestrich -ein und entfernt etwas Raum danach. Der Befehl {\catcode`\|=11\cmd{|}} verhindert -nicht nur Ligaturen, sondern fügt ebenfalls einen kleinen Leerraum ein. -\begin{beispiel} - \huge\iupac{2,4\-Di\|chlor\|pentan} \\ - 2,4-Dichlorpentan -\end{beispiel} - -Die eingefügten Leerräume können angepasst werden: -\begin{beschreibung} - \option[iupac]{hyphen-pre-space}{<dim>} Default = \code{.01em} - \option[iupac]{hyphen-post-space}{<dim>} Default = \code{-.03em} - \option[iupac]{break-space}{<dim>} Default = \code{.01em} -\end{beschreibung} - -Der Befehl \cmd{iupac} dient noch einem anderen Zweck. Unabhängig von der -Paketoption \key[option]{iupac} sind alle Befehle, die in diesem Abschnitt -vorgestellt werden, \emph{innerhalb} von \cmd{iupac} immer definiert. Eine ganze -Reihe der Nomenklatur-Befehle haben sehr allgemeine Namen: \cmd{meta}, \cmd{D}, -\cmd{E}, \cmd{L}, \cmd{R}, \cmd{S}, \cmd{trans} und so weiter. Das bedeutet, -dass sie entweder schon definiert sind (\cmd{L} \L) oder leicht von anderen -Paketen oder Klassen definiert werden (das Paket \paket{cool} definiert zum -Beispiel sowohl \cmd{D} als auch \cmd{E}). Um Ihnen Kontrolle darüber zu geben, -welche Befehle wie definiert sind, gibt es die Paketoption -\key[option]{iupac}\label{desc:iupac}. Sie hat drei Modi: -\begin{itemize} - \item \key{iupac}{auto}: wenn der Befehl \emph{nicht} von einem Paket oder einer - Klasse, die sie verwenden, definiert wird, ist er generell verfügbar, sonst nur - \emph{innerhalb} von \cmd{iupac}. - \item \key{iupac}{restricted}: alle Nomenklatur-Befehle sind \emph{nur} innerhalb - von \cmd{iupac} definiert. Wenn sie von einem anderen Paket definiert sind, sind - sie natürlich außerhalb verfügbar. Ansonsten sind sie außerhalb nicht definiert. - \item \key{iupac}{strict}: \chemmacros überschreibt jede bestehende Definition und - macht die Befehle im ganzen Dokument verfügbar. Sie können natürlich (nur nach - \lstinline=\begin{document}=) umdefiniert werden. Sie behalten dann die - Nomenklatur-Bedeutung innerhalb von \cmd{iupac}. -\end{itemize} -Tabelle~\ref{tab:iupac_modes} demonstriert die verschiedenen Modi. - -\begin{table}[h] - \centering - \begin{tabular}{lccc}\toprule - & auto & restricted & strict \\\midrule - \lstinline=\L= & \L & \L & \iupac{\L} \\ - \lstinline=\iupac{\L}= & \iupac{\L} & \iupac{\L} & \iupac{\L} \\ - \lstinline=\D= & \D & -- & \D \\ - \lstinline=\iupac{\D}= & \iupac{\D} & \iupac{\D} & \iupac{\D} \\\bottomrule - \end{tabular} - \caption{Demonstration der verschiedenen \protect\key{iupac}-Modi.}\label{tab:iupac_modes} -\end{table} - -\subsubsection{Vordefinierte Befehle}\secidx[vordefiniert]{IUPAC-Namen}\secidx{Stereodeskriptoren und Nomenklatur} -\paragraph{Griechische Buchstaben}\label{par:greek_letters}\secidx[griechische Buchstaben]{IUPAC-Namen} -Griechische Buchstaben in Verbindungsnamen werden aufrecht geschrieben. Dafür gibt -es die Pakete \paket{upgreek} und \paket{textgreek}. Wenn Sie eines davon geladen -haben, werden die folgenden Buchstaben aufrecht geschrieben: -\begin{beschreibung} - \befehl{a} \iupac{\a} - \befehl{b} \iupac{\b} - \befehl{g} \iupac{\g} - \befehl{d} \iupac{\d} - \befehl{k} \iupac{\k} - \befehl{m} \iupac{\m} - \befehl{n} \iupac{\n} - \befehl{w} \iupac{\w} -\end{beschreibung} -\begin{beispiel} - \iupac{5\a\-androstan\-3\b\-ol} \\ - \iupac{\a\-(tri\|chloro\|methyl)\-\w\-chloro\|poly(1,4\-phenylene\|methylene)} -\end{beispiel} - -\paragraph{Heteroatome und addierter Wasserstoff}\secidx[Heteroatome]{IUPAC-Namen} -Bindungen an Heteroatome und addierter Wasserstoff werden durch kursive Buchstaben -dargestellt \cite{iupac:greenbook}. \chemmacros definiert ein paar Abkürzungen -dafür: -\begin{beschreibung} - \befehl{H} \iupac{\H} - \befehl{O} \iupac{\O} - \befehl{N} \iupac{\N} - \befehl{Sf} \iupac{\Sf} - \befehl{P} \iupac{\P} -\end{beschreibung} -\begin{beispiel} - \iupac{\N\-methyl\|benz\|amide} \\ - \iupac{3\H\-pyrrole} \\ - \iupac{\O\-ethyl hexanethioate} -\end{beispiel} - -\paragraph{Cahn-Ingold-Prelog}\index{Cahn-Ingold-Prelog}\secidx[Cahn-Ingold-Prelog]{IUPAC-Namen}\label{par:cip} -\begin{beschreibung} - \befehl{cip}{<conf>} \zB: \cmd{cip}{R,S} \cip{R,S} - \befehl{R} \iupac{\R} - \befehl{S} \iupac{\S} -\end{beschreibung} -Da der Befehl \cmd{S} schon eine andere Bedeutung hat (\S), ist er in der -Voreinstellung nur innerhalb \cmd{iupac} verfügbar. - -Sowohl diese Befehle als auch die entgegen/zusammen-Deskriptoren erhalten etwas -Kerning nach der schließenden Klammer. Der betrag kann durch folgende Option geändert -werden: -\begin{beschreibung} - \option[iupac]{cip-kern}{<dim>} Betrag des Kernings nach der schließenden Klammer. - Default = \code{.075em} -\end{beschreibung} - -\paragraph{Fischer}\index{Fischer}\secidx[Fischer]{IUPAC-Namen} -\begin{beschreibung} - \befehl{D} \iupac{\D} - \befehl{L} \iupac{\L} -\end{beschreibung} -Da der Befehl \cmd{L} schon eine andere Bedeutung hat (\L), ist er in der Voreinstellung -nur innerhalb \cmd{iupac} verfügbar. - -\paragraph{cis/trans, zusammen/entgegen, syn/anti \& tert}\index{tert}\secidx[tert]{IUPAC-Namen}\index{cis/trans}\secidx[cis/trans]{IUPAC-Namen}\index{zusammen/entgegen}\secidx[zusammen/entgegen]{IUPAC-Namen}\secidx[syn/anti]{IUPAC Namen} -\begin{beschreibung} - \befehl{cis} \cis - \befehl{trans} \trans - \befehl{Z} \Z - \befehl{E} \E - \befehl{syn} \syn - \befehl{anti} \anti - \befehl{tert} \tert -\end{beschreibung} -Das Paket \paket{cool} beispielsweise definiert die Befehle \cmd{E} und \cmd{D} -ebenfalls. Wenn Sie es laden, ist die \chemmacros-Version in der Voreinstellung -nur innerhalb von \cmd{iupac} verfügbar. - -\paragraph{ortho/meta/para}\index{ortho/meta/para}\secidx[ortho/meta/para]{IUPAC-Namen} -\begin{beschreibung} - \befehl{ortho} \ortho - \befehl{meta} \meta - \befehl{para} \para -\end{beschreibung} - -\paragraph{Absolute Konfiguration}\index{Absolute Konfiguration} (verwendet -\TikZ) -\begin{beschreibung} - \befehl{Rconf}[<letter>] \cmd{Rconf}: \Rconf \quad\cmd{Rconf}[]: \Rconf[] - \befehl{Sconf}[<letter>] \cmd{Sconf}: \Sconf \quad\cmd{Sconf}[]: \Sconf[] -\end{beschreibung} - -Beispiele: -\begin{beispiel} - \iupac{\D\-Wein\|s\"aure} = - \iupac{\cip{2S,3S}\-Wein\|s\"aure} \\ - \iupac{\D\-($-$)\-Threose} = - \iupac{\cip{2S,3R}\-($-$)\-2,3,4\-Tri\|hydroxy\|butanal} \\ - \iupac{\cis\-2\-Buten} = - \iupac{\Z\-2\-Buten}, \\ - \iupac{\cip{2E,4Z}\-Hexa\|dien} \\ - \iupac{\meta\-Xylol} = - \iupac{1,3\-Di\|methyl\|benzol} -\end{beispiel} -\secidx*{Stereodeskriptoren und Nomenklatur} - -\paragraph{Koordinations-Chemie} -\chemmacros stellt zwei Befehle bereit, die in der Koordinationschemie nützlich -sein können: -\begin{beschreibung} - \befehl{bridge}{<num>} \bridge{3} - \befehl{hapto}{<num>} \hapto{5} -\end{beschreibung} -\begin{beispiel} - Ferrocene = \iupac{bis(\hapto{5}cyclo\|penta\|dienyl)iron} \\ - \iupac{tetra\-\bridge{3}iodido\-tetrakis[tri\|methyl\|platinum(IV)]} -\end{beispiel} - -Zwei Optionen stehen zur Anpassung zur Verfügung: -\begin{beschreibung} - \option[iupac]{bridge-number}{sub|super} hängt die Nummer als Tiefstellung oder - als Hochstellung an. IUPAC empfielt die Tiefstellung~\cite{iupac:redbook}. - Default = \code{sub} - \option[iupac]{coord-use-hyphen}{\default{true}|false} hängt einen Bindestrich - an \cmd{hapto} und \cmd{bridge} an wenn \code{true}. Default = \code{true} -\end{beschreibung} - -\subsubsection{Eigene Nomenklatur-Befehle}\secidx[eigene]{IUPAC-Namen} -Wenn Ihnen Befehle fehlen sollten, können Sie neue definieren. -\begin{beschreibung} - \Befehl{DeclareChemIUPAC}{<cmd>}\ma{<declaration>} - \Befehl{RenewChemIUPAC}{<cmd>}\ma{<declaration>} -\end{beschreibung} -Ein Befehl, der in dieser Weise definiert wurde, gehorcht der Option \key[option]{iupac}. -Das bedeutet, dass bestehende Befehle nur überschrieben werden, wenn Sie die -Paketoption \key{iupac}{strict} verwenden. \cmd{DeclareChemIUPAC} wird jedoch die -Definition eines bestehenden Nomenklatur-Befehls \emph{nicht} überschreiben, -sondern eine Warnung/einen Fehler melden (abhängig von der Paketoption \key{strict}). -\begin{beispiel} - \DeclareChemIUPAC\endo{\textit{endo}} - \RenewChemIUPAC\anti{\textit{anti}} - \iupac{(2\-\endo,7\-\anti)\-2\-bromo\-7\-fluoro\|bicyclo[2.2.1]heptane} -\end{beispiel} - -\cmd{RenewChemIUPAC} erlaubt Ihnen, die vordefinierten Befehle umzudefinieren. -\begin{beispiel} - \iupac{\meta\-Xylol} \\ - \RenewChemIUPAC\meta{\textit{m}} - \iupac{\meta\-Xylol} -\end{beispiel} -\secidx*{IUPAC-Namen} - -\subsection{Lateinische Ausdrücke}\secidx{Lateinische Ausdrücke}[Lateinische Ausdruecke] -Das Paket \paket{chemstyle} stellt den Befehl \cmd{latin} bereit, um gebräuchliche -lateinische Ausdrücke konsistent darzustellen. \chemmacros definiert ein ähnliches -\cmd{latin}, aber nur, wenn \paket{chemstyle} \emph{nicht} geladen wurde, und -stellt zusätzlich diese Befehle bereit: -\begin{beschreibung} - \befehl{insitu} \insitu - \befehl{abinitio} \abinitio - \befehl{invacuo} \invacuo -\end{beschreibung} - -Falls das Paket \paket{chemstyle} geladen wurde, wurden sie mit \paket{chemstyle}s -Befehl \lstinline+\latin+ definiert. Das bedeutet, dass ihr Erscheinungsbild von -der \paket{chemstyle} Option \code{abbremph} abhängen. - -Die Makros wurden mit folgendem Befehl definiert: -\begin{beschreibung} - \Befehl{DeclareChemLatin}{<cmd>}\ma{<phrase>} - \Befehl{RenewChemLatin}{<cmd>}\ma{<phrase>} -\end{beschreibung} -\begin{beispiel} - \DeclareChemLatin\ltn{latin text} - \ltn -\end{beispiel} -Wenn Sie \paket{chemstyle} \emph{nicht} geladen haben, können Sie das -Erscheinungsbild mit dieser Option anpassen: -\begin{beschreibung} - \option[latin]{format}{<definition>} Default = \lstinline+\itshape+ -\end{beschreibung} -\secidx*{Lateinische Ausdrücke}[Lateinische Ausdruecke] - -\section{Einheiten für die Verwendung mit \textsf{siunitx}}\label{sec:einheiten}\secidx{Einheiten} -In der Chemie sind einige nicht-SI-Einheiten sehr verbreitet. Das Paket -\paket{siunitx} stellt den Befehl \lstinline+\DeclareSIUnit{<command>}{<unit>}+ -zur Verfügung, um beliebige Einheiten zu definieren. \chemmacros verwendet diesen -Befehl, um die unten gelisteten Einheiten zu definieren. Wie alle -\paket{siunitx}-Einheiten sind sie nur innerhalb von \lstinline+\SI{<num>}{<unit>}+ -und \lstinline+\si{<unit>}+ gültig. -\begin{beschreibung} - \befehl{atmosphere} \si{\atmosphere} - \befehl{atm} \si{\atm} - \befehl{calory} \si{\calory} - \befehl{cal} \si{\cal} - \befehl{cmc} \si{\cmc} Die Einheiten \cmd{cmc}, \cmd{molar} und \cmd{Molar} werden - durch das Paket \paket{chemstyle} ebenfalls definiert. \chemmacros definiert - sie nur, wenn \paket{chemstyle} nicht geladen wurde. - \befehl{molar} \si{\molar} - \befehl{moLar} \si{\moLar} - \befehl{Molar} \si{\Molar} - \befehl{MolMass} \si{\MolMass} - \befehl{normal} \si{\normal} - \befehl{torr} \si{\torr} -\end{beschreibung} - -Übrigens: \lstinline+\mmHg+ \si{\mmHg} wird durch \paket{siunitx} und -\paket{chemstyle} bereitgestellt. -\secidx*{Einheiten} - -\section{Säure/Base}\label{sec:saeure_base}\secidx{Säure/Base}[Saeure/Base] -Einfache Darstellung von \pH, \pKa \ldots\ (der Befehl \cmd{pKa} hängt von der -Paketoption \key{language} ab). -\begin{beschreibung} - \befehl{pH} \pH - \befehl{pOH} \pOH - \befehl{Ka} \Ka - \befehl{Kb} \Kb - \befehl{Kw} \Kw - \befehl{pKa}[<num>] \cmd{pKa}: \pKa, \cmd{pKa}[1]: \pKa[1] - \befehl{pKb}[<num>] \cmd{pKb}: \pKb, \cmd{pKb}[1]: \pKb[1] - \befehl{p}{<anything>} \zB: \cmd{p}{\cmd{Kw}} \p{\Kw} -\end{beschreibung} - -\begin{beispiel} - \Ka \Kb \pKa \pKa[1] \pKb \pKb[1] -\end{beispiel} - -\achtung{Das voreingestellte Erscheinungsbild der \p{}-Befehle hat sich verändert, -um der \ac{iupac}-Empfehlung zu folgen.} -\begin{zitat}[{\ac{iupac} Green Book {\cite[][p.\,103]{iupac:greenbook}}}] - The operator \p{} \textelp{} shall be printed in Roman type. -\end{zitat} - -Es gibt eine Option, die den Stil, in dem das \p{} dargestellt wird, ändert: -\begin{beschreibung} - \option[acid-base]{p-style}{italics|slanted|upright} Default = \code{upright} -\end{beschreibung} -\begin{beispiel} - \pH, \pKa - - \chemsetup[acid-base]{p-style=slanted} \pH, \pKa - - \chemsetup[acid-base]{p-style=italics} \pH, \pKa -\end{beispiel} -\secidx*{Säure/Base}[Saeure/Base] - -\section{Oxidationszahlen, reale und formale Ladungen}\label{sec:ladungen} -\chemmacros unterscheidet zwischen realen ($+$/$-$) und formalen (\fplus/\fminus) -Ladungssymbolen, siehe auch Abschnitt \ref{sec:optionen}. Alle Befehle, die -formale Ladungen ausgeben, starten mit einem \code{f}. - -\subsection{Ionenladungen}\label{ssec:ionen}\secidx{Ionenladungen} -Einfache Verwendung von (realen) Ladungen. Man sollte anmerken, dass diese -Befehle aus der Zeit stammen, als \chemmacros sich stark bemühte, mit -\paket{mhchem} kompatibel zu sein, und es \Chemformula noch nicht gab. Sie -werden weiterhin zur Verfügung gestellt, aber meine Empfehlung wäre, \cmd{ch} -(siehe~\ref{part:chemformula}) zu verwenden und diese Befehle zu vergessen: -\begin{beschreibung} - \befehl{pch}[<number>] positive Ladung (\textbf{p}lus + \textbf{ch}arge) - \befehl{mch}[<number>] negative Ladung (\textbf{m}inus + \textbf{ch}arge) -\end{beschreibung} - -\begin{beispiel} - \pch, Na\pch, Ca\pch[2]\\ - \mch, F\mch, S\mch[2] -\end{beispiel} - -Das gleiche für formale Ladungen: -\begin{beschreibung} - \befehl{fpch}[<number>] positive Ladung - \befehl{fmch}[<number>] negative Ladung -\end{beschreibung} - -\begin{beispiel} - \fpch\ \fmch\ \fpch[3] \fmch[3] -\end{beispiel} - -Es gibt eine Option, die das Verhalten der Ladungen beeinflusst: -\begin{beschreibung} - \option[charges]{append}{\default{true}|false} Wenn auf \code{true} gesetzt, - wird die Ladung mit einer leeren Gruppe angehängt. Default = \code{false} -\end{beschreibung} - -Das hat folgende Auswirkungen: -\begin{beispiel} - % uses package `mhchem' - \chemsetup{charges/append=false,phases/pos=sub} - \ce{H\pch\aq} \ce{H\aq\pch} - - \chemsetup[charges]{append=true} - \ce{H\pch\aq} \ce{H\aq\pch} -\end{beispiel} - -In den meisten Fällen wird das Verhalten unerwünscht sein, es kann jedoch -Gelegenheiten geben, wo es nützlich sein kann: -\begin{beispiel} - \chemsetup{charges/append=false,phases/pos=sub} - \ce{\ox{1,H}\pch\aq} - - \chemsetup[charges]{append=true} - \ce{\ox{1,H}\pch\aq} -\end{beispiel} -\secidx*{Ionenladungen} - -\subsection{Oxidationszahlen}\label{ssec:oxidationszahlen}\secidx{Oxidationszahlen} -Eingabe von Oxidationszahlen: -\begin{beschreibung} - \befehl{ox}[<options>]{<number>,<atom>} setzt \code{<number>} über \code{<atom>}; - \code{<number>} muss eine (rationale) Zahl sein! -\end{beschreibung} - -\begin{beispiel} - \ox{+1,Na}, \ox{2,Ca}, \ox{-2,S}, \ox{-1,F} -\end{beispiel} - -Es gibt eine Reihe von Optionen, mit denen \cmd{ox} angepasst werden kann. -\begin{beschreibung} - \option[ox]{parse}{\default{true}|false} Wenn \code{false}, dann kann ein beliebiger - Eintrag für \code{<number>} gemacht werden. Default = \code{true} - \option[ox]{roman}{\default{true}|false} schaltet von römischen auf arabische - Ziffern um. Default = \code{true} - \option[ox]{pos}{top|super|side}; \code{top} setzt \code{<number>} über \code{<atom>}, - \code{super} rechts oben als Hochstellung und \code{side} rechts daneben in - Klammern. Default = \code{top} - \option[ox]{explicit-sign}{\default{true}|false} gibt $+$ für positive Zahlen - und $\pm$ für die $0$ aus. Default = \code{false} - \option[ox]{decimal-marker}{comma|point} Wahl des Dezimalzeichens für - Oxidationszahlen wie \ox{1.2,X}. Default = \code{point} - \option[ox]{align}{center|right} Die Oxidationszahl über dem Atom zentrieren oder - es mit diesem rechts ausrichten. Default = \code{center} -\end{beschreibung} - -\begin{beispiel} - \ox[roman=false]{2,Ca} \ox{2,Ca} \\ - \ox[pos=super]{3,Fe}-Oxid \\ - \ox[pos=side]{3,Fe}-Oxid \\ - \ox[parse=false]{?,Mn} \\ - \ox[align=right]{2,Ca} -\end{beispiel} - -Die \key[ox]{pos}{super}-Variante kann auch mit dem Shortcut \cmd[oxa]{ox*} erzeugt -werden: -\begin{beispiel} - \ox{3,Fe} \ox*{3,Fe} -\end{beispiel} - -Die Verwenden von \key[ox]{explicit-sign} wird immer das Vorzeichen der Oxidationszahl -zeigen: -\begin{beispiel} - \chemsetup[ox]{explicit-sign = true} - \ox{+1,Na}, \ox{2,Ca}, \ox{-2,S}, \ch{"\ox{0,F}" {}2} -\end{beispiel} - -\begin{beispiel} - Vergleichen Sie \ox{-1,\ch{O2^2-}} mit \ch{"\ox{-1,O}" {}2^2-} -\end{beispiel} - -Manchmal muss man formale Oxidationszahlen wie \num{.5} oder $\frac{1}{3}$ verwenden: -\begin{beispiel} - \ox{.5,\ch{Br2}} \ch{"\ox{1/3,I}" {}3+} -\end{beispiel} - -Der Bruch verwendet den \lstinline+\sfrac+-Befehl des \paket{xfrac}-Pakets. Zu -diesem Zweck wurde die Instanz \lstinline+chemmacros-ox-frac+ definiert. -\begin{beispiel}[code only] -\DeclareInstance{xfrac}{chemmacros-ox-frac}{text} - { - scale-factor = 1.2 , - denominator-bot-sep = -.5ex , - numerator-top-sep = -.3ex , - slash-left-kern = -.2em , - slash-right-kern = -.2em , - slash-symbol-font = lmr - } -\end{beispiel} -Natürlich können Sie sie nach Ihren Vorstellungen umdefinieren. -\secidx*{Oxidationszahlen} - -\subsection{Partialladungen und Ähnliches}\label{ssec:partialladungen}\secidx{Partialladungen} -Vielleicht selten genutzt, manchmal aber praktisch: -\begin{beschreibung} - \befehl{delp} \delp\ (\textbf{del}ta + \textbf{p}lus) - \befehl{delm} \delm\ (\textbf{del}ta + \textbf{m}inus) - \befehl{fdelp} \fdelp - \befehl{fdelm} \fdelm -\end{beschreibung} - -Ein Beispiel mit dem Befehl \cmd{ox} oder mit dem Paket \paket{chemfig}: -\begin{beispiel} - \chemsetup{ - option/circled = all, - ox/parse = false - } - \ce{\ox{\delp,H}-\ox{\delm,Cl}} \hspace*{1cm} - \chemfig{\chemabove[3pt]{\lewis{246,Br}}{\delm}-\chemabove[3pt]{H}{\delp}} -\end{beispiel} - -Auch diese Makros lassen sich gut mit \paket{chemfig} einsetzen. -\begin{beschreibung} - \befehl{scrp} \scrp\ (\textbf{scr}iptstyle + \textbf{p}lus) - \befehl{scrm} \scrm\ (\textbf{scr}iptstyle + \textbf{m}inus) - \befehl{fscrp} \fscrp - \befehl{fscrm} \fscrm - \befehl{fsscrp} \fsscrp\ (verwendet \lstinline+\scriptscriptstyle+) - \befehl{fsscrm} \fsscrm -\end{beschreibung} - -\begin{beispiel} - \setatomsep{1.8em}\chemfig{CH_3-\chemabove{C}{\scrp}(-[6]C|H_3)-\vphantom{H_3}CH_3} - - \chemfig{\fmch{}|O-\chemabove{N}{\fscrp}(-[1]O|\fmch)-[7]O|\fmch} -\end{beispiel} -\secidx*{Partialladungen} - -\section{Reaktionsmechanismen}\label{sec:mechanismen}\secidx{Reaktionsmechanismen} -Mit dem Befehl -\begin{beschreibung} - \Befehl{mech}[<type>] -\end{beschreibung} -kann man die verbreitetsten Reaktionsmechanismen spezifizieren. \code{<type>} kann -einen der folgenden Werte annehmen: -\begin{beschreibung} - \befehl{mech} (leer, kein opt.\@ Argument) nukleophile Substitution \mech - \befehl{mech}[1] unimolekulare nukleophile Substitution \mech[1] - \befehl{mech}[2] bimolekulare nukleophile Substitution \mech[2] - \befehl{mech}[se] elektrophile Substitution \mech[se] - \befehl{mech}[1e] unimolekulare elektrophile Substitution \mech[1e] - \befehl{mech}[2e] bimolekulare elektrophile Substitution \mech[2e] - \befehl{mech}[ar] elektrophile aromatische Substitution \mech[ar] - \befehl{mech}[e] Eliminierung \mech[e] - \befehl{mech}[e1] unimolekulare Eliminierung \mech[e1] - \befehl{mech}[e2] bimolekulare Eliminierung \mech[e2] - \befehl{mech}[cb] unimolekulare Eliminierung \enquote{conjugated base}, \dh via Carbanion \mech[cb] -\end{beschreibung} -\secidx*{Reaktionsmechanismen} - -\section{Redoxreaktionen}\label{sec:redoxreaktionen}\secidx{Redoxreaktionen}% TODO: watch pagebreaks! -\chemmacros stellt zwei Befehle zur Verfügung, mit denen die Übertragung von -Elektronen in Redoxreaktionen angezeigt werden kann\footnote{Dank an -\href{http://www.mathannotated.com/}{Peter Cao}, der dieses Feature vorgeschlagen -hat.}. Beide Befehle verwenden \TikZ. -\begin{beschreibung} - \Befehl{OX}{<name>,<atom>} - \Befehl{redox}(<name1>,<name2>)[<tikz>]\oa{<num>}\ma{<text>} \cnpkgdocarrow\ - Lediglich das erste Argument\\\da{<name1>,<name2>} wird benötigt, die anderen - sind optional. -\end{beschreibung} - -\cmd{OX} setzt \code{<atom>} in einen Knoten (eine \enquote{Node}) mit dem Namen -\code{<name>}. Wenn Sie zwei \cmd{OX} verwendet haben, dann können sie mit -\cmd{redox} verbunden werden. Die Namen der zu verbindenden Knoten werden in runde -Klammern geschrieben. Da \cmd{redox} ein Tikzpicture mit den Optionen \code{remember -picture,overlay} erstellt, muss das Dokument \emph{wenigstens zwei mal} kompiliert -werden. -\begin{beispiel}[dist] - \OX{a,Na} $\rightarrow$ \OX{b,Na}\pch\redox(a,b){oxidation} -\end{beispiel} -Diese Linie kann mit \TikZ-Keys in \oa{<tikz>} angepasst werden: -\begin{beispiel}[dist] - \OX{a,Na} $\rightarrow$ \OX{b,Na}\pch\redox(a,b)[->,red]{ox} -\end{beispiel} - -Mit dem Argument \oa{<num>} kann die Länge der vertikalen Linien angepasst werden. -Die Voreinstellung beträgt \code{.6em}. Diese Länge wird mit \code{<num>} -multipliziert. Ein negativer Wert wird die Linie \emph{unter} den Text setzen. -\begin{beispiel}[dist] - \OX{a,Na} $\rightarrow$ \OX{b,Na}\pch - \redox(a,b)[->,red]{ox} - \redox(a,b)[<-,blue][-1]{red} - \vspace{7mm} -\end{beispiel} - -Die Voreinstellung der vertikalen Linien kann mit -\begin{beschreibung} - \option[redox]{dist}{<dim>} Default = \code{.6em} -\end{beschreibung} -angepasst werden: - -\begin{beispiel}[dist] - \chemsetup{redox/dist=1em} - \OX{a,Na} $\rightarrow$ \OX{b,Na}\pch\redox(a,b)[->,red]{ox} -\end{beispiel} - -Zusätzlich erlaubt die Option -\begin{beschreibung} - \option[redox]{sep}{<dim>} Default = \code{.2em} -\end{beschreibung} -den Abstand zwischen Atom und Anfang der Linie zu verändern. -\begin{beispiel}[dist] - \chemsetup{redox/sep=.5em} - \OX{a,Na} $\rightarrow$ \OX{b,Na}\pch\redox(a,b)[->,red]{ox} -\end{beispiel} - -Beispiele:% TODO: watch pagebreaks! -\begin{beispiel}[dist] - \ch{ 2 "\OX{o1,Na}" + "\OX{r1,Cl}" {}2 -> 2 "\OX{o2,Na}" \pch{} + 2 -"\OX{r2,Cl}" \mch } - \redox(o1,o2){\small OX: $- 2\el$} - \redox(r1,r2)[][-1]{\small RED: $+ 2\el$} - \vspace{7mm} -\end{beispiel} - -\begin{beispiel}[dist] - \ch{ 2 "\OX{o1,\ox{0,Na}}" + "\OX{r1,\ox{0,Cl}}" {}2 -> 2 "\OX{o2,\ox{+1,Na}}" -\pch{} + 2 "\OX{r2,\ox{-1,Cl}}" \mch } - \redox(o1,o2){\small OX: $- 2\el$} - \redox(r1,r2)[][-1]{\small RED: $+ 2\el$} - \vspace{7mm} -\end{beispiel} - -\bspmidlength{dist}{15mm} -\begin{beispiel}[dist] - \ch{ 2 "\OX{o1,\ox{0,Na}}" + "\OX{r1,\ox{0,Cl}}" {}2 -> 2 "\OX{o2,\ox{+1,Na}}" -\pch{} + 2 "\OX{r2,\ox{-1,Cl}}" \mch } - \redox(o1,o2)[draw=red,->][3.33]{\small OX: $- 2\el$} - \redox(r1,r2)[draw=blue,->]{\small RED: $+ 2\el$} -\end{beispiel} -\bspmidlength{dist}{7mm} - \begin{beispiel}[dist] - \ch{ 2 "\OX{o1,\ox{0,Na}}" + "\OX{r1,\ox{0,Cl}}" {}2 -> 2 "\OX{o2,\ox{+1,Na}}" -\pch{} + 2 "\OX{r2,\ox{-1,Cl}}" \mch } - \redox(o1,o2)[green,-stealth]{\small OX} - \redox(r1,r2)[purple,-stealth][-1]{\small RED} - \vspace{7mm} -\end{beispiel} -\secidx*{Redoxreaktionen} - -\newpage % TODO: watch pagebreaks -\section{(Standard) Zustand, Thermodynamik}\label{sec:standardstate}\secidx{Thermodynamik} -\subsection{Thermodynamische Größen}\label{ssec:siunitx} -Die folgenden Befehle verwenden \paket{siunitx}: -\begin{beschreibung} - \Befehl{Enthalpy}[<options>]\da{<subscript>}\ma{<value>} - \Befehl{Entropy}[<options>]\da{<subscript>}\ma{<value>} - \Befehl{Gibbs}[<options>]\da{<subscript>}\ma{<value>} -\end{beschreibung} - -Ihre Verwendung ist ziemlich selbsterklärend: -\begin{beispiel} - \Enthalpy{123} \\ - \Entropy{123} \\ - \Gibbs{123} -\end{beispiel} -Das Argument \da{<subscript>} Fügt eine Tiefstellung zur Spezifizierung hinzu: -\cmd{Enthalpy}(r){123} \Enthalpy(r){123}. - -Die Befehle können mit mehreren Optionen angepasst werden: -\begin{beschreibung} - \Option*{exponent}{<anything>} - \Option*{delta}{<anything>|false} - \Option*{subscript}{left|right} - \Option*{unit}{<unit>} -\end{beschreibung} - -Die Voreinstellung hängt vom jeweiligen Befehl ab: -\begin{beispiel} - \Enthalpy[unit=\kilo\joule]{-285} \\ - \Gibbs[delta=false]{0} \\ - \Entropy[delta=\Delta,exponent=]{56.7} -\end{beispiel} - -Die Zahl und die Einheit werden entsprechend der Regeln für \paket{siunitx} gesetzt -und hängen von dessen Einstellungen ab: -\begin{beispiel} - \Enthalpy{-1234.56e3} \\ - \sisetup{per-mode=symbol,exponent-product=\cdot,output-decimal-marker={,},group-four-digits=true} - \Enthalpy{-1234.56e3} -\end{beispiel} - -\subsubsection{Neue Größen definieren} -Mit dem Befehl -\begin{beschreibung} - \Befehl{DeclareChemState}[<options>]{<name>}\ma{<symbol>}\ma{<unit>} -\end{beschreibung} -können neue Größen definiert werden. -\begin{beispiel} - \DeclareChemState{Helmholtz}{A}{\kilo\joule\per\mole} - \DeclareChemState[subscript-left=false,exponent=]{ElPot}{E}{\volt} - \Helmholtz{123.4} \\ - \ElPot{-1.1} \\ - \ElPot[exponent=0]($\ch{Sn}|\ch{Sn^2+}||\ch{Pb^2+}|\ch{Pb}$){0.01} -\end{beispiel} - -Dieser Befehl hat fast die gleichen Optionen, wie die Größen selbst, mit denen die -Voreinstellung für die neue Größe festgelegt werden können. -\begin{beschreibung} - \Option*{exponent}{<anything>} - \Option*{delta}{<anything>|false} - \Option*{subscript-left}{\default{true}|false} - \Option*{subscript}{<anything>} -\end{beschreibung} - -\subsubsection{Größen umdefinieren} -Mit -\begin{beschreibung} - \Befehl{RenewChemState}[<options>]{<name>}\ma{<symbol>}\ma{<unit>} -\end{beschreibung} -kann man bestehende Größen umdefinieren: - -\begin{beispiel} - \RenewChemState{Enthalpy}{h}{\joule} - \Enthalpy(f){12.5} -\end{beispiel} -Der Befehl ist analog zu \cmd{DeclareChemState}, \dh er hat dieselben Optionen. - -Man könnte also \textendash\ um thermodynamischen Konventionen zu folgen \textendash\ -eine molare und eine absolute Größe definieren: -\begin{beispiel} - \DeclareChemState[exponent=]{enthalpy}{h}{\kilo\joule\per\mole}% molar - \RenewChemState[exponent=]{Enthalpy}{H}{\kilo\joule}% absolute - \enthalpy{-12.3} \Enthalpy{-12.3} -\end{beispiel} - -\subsection{Zustandsgrößen}\label{ssec:state} -Die Befehle, die in Abschnitt~\ref{ssec:siunitx} vorgestellt wurden, verwenden -intern den Befehl\footnote{Beachten Sie, dass \ma{<subscript>} ein \emph{optionales} -Argument ist.} -\begin{beschreibung} - \Befehl{State}[<options>]{<symbol>}\ma{<subscript>} -\end{beschreibung} -Er kann verwendet werden, um die Größen ohne Wert und Einheit zu schreiben. - -Beispiele: -\begin{beispiel} - \State{A}, \State{G}{f}, \State[subscript-left=false]{E}{\ch{Na}}, - \State[exponent=\SI{1000}{\celsius}]{H} -\end{beispiel} - -Wieder hat er (fast) die gleichen Optionen: -\begin{beschreibung} - \Option[state]{exponent}{<anything>} - \Option[state]{subscript-left}{true|false} - \Option[state]{delta}{<anything>|false} -\end{beschreibung} -\secidx*{Thermodynamik} - -\section{Spektroskopie und Messdaten}\label{sec:spektroskopie}\secidx{Spektroskopie} -\subsection{Der \code{\textbackslash\textcolor{code}{NMR}}-Befehl} -Wenn Substanzen darauf untersucht werden, ob sie sind, was sie sein sollen, wird -oft die NMR Spektroskopie eingesetzt. Die Messergebnisse werden dann etwa so -aufgeschrieben: -\begin{center} - \NMR(400)[CDCl3] = \num{1.59} -\end{center} -\chemmacros stellt einen Befehl zur Verfügung, der das vereinfacht (verwendet -\paket{siunitx}). - -\begin{beschreibung} - \Befehl{NMR}{<num>,<elem>}\da{<num>,<unit>}\oa{<solvent>} - \Befehl{NMR*}{<num>,<elem>}\da{<num>,<unit>}\oa{<solvent>} -\end{beschreibung} - -\emph{Alle} Argumente sind optional! Ohne Argumente\footnote{Alle Argumente können -beliebig kombiniert werden.Der Befehl kann auch im Mathematik-Modus eingesetzt -werden.} erhalten wir: -\begin{beispiel} - \NMR \\ - \NMR* -\end{beispiel} - -Das erste Argument spezifiziert die Art der NMR: -\begin{beispiel} - \NMR{13,C} -\end{beispiel} - -Mit dem zweiten Argument kann die verwendete Frequenz (in \si{\mega\hertz}) -angegeben werden: -\begin{beispiel} - \NMR(400) -\end{beispiel} -Auch mit Einheit: -\begin{beispiel} - \NMR(4e8,\hertz) -\end{beispiel} -Bitte beachten Sie, dass das Setup von \paket{siunitx} sich auch auf diesen -Befehl auswirkt: -\begin{beispiel} - \sisetup{exponent-product=\cdot}\NMR(4e8,\hertz) -\end{beispiel} - -Mit dem dritten Befehl schließlich kann das Lösungsmittel angegeben werden: -\begin{beispiel} - \NMR[CDCl3] -\end{beispiel} - -\subsection{Abkürzungen} -Da man verschiedene Kerne in einem Dokument eventuell häufiger benötigt, bietet -\chemmacros eine Möglichkeit, Abkürzungen zu definieren. -\begin{beschreibung} - \Befehl{DeclareChemNMR}{<csname>}\ma{<num>,<atom>} - \Befehl{RenewChemNMR}{<csname>}\ma{<num>,<atom>} -\end{beschreibung} -Das definiert einen Befehl mit denselben Argumenten wie \cmd{NMR}, \emph{außer} \ma{<num>,<atom>}. -\begin{beispiel} - \DeclareChemNMR\HNMR{1,H}% - \DeclareChemNMR\CNMR{13,C}% - \CNMR*(100) \\ - \HNMR*(400) -\end{beispiel} - -\subsection{Eine Umgebung, um Messergebnisse darzustellen} -Um ein bequemes Eingeben von Messergebnissen zu ermöglichen, bietet \chemmacros -eine Umgebung. -\begin{beschreibung}\catcode`\#=11 - \umg{experimental}{Daten} Umgebung für die Ausgabe von Ex\-pe\-ri\-men\-tal-Daten. - Innerhalb dieser Umgebung sind die folgenden Befehle definiert. - \Befehl{data}{<Typ>}\oa{<Spezifikation>} \cnpkgdocarrow\ Typ der Daten, \zB\ IR, - MS\ldots\ In das optionale Argument können weitere Spezifikationen eingegeben - werden, die in runden Klammern ausgegeben werden. - \Befehl{data*}{<Typ>}\oa{<Spezifikation>} \cnpkgdocarrow\ Wie \cmd{data}, gibt - aber anstelle des \code{=} ein \code{:} mit aus, wenn \key{use-equal}{true} - eingestellt ist. - \Befehl{NMR}{<num>,<elem>\oa{<coupling core>}}\da{<num>,<unit>}\oa{<solvent>} - \cnpkgdocarrow\ der Befehl bekommt ein weiteres Argument: - \cmd{NMR}{13,C[\textasciicircum 1H]} \NMR{13,C[^1H]} - \Befehl{J}\da{<bonds>;<nuclei>}\oa{<unit>}\ma{<list of nums>} \cnpkgdocarrow\ - Kopplungskonstante, Werte werden mit \code{;} getrennt eingegeben. Für NMR. - Das Argument \da{<bonds>;<nuclei>} ist optional und ermöglicht die Angabe von - genaueren Spezifikationen der Kopplung. - \befehl{#}{<num>} Anzahl der Kerne. Für NMR. - \befehl{pos}{<num>} Position/Nummer des Kerns. Für NMR. - \befehl{val}{<num>} Zahlenwert, ein Alias für \paket*{siunitx}' - \lstinline+\num{<num>}+ - \befehl{val}{<num1>-{}-<num2>} Ein Alias für \paket*{siunitx}' - \lstinline+\numrange{<num1>}{<num2>}+ -\end{beschreibung} - -\begin{beispiel} - \begin{experimental} - \data{Typ1} Daten. - \data{Typ2}[Spezifikationen] noch mehr Daten. - \data*{Typ3} weitere Daten. - \end{experimental} -\end{beispiel} - -\subsection{Anpassung} -Die Ausgabe der Umgebung und der NMR-Befehle kann mir einer Reihe Optionen angepasst -werden. Aus historischen Gründen gehören sie dem Modul \textcolor{module}{\code{nmr}} -an. -\begin{beschreibung} - \option[nmr]{unit}{<unit>} Default = \lstinline=\mega\hertz= - \option[nmr]{nucleus}{\{<num>,<atom>\}} Default = \ma{1,H} - \option[nmr]{format}{<commands>} zum Beispiel \lstinline=\bfseries= - \option[nmr]{pos-number}{side|sub} Position der Zahl neben dem Atom. Default = - \code{side} - \option[nmr]{coupling-unit}{<unit>} Eine \paket{siunitx} Einheit. Default = - \lstinline=\hertz= - \option[nmr]{parse}{\default{true}|false} Das Lösungsmittel als \paket{mhchem}/\chemformula-Formel - behandeln oder nicht. Default = \code{true} - \option[nmr]{delta}{<tokens>} Die \code{<tokens>} werden nach $\delta$ eingefügt. - \option[nmr]{list}{\default{true}|false} Die Umgebung \env{nmr}[<optionen>]{} wird als - Liste formatiert. Default = \code{false} - \option[nmr]{list-setup}{<setup>} Setup der Liste. Default = siehe unten. - \option[nmr]{use-equal}{\default{true}|false} Istgleich-Zeichen nach \cmd{NMR} - und \cmd{data} einsetzen. Default = \code{false} -\end{beschreibung} - -Das Default-Setup der Liste: -\begin{beispiel}[code only] - \topsep\z@skip \partopsep\z@skip - \itemsep\z@ \parsep\z@ \itemindent\z@ - \leftmargin\z@ -\end{beispiel} - -\begin{beispiel} - \begin{experimental}[format=\bfseries] - \data{Typ1} Daten. - \data{Typ2}[Spezifikationen] noch mehr Daten. - \data*{Typ3} weitere Daten. - \end{experimental} -\end{beispiel} - -Der Befehl \cmd{NMR} und alle mit \cmd{DeclareChemNMR} definierten Befehle können -anstelle von \cmd{data} für NMR-Daten eingesetzt werden. - -\begin{beispiel} - \begin{experimental}[format=\bfseries,use-equal] - \data{Typ1} Daten. - \data{Typ2}[Spezifikationen] noch mehr Daten. - \NMR weitere Daten. - \end{experimental} -\end{beispiel} - -\subsection{Anwendungsbeispiel} -Der folgende Code in verschiedenen Ausgaben abhängig von der Auswahl der \code{<optionen>}. -Die Optionen können selbstverständlich auch mit \cmd{chemsetup} global gesetzt -werden. - -\begin{beispiel}[code only] -\sisetup{separate-uncertainty,per-mode=symbol,detect-all,range-phrase=--} -\begin{experimental}[<optionen>] - \data*{Ausbeute} \SI{17}{\milli\gram} gelbe Nadeln (\SI{0.04}{\milli\mole}, \SI{13}{\percent}). - % - \data{Smp.} \SI{277}{\celsius} (DSC). - % - \NMR(600)[CDCl3] \val{2.01} (s, \#{24}, \pos{5}), \val{2.31} (s, \#{12}, \pos{1}), \val{6.72--6.74} (m, \#{2}, \pos{11}), \val{6.82} (s, \#{8}, \pos{3}), \val{7.05--7.07} (m, \#{2}, \pos{12}), \val{7.39--7.41} (m, \#{4}, \pos{9}), \val{7.48--7.49} (m, \#{4}, \pos{8}). - % - \NMR{13,C}(150)[CDCl3] \val{21.2} ($+$, \#{4}, \pos{1}), \val{23.4} ($+$, \#{8}, \pos{5}), \val{126.0} ($+$, \#{4}, \pos{9}), \val{128.2} ($+$, \#{8}, \pos{3}), \val{130.8} ($+$, \#{2}, \pos{12}), \val{133.6} ($+$, \#{2}, \pos{11}), \val{137.0} ($+$, \#{4}, \pos{8}), \val{138.6} (q, \#{4}, \pos{2}), \val{140.6} (q, \#{2}, \pos{10}), \val{140.8} (q, \#{8}, \pos{4}), \val{141.8} (q, \#{4}, \pos{6}), \val{145.6} (q, \#{2}, \pos{7}). - % - \data{MS}[DCP, EI, \SI{60}{\electronvolt}] \val{703} (2, \ch{M+}), \val{582} (1), \val{462} (1), \val{249} (13), \val{120} (41), \val{105} (100). - % - \data{MS}[\ch{MeOH + H2O + KI}, ESI, \SI{10}{\electronvolt}] \val{720} (100, \ch{M+ + OH-}), \val{368} (\ch{M+ + 2 OH-}). - % - \data{IR}[KBr] \val{3443} (w), \val{3061} (w), \val{2957} (m), \val{2918} (m), \val{2856} (w), \val{2729} (w), \val{1725} (w), \val{1606} (s), \val{1592} (s), \val{1545} (w), \val{1446} (m), \val{1421} (m), \val{1402} (m), \val{1357} (w), \val{1278} (w), \val{1238} (s), \val{1214} (s), \val{1172} (s), \val{1154} (m), \val{1101} (w), \val{1030} (w), \val{979} (m), \val{874} (m), \val{846} (s), \val{818} (w), \val{798} (m), \val{744} (w), \val{724} (m), \val{663} (w), \val{586} (w), \val{562} (w), \val{515} (w). - % - \data*{UV-Vis} \SI{386}{\nano\metre} ($\varepsilon = \val{65984}$), \SI{406}{\nano\metre} ($\varepsilon = \val{65378}$). - % - \data*{Quantenausbeute} $\Phi = \val{0.74+-0.1}$\,. -\end{experimental} -\end{beispiel} - -\subsubsection{Beinahe Standard} -Ausgabe für \lstinline+<optionen>: delta=(ppm),pos-number=sub,use-equal+: -\bigskip - -\begin{experimental}[delta=(ppm),pos-number=sub,use-equal] - \sisetup{separate-uncertainty,per-mode=symbol,detect-all,range-phrase=--} - \chemsetup[chemformula]{ - font-spec = - {[Numbers={Proportional,Lining}]Linux Libertine O} - } - % - \data*{Ausbeute} \SI{17}{\milli\gram} gelbe Nadeln (\SI{0.04}{\milli\mole}, - \SI{13}{\percent}). - % - \data{Smp.} \SI{277}{\celsius} (DSC). - % - \NMR(600)[CDCl3] \val{2.01} (s, \#{24}, \pos{5}), \val{2.31} (s, \#{12}, \pos{1}), - \val{6.72--6.74} (m, \#{2}, \pos{11}), \val{6.82} (s, \#{8}, \pos{3}), \val{7.05--7.07} - (m, \#{2}, \pos{12}), \val{7.39--7.41} (m, \#{4}, \pos{9}), \val{7.48--7.49} (m, - \#{4}, \pos{8}). - % - \NMR{13,C}(150)[CDCl3] \val{21.2} ($+$, \#{4}, \pos{1}), \val{23.4} ($+$, \#{8}, - \pos{5}), \val{126.0} ($+$, \#{4}, \pos{9}), \val{128.2} ($+$, \#{8}, \pos{3}), - \val{130.8} ($+$, \#{2}, \pos{12}), \val{133.6} ($+$, \#{2}, \pos{11}), \val{137.0} - ($+$, \#{4}, \pos{8}), \val{138.6} (q, \#{4}, \pos{2}), \val{140.6} (q, \#{2}, - \pos{10}), \val{140.8} (q, \#{8}, \pos{4}), \val{141.8} (q, \#{4}, \pos{6}), - \val{145.6} (q, \#{2}, \pos{7}). - % - \data{MS}[DCP, EI, \SI{60}{\electronvolt}] \val{703} (2, \ch{M+}), \val{582} (1), - \val{462} (1), \val{249} (13), \val{120} (41), \val{105} (100). - % - \data{MS}[\ch{MeOH + H2O + KI}, ESI, \SI{10}{\electronvolt}] \val{720} (100, - \ch{M+ + OH-}), \val{368} (\ch{M+ + 2 OH-}). - % - \data{IR}[KBr] \val{3443} (w), \val{3061} (w), \val{2957} (m), \val{2918} (m), - \val{2856} (w), \val{2729} (w), \val{1725} (w), \val{1606} (s), \val{1592} (s), - \val{1545} (w), \val{1446} (m), \val{1421} (m), \val{1402} (m), \val{1357} (w), - \val{1278} (w), \val{1238} (s), \val{1214} (s), \val{1172} (s), \val{1154} (m), - \val{1101} (w), \val{1030} (w), \val{979} (m), \val{874} (m), \val{846} (s), - \val{818} (w), \val{798} (m), \val{744} (w), \val{724} (m), \val{663} (w), - \val{586} (w), \val{562} (w), \val{515} (w). - % - \data*{UV-Vis} \SI{386}{\nano\metre} ($\varepsilon = \val{65984}$), \SI{406}{\nano\metre} - ($\varepsilon = \val{65378}$). - % - \data*{Quantenausbeute} $\Phi = \val{0.74+-0.1}$\,. -\end{experimental} - -\subsubsection{Formatierte Liste} -Ausgabe für \lstinline+<optionen>: format=\bfseries,delta=(ppm),list=true,use-equal+: -\bigskip - -\begin{experimental}[format=\bfseries,delta=(ppm),list=true,use-equal] - \sisetup{separate-uncertainty,per-mode=symbol,detect-all,range-phrase=--} - \chemsetup[chemformula]{ - font-spec = - {[Numbers={Proportional,Lining}]Linux Libertine O} - } - % - \data*{Ausbeute} \SI{17}{\milli\gram} gelbe Nadeln (\SI{0.04}{\milli\mole}, - \SI{13}{\percent}). - % - \data{Smp.} \SI{277}{\celsius} (DSC). - % - \NMR(600)[CDCl3] \val{2.01} (s, \#{24}, \pos{5}), \val{2.31} (s, \#{12}, \pos{1}), - \val{6.72--6.74} (m, \#{2}, \pos{11}), \val{6.82} (s, \#{8}, \pos{3}), \val{7.05--7.07} - (m, \#{2}, \pos{12}), \val{7.39--7.41} (m, \#{4}, \pos{9}), \val{7.48--7.49} (m, - \#{4}, \pos{8}). - % - \NMR{13,C}(150)[CDCl3] \val{21.2} ($+$, \#{4}, \pos{1}), \val{23.4} ($+$, \#{8}, - \pos{5}), \val{126.0} ($+$, \#{4}, \pos{9}), \val{128.2} ($+$, \#{8}, \pos{3}), - \val{130.8} ($+$, \#{2}, \pos{12}), \val{133.6} ($+$, \#{2}, \pos{11}), \val{137.0} - ($+$, \#{4}, \pos{8}), \val{138.6} (q, \#{4}, \pos{2}), \val{140.6} (q, \#{2}, - \pos{10}), \val{140.8} (q, \#{8}, \pos{4}), \val{141.8} (q, \#{4}, \pos{6}), - \val{145.6} (q, \#{2}, \pos{7}). - % - \data{MS}[DCP, EI, \SI{60}{\electronvolt}] \val{703} (2, \ch{M+}), \val{582} (1), - \val{462} (1), \val{249} (13), \val{120} (41), \val{105} (100). - % - \data{MS}[\ch{MeOH + H2O + KI}, ESI, \SI{10}{\electronvolt}] \val{720} (100, - \ch{M+ + OH-}), \val{368} (\ch{M+ + 2 OH-}). - % - \data{IR}[KBr] \val{3443} (w), \val{3061} (w), \val{2957} (m), \val{2918} (m), - \val{2856} (w), \val{2729} (w), \val{1725} (w), \val{1606} (s), \val{1592} (s), - \val{1545} (w), \val{1446} (m), \val{1421} (m), \val{1402} (m), \val{1357} (w), - \val{1278} (w), \val{1238} (s), \val{1214} (s), \val{1172} (s), \val{1154} (m), - \val{1101} (w), \val{1030} (w), \val{979} (m), \val{874} (m), \val{846} (s), - \val{818} (w), \val{798} (m), \val{744} (w), \val{724} (m), \val{663} (w), - \val{586} (w), \val{562} (w), \val{515} (w). - % - \data*{UV-Vis} \SI{386}{\nano\metre} ($\varepsilon = \val{65984}$), \SI{406}{\nano\metre} - ($\varepsilon = \val{65378}$). - % - \data*{Quantenausbeute} $\Phi = \val{0.74+-0.1}$\,. -\end{experimental} - -\subsubsection{Verrückt} -Ausgabe für \code{<optionen>}: -\begin{lstlisting} - format=\color{red}\itshape, - list=true, - delta=\textcolor{green}{\ch{M+ + H2O}}, - pos-number=side, - coupling-unit=\mega\gram\per\square\second, - list-setup=, - use-equal -\end{lstlisting} - -\begin{experimental}[ - format=\color{red}\itshape, - list=true, - delta=\textcolor{green}{\ch{M+ + H2O}}, - pos-number=side, - coupling-unit=\mega\gram\per\square\second, - list-setup=,use-equal] - \sisetup{separate-uncertainty,per-mode=symbol,detect-all,range-phrase=--} - \chemsetup[chemformula]{ - font-spec = - {[Numbers={Proportional,Lining}]Linux Libertine O} - } - % - \data*{Ausbeute} \SI{17}{\milli\gram} gelbe Nadeln (\SI{0.04}{\milli\mole}, - \SI{13}{\percent}). - % - \data{Smp.} \SI{277}{\celsius} (DSC). - % - \NMR(600)[CDCl3] \val{2.01} (s, \#{24}, \pos{5}), \val{2.31} (s, \#{12}, \pos{1}), - \val{6.72--6.74} (m, \#{2}, \pos{11}), \val{6.82} (s, \#{8}, \pos{3}), \val{7.05--7.07} - (m, \#{2}, \pos{12}), \val{7.39--7.41} (m, \#{4}, \pos{9}), \val{7.48--7.49} (m, - \#{4}, \pos{8}). - % - \NMR{13,C}(150)[CDCl3] \val{21.2} ($+$, \#{4}, \pos{1}), \val{23.4} ($+$, \#{8}, - \pos{5}), \val{126.0} ($+$, \#{4}, \pos{9}), \val{128.2} ($+$, \#{8}, \pos{3}), - \val{130.8} ($+$, \#{2}, \pos{12}), \val{133.6} ($+$, \#{2}, \pos{11}), \val{137.0} - ($+$, \#{4}, \pos{8}), \val{138.6} (q, \#{4}, \pos{2}), \val{140.6} (q, \#{2}, - \pos{10}), \val{140.8} (q, \#{8}, \pos{4}), \val{141.8} (q, \#{4}, \pos{6}), - \val{145.6} (q, \#{2}, \pos{7}). - % - \data{MS}[DCP, EI, \SI{60}{\electronvolt}] \val{703} (2, \ch{M+}), \val{582} (1), - \val{462} (1), \val{249} (13), \val{120} (41), \val{105} (100). - % - \data{MS}[\ch{MeOH + H2O + KI}, ESI, \SI{10}{\electronvolt}] \val{720} (100, - \ch{M+ + OH-}), \val{368} (\ch{M+ + 2 OH-}). - % - \data{IR}[KBr] \val{3443} (w), \val{3061} (w), \val{2957} (m), \val{2918} (m), - \val{2856} (w), \val{2729} (w), \val{1725} (w), \val{1606} (s), \val{1592} (s), - \val{1545} (w), \val{1446} (m), \val{1421} (m), \val{1402} (m), \val{1357} (w), - \val{1278} (w), \val{1238} (s), \val{1214} (s), \val{1172} (s), \val{1154} (m), - \val{1101} (w), \val{1030} (w), \val{979} (m), \val{874} (m), \val{846} (s), - \val{818} (w), \val{798} (m), \val{744} (w), \val{724} (m), \val{663} (w), - \val{586} (w), \val{562} (w), \val{515} (w). - % - \data*{UV-Vis} \SI{386}{\nano\metre} ($\varepsilon = \val{65984}$), \SI{406}{\nano\metre} - ($\varepsilon = \val{65378}$). - % - \data*{Quantenausbeute} $\Phi = \val{0.74+-0.1}$\,. -\end{experimental} -\secidx*{Spektroskopie} - -\section{Befehle für \textsf{mhchem}}\label{sec:mhchem}\secidx{Befehle für -\textsf{mhchem}}[Befehle fur mhchem] -\paket{mhchem} wird nicht mehr automatisch geladen, sondern nur noch, wenn Sie die -Option \key[option]{method}{mhchem} in der Präambel verwenden. Als Voreinstellung -verwendet \chemmacros stattdessen \chemformula. - -\chemmacros stellt nur einen Befehl speziell für \paket{mhchem}\footnote{\chemformula -hat seine eigene Möglichkeit.} bereit. Er erlaubt es, Text unter eine Formel zu -schreiben. -\begin{beschreibung} - \Befehl{mhName}[<options>]{<formula>}\ma{<text>} -\end{beschreibung} - -Zum Beispiel: -\begin{beispiel} - \ce{4 C2H5Cl + Pb / Na -> \mhName{Pb(C2H5)4}{former antiknock additive} + NaCl} -\end{beispiel} - -Mit den folgenden Optionen kann \cmd{mhName} angepasst werden: -\begin{beschreibung} - \option[mhName]{align}{<alignment command>} Die Ausrichtung des Textes innerhalb - der Box, in die er geschrieben wird.Default = \lstinline+\centering+ - \option[mhName]{format}{<anything>} Das Format des Textes. - \option[mhName]{fontsize}{<font size command>} Die Schriftgröße des Textes. - Default = \lstinline+\tiny+ - \option[mhName]{width}{<dim>|auto} Die Breite der Box, in die der Text geschrieben - wird. Default = \code{auto} -\end{beschreibung} -\begin{beispiel} - \ce{4 C2H5Cl + Pb / Na -> \mhName[fontsize=\footnotesize]{Pb(C2H5)4}{former antiknock additive} + NaCl}\\ - \chemsetup[mhName]{align=\raggedright,fontsize=\small,format=\bfseries\color{red},width=3cm} - \ce{4 C2H5Cl + Pb / Na -> \mhName{Pb(C2H5)4}{former antiknock additive} + NaCl} -\end{beispiel} -\secidx*{Befehle für \textsf{mhchem}}[Befehle fur mhchem] - -\section{Reaktionsumgebungen}\label{sec:reactions}\secidx{Reaktionsumgebungen} -\subsection{Durch \chemmacros definiert} -Es stehen folgende Umgebungen für nummerierte\ldots -\begin{beschreibung} - \Umg{reaction}{<formula or mhchem code>} - \Umg{reactions}{<formula or mhchem code>} -\end{beschreibung} - -\ldots und ihre gesternten Versionen für unnummerierte Reaktionen zur Verfügung. -\begin{beschreibung} - \Umg{reaction*}{<formula or mhchem code>} - \Umg{reactions*}{<formula or mhchem code>} -\end{beschreibung} -Damit können Sie (un-) nummerierte Reaktionsgleichungen erstellen ähnlich den -mathematischen Gleichungen. - -Die Umgebungen \code{reaction}/\code{reaction*} verwenden intern \code{equation}/\code{equation*} -Umgebungen und die Umgebungen \code{reactions}/\code{reactions*} verwenden die -\code{align}/\code{align*} Umgebungen, um die Reaktionen darzustellen. - -\begin{beispiel} - Reaktion mit Z\"ahler: - \begin{reaction} - A -> B - \end{reaction} -\end{beispiel} - -\begin{beispiel} - Reaktion ohne Z\"ahler: - \begin{reaction*} - C -> D - \end{reaction*} -\end{beispiel} - -\begin{beispiel} - mehrere ausgerichtete Reaktionen mit Z\"ahler: - \begin{reactions} - A &-> B + C \\ - D + E &-> F - \end{reactions} -\end{beispiel} - -\begin{beispiel} - mehrere ausgerichtete Reaktionen ohne Z\"ahler: - \begin{reactions*} - G &-> H + I \\ - J + K &-> L - \end{reactions*} -\end{beispiel} - -Wenn Sie das Layout der Zähler-Tags ändern wollen, verwenden Sie -\begin{beschreibung} - \Befehl{renewtagform}{<tagname>}\oa{<format>}\ma{<right delim>}\ma{<left delim>}% - \footnote{Durch das \paket*{mathtools} Paket zur Verfügung gestellt.}. -\end{beschreibung} - -\begin{beispiel} - \renewtagform{reaction}[R \textbf]{[}{]} - \begin{reaction} - H2O + CO2 <<=> H2CO3 - \end{reaction} -\end{beispiel} - -Seit Version 3.3 funktionieren Querverweise und \AmS maths \cmd{intertext} wie -erwartet: -\begin{beispiel} - \begin{reactions} - A + 2 B &-> 3 C + D \label{rxn:test} - \intertext{Etwas Text zwischen ausgerichteten Reaktionen.} - 3 E + F &<=> G + 1/2 H - \end{reactions} - Siehe Reaktion \ref{rxn:test}. -\end{beispiel} - -\achtung{In der Standardeinstellung, \dh mit \key{method}{chemformula}, sollten -Sie \cmd{mch} und die verwandten Befehle innerhalb der \code{reaction} Umgebungen -nicht verwenden. Sie bringen in den meisten Fällen die korrekte Ausrichtung -durcheinander. In der Standardeinstellung erkennen Ladungen in den Umgebungen -die Einstellung der Option \key{circled} automatisch, so dass die Befehle auch -nicht benötigt werden.} - -\subsection{Eigene Reaktionen} -Sie können mit dem Befehl -\begin{beschreibung} - \Befehl{DeclareChemReaction}[<options>]{<name>}\ma{<math name>} -\end{beschreibung} -weitere Reaktionsumgebungen erstellen. - -\code{<name>} wird der Name der neuen Umgebung sein. \code{<math name>} ist die -verwendete Mathematikumgebung. - -Der Befehl hat zwei Optionen. -\begin{beschreibung} - \Option*{star}{\default{true}|false} - \Option*{arg}{\default{true}|false} -\end{beschreibung} -Zum einen \key*{star}, die auch die gesternte Variante definiert, vorausgesetzt, -die entsprechende Mathematikumgebung existiert. Falls nicht, wird es einen Fehler -geben. - -Dann gibt es \key*{arg}, die verwendet wird, um eine Umgebung mit einem obligatorischen -Argument zu erstellen. Auch das funktioniert natürlich nur, wenn die entsprechende -Mathematikumgebung ebenfalls ein obligatorisches Argument besitzt. - -Die vordefinierten Umgebungen wurden durch -\begin{beschreibung} - \Befehl{DeclareChemReaction}[star]{reaction}\ma{equation} und - \Befehl{DeclareChemReaction}[star]{reactions}\ma{align}. -\end{beschreibung} -definiert. - -Nehmen wir an, Sie wollen eine Umgebung mit dem Verhalten der \code{alignat} Umgebung -für \chemformula-/\paket{mhchem}-Reaktionen. Sie könnten folgendes tun: -\begin{beispiel}[code only] - \DeclareChemReaction[star,arg]{reactionsat}{alignat} -\end{beispiel} - -Damit ist die \code{reactionsat}-Umgebung definiert. -\begin{beispiel} - \DeclareChemReaction[star,arg]{reactionsat}{alignat} - \begin{reactionsat}{3} - A &-> B &&-> C &&-> D \\ - aaaaa &-> bbbbb &&-> ccccc &&-> ddddd - \end{reactionsat} - \begin{reactionsat*}{2} - A &-> B & C &-> D \\ - aaaaa &-> bbbbb &\quad{} ccccc &-> ddddd - \end{reactionsat*} -\end{beispiel} - -\subsection{Liste der Reaktionen} -\chemmacros stellt ebenso einen Befehl zur Verfügung, mit dem man eine Liste der -Reaktionen ausgeben kann, die mit den Reaktionsumgebungen eingegeben wurden. -\begin{beschreibung} - \Befehl{listofreactions} -\end{beschreibung} -\begin{beispiel}[below] - \listofreactions -\end{beispiel} - -Der Output kann mit den folgenden Optionen angepasst werden: -\begin{beschreibung} - \option[reaction]{list-name}{<name of the list>} Setzen der Listenüberschrift. - Default = \code{Reaktionsverzeichnis} - \option[reaction]{list-entry}{<prefix to each entry>} Präfix zu jedem Eintrag. - Default = \code{Reaktion} -\end{beschreibung} -Beide Default-Werte reagieren auf die Option \key[option]{german}. - -Statt die Option \key{list-name} zu verwenden, könnten Sie auch \cmd{reactionlistname} -umdefinieren. - -Im Verzeichnis werden alle Reaktionen mit Zählen gelistet und alle anderen nicht -aufgenommen. Alle Reaktionsumgebungen ohne Stern haben ein optionales Argument, -mit dem man eine Beschreibung für die Liste hinzufügen kann. -\begin{beispiel} - \begin{reaction}[Autoprotolyse] - 2 H2O <<=> H3O+ + OH- - \end{reaction} -\end{beispiel} -Wenn Sie die \code{reactions} Umgebung verwenden, wird das allerdings nicht -funktionieren. In diesem Fall können Sie -\begin{beschreibung} - \Befehl{AddRxnDesc}{<description>} -\end{beschreibung} -verwenden. -\begin{beispiel} - \begin{reactions} - Cl "\Lewis{0.,\vphantom{Cl}}" + CH4 &-> HCl + "\Lewis{4.,\vphantom{CH}}" CH3 \AddRxnDesc{first~step~of~chain} \\ - "\Lewis{4.,\vphantom{CH}}" CH3 + Cl2 &-> CH3Cl + Cl "\Lewis{0.,\vphantom{Cl}}" \AddRxnDesc{second~step~of~chain} - \end{reactions} -\end{beispiel} -Nebenbei: Sie müssen die Phantom-Befehle nicht verwenden, wenn Sie das Format der -Atome nicht geändert haben, siehe Abschnitt~\ref{sec:format} an Seite~\pageref{sec:format}. -\secidx*{Reaktionsumgebungen} - -\section{Phasen}\label{sec:phasen}\secidx{Phasen} -\subsection{Grundlagen}\secidx[Grundlagen]{Phasen} -Diese Befehle sollen helfen, die Phase einer Substanz anzuzeigen. -\begin{beschreibung} - \befehl{sld} \sld - \befehl{lqd} \lqd - \befehl{gas} \gas - \befehl{aq} \aq -\end{beschreibung} - -\achtung{Das Default-Verhalten der Phasen-Befehle hat sich geändert, um der -\ac{iupac}-Empfehlung zu folgen. Sowohl \cmd{sld} als auch \cmd{lqd} haben kein -optionales Argument mehr.} - -\begin{beispiel} - \ch{C\sld{} + 2 H2O\lqd{} -> CO2\gas{} + 2 H2\gas}\\ - der Vollst\"andigkeit halber: NaCl\aq. -\end{beispiel} - -Mit der Paketoption \key{language}{english} (siehe Abschnitt~\ref{sec:optionen}) -erhalten Sie die englischen Versionen. - -Die \ac{iupac}-Empfehlung\footnote{Vielen Dank an Paul King für den Hinweis.} um einen -Aggregatszustand anzuzeigen ist es, sie in Klammern nach der Formel zu -schreiben~\cite{iupac:greenbook}. Es ist jedoch ebenfalls verbreitet, sie als -Tiefstellung zu setzen. - -\begin{zitat}[{\ac{iupac} Green Book {\cite[][p.\,54]{iupac:greenbook}}}] - The \textelp{} symbols are used to represent the states of aggregation of chemical - species. The letters are appended to the formula in parentheses and should be - printed in Roman (upright) type without a full stop (period). -\end{zitat} - -Es gibt zwei Optionen, um den Output anzupassen: -\begin{beschreibung} - \option[phases]{pos}{side|sub} Umschalten der Position des Phasen-Anzeigers. - Default = \code{side} - \option[phases]{space}{<dim>} Ändern des Zwischenraums zwischen Formel und dem - Phasen-Anzeiger bei \key{pos}{side}. Eine \TeX-Dimension. Default = \code{.1333em} -\end{beschreibung} -\begin{beispiel} - \chemsetup[phases]{pos=sub} - \ch{C\sld{} + 2 H2O\lqd{} -> CO2\gas{} + 2 H2\gas}\\ - der Vollst\"andigkeit halber: NaCl\aq. -\end{beispiel} - -\subsection{Eigene Phasen definieren}\secidx[eigene]{Phasen} -Abhängig vom Thema ihres Dokuments müssen Sie unter Umständen andere Aggregatszustände -anzeigen. Sie können Sie einfach definieren. -\begin{beschreibung} - \Befehl{DeclareChemPhase}{<cmd>}\oa{<german>}\ma{<english>} - \Befehl{RenewChemPhase}{<cmd>}\oa{<german>}\ma{<english>} - \befehl{phase}{<phase>} Wenn Sie die Phase nur ein- oder zweimal verwenden müssen. -\end{beschreibung} -\cmd{DeclareChemPhase} definiert die Phase nur dann, wenn \code{<cmd>} noch nicht -existiert. Andernfalls wird \chemmacros entweder eine Warnung oder einen Fehler -ausgeben, abhängig vob der Option \key{strict}. \cmd{RenewChemParticle} definiert -eine Phase \emph{nur}, wenn \code{<cmd>} schon existiert und gibt andernfalls eine -Warnung/einen Fehler. -\begin{beispiel} - \DeclareChemPhase{\aqi}{aq,$\infty$}% aqueous solution at infinite dilution - \DeclareChemPhase{\cd}{cd}% condensed phase - \RenewChemPhase{\lqd}{lc}% liquid crystal - NaOH\aqi\ \ch{H2O\cd} U\phase{cr} A\lqd \\ - \chemsetup[phases]{pos=sub} - NaOH\aqi\ \ch{H2O\cd} U\phase{cr} A\lqd -\end{beispiel} -\secidx*{Phasen} - -\section{Newman-Projektionen}\label{sec:newman}\secidx{Newman-Projektionen} -\chemmacros stellt den Befehl -\begin{beschreibung} - \Befehl{newman}[<options>]\da{<angle>}\ma{<1>,<2>,<3>,<4>,<5>,<6>} -\end{beschreibung} -zur Verfügung, der Ihnen erlaubt, Newman-Projektionen zu erstellen (verwendet \TikZ). -Das Argument \da{<angle>} dreht die hinteren Atome gegen den Uhrzeigersinn bezüglich -der vorderen Atome. -\begin{beispiel} - \newman{} \newman(170){} - \newman{1,2,3,4,5,6} \newman{1,2,3} \newman{,,,4,5,6} -\end{beispiel} - -Es gibt einige Optionen, um den Befehl anzupassen: -\begin{beschreibung} - \option[newman]{angle}{<angle>} Voreingestellter Winkel. Default = \code{0} - \option[newman]{scale}{<factor>} Skaliert die ganze Projektion. Default = \code{1} - \option[newman]{ring}{<tikz>} Aussehen des Rings mit \TikZ-Keys anpassen. - \option[newman]{atoms}{<tikz>} Aussehen der Knoten, in die die Atome geschrieben - werden, mit \TikZ-Keys anpassen. - \option[newman]{back-atoms}{<tikz>} Nur die hinteren Atome anpassen. -\end{beschreibung} - -\begin{beispiel} - \chemsetup[newman]{angle=45} \newman{} - \newman[scale=.75,ring={draw=blue,fill=blue!20}]{} -\end{beispiel} -\begin{beispiel} - \chemsetup[newman]{atoms={draw=red,fill=red!20,inner sep=2pt,rounded corners}} - \newman{1,2,3,4,5,6} -\end{beispiel} -\begin{beispiel} - \chemsetup[newman]{ - atoms = {draw=red,fill=red!20,inner sep=2pt,rounded corners}, - back-atoms = {draw=blue,fill=blue!20,inner sep=2pt,rounded corners} - } - \newman{1,2,3,4,5,6} \newman(170){1,2,3,4,5,6} -\end{beispiel} -\secidx*{Newman-Projektionen} - -%TODO watch pagebreaks! -\section{s, p und Hybrid-Orbitale}\label{sec:orbitale}\secidx{Orbitale} -\chemmacros stellt einen Befehl bereit, mit dem Orbitale visualisiert werden können: -\begin{beschreibung} - \Befehl{orbital}[<options>]{<type} -\end{beschreibung} - -Dabei stehen folgende Typen für \ma{<type>} zur Verfügung: -\begin{description} - \item \code{s} - \item \code{p} - \item \code{sp} - \item \code{sp2} - \item \code{sp3} -\end{description} - -\begin{beispiel} - \orbital{s} \orbital{p} \orbital{sp} \orbital{sp2} \orbital{sp3} -\end{beispiel} - -Abhängig vom Typ stehen verschiedene Optionen zur Modifikation zur Auswahl: -\begin{beschreibung} - \option[orbital]{phase}{\default{+}|-} Ändern der Phase des Orbitals (alle Typen). - \option[orbital]{scale}{<factor>} Ändern der Größe des Orbitals (alle Typen). - \option[orbital]{color}{<color>} Ändern der Farbe des Orbitale (alle Typen). - \option[orbital]{angle}{<angle>} Rotiert die Orbitale mit einem p-Anteil gegen - den Uhrzeigersinn (alle Typen außer \code{s}). - \option[orbital]{half}{\default{true}|false} stellt nur ein halbes Orbital dar - (nur \code{p}). -\end{beschreibung} - -\begin{beispiel} - \orbital{s} \orbital[phase=-]{s} - \orbital{p} \orbital[phase=-]{p} - \orbital{sp3} \orbital[phase=-]{sp3} - - \orbital[angle=0]{p} \orbital[color=red!50]{p} \orbital[angle=135,scale=1.5]{p} \orbital[half]{p} -\end{beispiel} - -Zusätzlich gibt es zwei Optionen, mit denen das \TikZ-Verhalten beeinflusst werden -kann: -\begin{beschreibung} - \option[orbital]{overlay}{\default{true}|false} Das Orbital „braucht keinen Platz”; - es wird mit dem \TikZ-Key \code{overlay} gezeichnet. - \option[orbital]{opacity}{<num>} Das Orbital wird durchsichtig; \code{<value>} - kann Werte zwischen \code{1} (undurchsichtig) bis \code{0} (unsichtbar) annehmen. -\end{beschreibung} - -\begin{beispiel}[dist] - \hspace{1cm} - \chemsetup[orbital]{ - overlay, - p/color = black!70 - } - \setbondoffset{0pt} - \chemfig{?\orbital{p}-[,1.3]{\orbital[phase=-]{p}}-[:30,1.1]\orbital{p}-[:150,.9]{\orbital[phase=-]{p}}-[4,1.3]\orbital{p}-[:-150,1.1]{\orbital[phase=-]{p}}?} - \vspace{7mm} -\end{beispiel} - -\bspmidlength{dist}{10mm} -\begin{beispiel}[dist] - \hspace{2cm} - \setbondoffset{0pt} - \chemsetup[orbital]{ - overlay , - opacity = .75 , - p/scale = 1.6 , - s/color = blue!50 , - s/scale = 1.6 - } - \chemfig{\orbital{s}-[:-20]{\orbital[scale=2]{p}}{\orbital[half,angle=0]{p}}{\orbital[angle=170,half]{p}}{\orbital[angle=-150,half]{p}}(-[:-150]\orbital{s})-\orbital{s}} - \vspace{1cm} -\end{beispiel} -\bspmidlength{dist}{7mm} -\secidx*{Orbitale}\secidx*{CHEMMACROS} - -\newpage -\part{\texorpdfstring{\Chemformula}{chemformula}}\label{part:chemformula}\secidx{CHEMFORMULA} -\chemsetup[chemformula]{ - font-spec = - {[Numbers={Proportional,Lining}]Linux Libertine O} -} -\section{Setup} -Alle Optionen von \chemformula gehören dem Modul \textcolor{module}{\code{chemformula}} -an. Das bedeutet, sie können via -\begin{beispiel}[code only] - \chemsetup[chemformula]{<options>} oder - \chemsetup{chemformula/<option1>,chemformula/<option2>} -\end{beispiel} -eingestellt werden. - -Sie können außerdem direkt als Option an den Befehl \cmd{ch} weitergegeben werden. - -\section{Das Grundprinzip} -\chemformula hat einen Hauptbefehl. -\begin{beschreibung} - \Befehl{ch}[<options>]{<input>} -\end{beschreibung} - -Die Verwendung wird Ihnen sehr vertraut vorkommen, wenn Ihnen \paket{mhchem} -geläufig ist: -\begin{beispiel} - \ch{H2O} \\ - \ch{Sb2O3} \\ - \ch{H+} \\ - \ch{CrO4^2-} \\ - \ch{AgCl2-} \\ - \ch{[AgCl2]-} \\ - \ch{Y^{99}+} \\ - \ch{Y^{99+}} \\ - \ch{H2_{(aq)}} \\ - \ch{NO3-} \\ - \ch{(NH4)2S} \\ - \ch{^{227}_{90}Th+} \\ - $V_{\ch{H2O}}$ \\ - \ch{Ce^{IV}} \\ - \ch{KCr(SO4)2 * 12 H2O} -\end{beispiel} - -Es gibt jedoch Unterschiede. Der wichtigste: \chemformula unterscheidet zwischen -verschiedenen Input-Typen. Diese verschiedenen Typen \emph{müssen} durch Leerzeichen -getrennt eingegeben werden: -\begin{beschreibung} - \Befehl{ch}{type1 type2 type3 type4} -\end{beschreibung} - -Ein Leerzeichen im Input ist \emph{niemals} ein Leerzeichen im Output. Die Rolle -des Leerzeichens gilt strikt und kann zu Fehlern oder fehlerhaften Output führen, -wenn sie nicht beachtet wird. - -Ein weiterer wichtiger Unterschied: \chemformula versucht, den Mathematikmodus -weitestgehend zu vermeiden: -\begin{beispiel} - \ch{A + B ->[a] C} \\ - \ce{A + B ->[a] C} -\end{beispiel} - -Der erste Punkt bedeutet, dass \cmd{ch}{2H2O} als \emph{ein} Teil behandelt wird, -in diesem Fall als Summenformel. -\begin{beispiel} - \ch{2H2O} \\ - \ch{2 H2O} -\end{beispiel} -Das bedeutet außerdem, dass ein Teil kein Leerzeichen enthalten kann, da ein -Leerzeichen ihn automatisch in zwei Teile teilen würde. Wenn Sie ein Leerzeichen -im Output benötigen, müssen sie ein \lstinline+~+ eingeben. Da die meisten Makros -ein folgendes Leerzeichen schlucken, wird jedoch ein Input wie \cmd{ch}{\textbackslash -command ABC} als einzelner Teil behandelt. Wenn Sie einen solchen Input teilen wollen, -müssen Sie eine leere Gruppe eingeben: \cmd{ch}{\textbackslash command\{\} ABC}. -Die verschiedenen Input-Typen werden in den folgenden Abschnitten einzeln behandelt. - -Der \cmd{ch}-Befehl hat einige Optionen, mit denen der Output verändert werden kann. -Sie können entweder lokal als optionales Argument oder global mit dem Befehl -\begin{beschreibung} - \Befehl{chemsetup}[chemformula]{<options>} -\end{beschreibung} -gesetzt werden. Alle Optionen von \chemformula gehören dem Modul -\textcolor{module}{\code{chemformula}} an. - -\section{Stöchiometrische Faktoren}\secidx{Stöchiometrische Faktoren}[Stoechiometrische Faktoren] -Ein stöchiometrischer Faktor darf nur aus Ziffern und den Zeichen \lstinline+.,_/()+ -bestehen. -\begin{beispiel} - \ch{2} \\ - \ch{12} - - % decimals: - \ch{.5} \\ - \ch{5,75} - - % fractions: - \ch{3/2} \\ - \ch{1_1/2} - - % ``iupac'': - \ch{(1/2)} -\end{beispiel} - -Wie Sie sehen können, wird bei Dezimalbrüchen eine führende Null ergänzt, wenn -sie in der Eingabe fehlt. - -Sie müssen bei dem Input ein wenig auf die richtige Syntax achten, aber ich denke, -sie ist recht intuitiv. -\begin{beispiel}[code only] - das wird nicht funktionieren sondern einen Fehler geben: \ch{1/1_1} -\end{beispiel} - -Wenn die stöchiometrischen Faktoren in Klammern geschrieben werden, werden die Brüche -nicht umgewandelt und führende Nullen nicht ergänzt. Was in den Klammern steht, -wird genauso geschrieben. -\begin{beispiel} - \ch{(1/2) H2O} \ch{1/2 H2O} \ch{0.5 H2O} -\end{beispiel} -Viele Beispiele wie das folgende für die Verwendung von Klammern um stöchiometrische -Faktoren finden Sie \zB im „\ac{iupac} Green Book“ \cite{iupac:greenbook}: -\begin{reaction*} - (1/5) K "\ox*{7,Mn}" O4 + (8/5) HCl == (1/5) "\ox*{2,Mn}" Cl2 + (1/2) Cl2 + (1/5) KCl + (4/5) H2O -\end{reaction*} - -Der Output kann mit diesen Optionen angepasst werden: -\begin{beschreibung} - \option{decimal-marker}{<marker>} Das Symbol, das als Dezimalzeichen verwendet - wird. Default = \code{.} - \option{frac-style}{math|xfrac|nicefrac} Bestimmt, wie Brüche dargestellt werden. - Default = \code{math} - \option{stoich-space}{<skip>} Der Leerraum nach einem stöchiometrischen Faktor. - Eine elastische Länge. Default = \code{.1667em plus .0333em minus .0117em} - \option{stoich-paren-parse}{\default{true}|false} Wenn die Option auf - \code{true} gesetzt ist, werden auch stöchiometrische Faktoren, die in Klammern - stehen, verarbeitet, d.h. Brüche umgewandelt und führende Nullen ergänzt. - Default = \code{false} -\end{beschreibung} -\begin{beispiel} - \ch[decimal-marker={,}]{3.5} \ch[decimal-marker={$\cdot$}]{3,5} -\end{beispiel} - -Die Option \key{frac-style}{xfrac} verwendet den Befehl \lstinline+\sfrac+ des -\paket{xfrac}-Pakets. Der Output kann sehr von der gewählten Schrift abhängen. -\secidx[xfrac]{Stöchiometrische Faktoren}[Stoechiometrische Faktoren] -\begin{beispiel} - \ch[frac-style=xfrac]{3/2} \ch[frac-style=xfrac]{1_1/2} -\end{beispiel} - -\chemformula definiert die Instanz \lstinline=formula-text-frac=, die nach dem -eigenen Bedarf umdefiniert werden kann. Default ist folgendes: -\begin{beispiel}[code only] - \DeclareInstance{xfrac}{chemformula-text-frac}{text} - { - slash-left-kern = -.15em , - slash-right-kern = -.15em - } -\end{beispiel} -Dieses Dokument verwendet den Font Linux Libertine~O und folgende Definition: -\begin{beispiel}[code only] - \DeclareInstance{xfrac}{chemformula-text-frac}{text} - { - scale-factor = 1 , - denominator-bot-sep = -.2ex , - denominator-format = \scriptsize #1 , - numerator-top-sep = -.2ex , - numerator-format = \scriptsize #1 , - slash-right-kern = .05em , - slash-left-kern = .05em - } -\end{beispiel} - -Die Option \key{frac-style}{nicefrac} verwendet den Befehl \lstinline+\nicefrac+ -des \paket{nicefrac}-Pakets.\secidx[nicefrac]{Stöchiometrische Faktoren}[Stoechiometrische Faktoren] -\begin{beispiel} - \ch[frac-style=nicefrac]{3/2} \ch[frac-style=nicefrac]{1_1/2} -\end{beispiel} - -Die Option \key{stoich-space} erlaubt Ihnen, den Leerraum zwischen stöchiometrischem -Faktor und Summenformel einzustellen.\secidx[space]{Stöchiometrische Faktoren}[Stoechiometrische Faktoren] -\begin{beispiel} - \ch{2 H2O} \\ - \ch[stoich-space=.3em]{2 H2O} -\end{beispiel} -\secidx*{Stöchiometrische Faktoren}[Stoechiometrische Faktoren] - -\section{Summenformeln}\label{ssec:compounds}\secidx{Summenformeln} -\chemformula bestimmt Summenformeln als den Typ, der \enquote{nirgendwo sonst -hineinpasst}. Das wird klarer werden, wenn Sie die anderen Typen kennen. -\begin{beispiel} - \ch{H2SO4} \\ - \ch{[Cu(NH3)4]^2+} -\end{beispiel} - -\subsection{Addukte}\secidx[Addukte]{Summenformeln} -\chemformula hat zwei Identifier, die Addukte erzeugen. -\begin{beschreibung} - \befehl{ch}{A.B} \ch{A.B} - \befehl{ch}{A*B} \ch{A*B} -\end{beschreibung} -\begin{beispiel} - \ch{CaSO4.H2O} \\ - \ch{CaSO4*H2O} -\end{beispiel} -Da Ziffern in einer Summenformel immer als Tiefstellung betrachtet werden (siehe -Abschnitt~\ref{ssec:subscripts}), müssen Sie manchmal einen Leerraum lassen, damit -der stöchiometrische Faktor korrekt erkannt wird: -\begin{beispiel} - \ch{Na3PO4*12H2O} \\ - \ch{Na3PO4* 12 H2O} \\ - \ch{Na3PO4 * 12 H2O} -\end{beispiel} - -\subsection{Tiefstellungen}\label{ssec:subscripts}\secidx[Tiefstellungen]{Summenformeln} -\emph{Alle} Ziffern in einer Substanz werden als Tiefstellung behandelt. -\begin{beispiel} - \ch{H2SO4} -\end{beispiel} -Wenn Sie einen Buchstaben als Tiefstellung möchten, verwenden Sie die Mathematik-Syntax: -\begin{beispiel} - \ch{A_nB_m} -\end{beispiel} - -Die Tiefstellung erkennt Gruppen. Sie können darin auch Mathematikmodus verwenden. -\begin{beispiel} - \ch{A_{$n$}B_{$m$}} \\ - \ch{NaCl_{(aq)}} -\end{beispiel} - -\subsection{Befehle}\secidx[Befehle]{Summenformeln} -Befehle sind in einer Summenformel erlaubt: -\begin{beispiel} - \ch{\textbf{A2}B3} \ch{A2\color{red}B3} -\end{beispiel} -Wenn jedoch ein Befehl eine Ziffer als Argument benötigt, wie \zB Leerraum-Befehle -oder der \lstinline+\ox+-Befehl, wird die direkte Verwendung schiefgehen. Das liegt -daran, dass die Ziffern als Tiefstellung behandelt werden, \emph{bevor} der Befehl -expandiert. -\begin{beispiel}[code only] - \ch{A\hspace{2mm}B} wird einen Fehler geben, da \hspace in etwa so etwas sieht: \hspace{$_2$mm}. -\end{beispiel} -Siehe Abschnitt \ref{ssec:text} für einen Ausweg. - -\subsection{Ladungen und andere Hochstellungen}\secidx[Ladungen]{Summenformeln}\secidx[Hochstellungen]{Summenformeln} -\paragraph{Grundlagen} -Wenn eine Summenformel mit einem Plus- oder Minus-Zeichen \emph{endet}, wird es als -Ladungssymbol interpretiert und hochgestellt. An anderen Stellen repräsentiert ein -Plus eine Dreifachbindung und ein Dash eine Einfachbindung, siehe Abschnitt~\ref{ssec:bonds}. -\begin{beispiel} - \ch{A+B} \ch{AB+} \\ - \ch{A-B} \ch{AB-} -\end{beispiel} - -Für längere Ladungsgruppen oder andere Hochstellungen können Sie die Mathematik-Syntax -verwenden. Sie beachtet Gruppen und erlaubt Mathematik in ihnen. Innerhalb dieser -Gruppen werden weder \code{+} noch \code{-} als Bindungen interpretiert. Wenn sich -ein Punkt \code{.} in einer Hochstellung befindet, zeigt er kein Addukt an sondern -ein Radikal. Ein \code{*} gibt den angeregten Zustand. -\begin{beispiel} - \ch{A^{x-}} \\ - \ch{A^x-} \\ - \ch{A^{x}-} \\ - \ch{A^{$x-$}} \\ - \ch{RNO2^{-.}} \\ - \ch{^31H} \\ - \ch{^{14}6C} \\ - \ch{^{58}_{26}Fe} \\ - \ch{NO^*} -\end{beispiel} - -Ionen und Ionenverbindungen mit mehr als einer Ladung werden genauso eingegeben: -\begin{beispiel} - \ch{SO4^2-} \ch{Ca^2+ SO4^2-} -\end{beispiel} - -\paragraph{Ladungsbefehle}\secidx[Hochstellungen!Ladungsbefehle]{Summenformeln} -Man benötigt kein \cmd{mch} und ähnliche Befehle innerhalb von \cmd{ch}. Tatsächlich -\emph{sollte man sie vermeiden}, da sie die Ausrichtung der Hoch- und Tiefstellungen -durcheinander bringen können. Die \chemmacros-Option \code{circled} wird von \cmd{ch} -beachtet. -\begin{beispiel} - \chemsetup[option]{circled=all} - \ch{H+ + OH- <=> H2O} -\end{beispiel} - -\paragraph{Verhalten}\secidx[Hochstellungen!Verhalten]{Summenformeln} -Die Hochstellungen verhalten sich unterschiedlich abhängig von ihrer Position in -einer Summenformel, falls Hoch- und Tiefstellung direkt aufeinander folgen. -\begin{beispiel} - \ch{^33B} \ch{{}^33B} \ch{3^3B} \ch{B^3} \ch{B3^3} \\ - \ch{^{23}_{123}B} \ch{{}^{23}_{123}B} \ch{_{123}^{23}B} \ch{B^{23}} \ch{B_{123}^{23}} \\ - \ch{^{123}_{23}B} \ch{{}^{123}_{23}B} \ch{_{23}^{123}B} \ch{B^{123}} \ch{B23^{123}} -\end{beispiel} -\begin{itemize} - \item Wenn eine Formel mit einer Hochstellung \emph{startet}, werden Hoch- und - Tiefstellung \emph{rechts} ausgerichtet, ansonsten \emph{links}. - \item Wenn eine Hochstellung einer Tiefstellung \emph{folgt}, wird sie zusätzlich - um eine Länge verschoben, die durch die Option \key{charge-hshift}{<dim>} bestimmt - wird, siehe auch Seite~\pageref{desc:charge-hshift}f. -\end{itemize} - -Der zweite Punkt folgt der \ac{iupac}-Empfehlung: -\begin{zitat}[{\ac{iupac} Green Book {\cite[][p.\,51]{iupac:greenbook}}}] - In writing the formula for a complex ion, spacing for charge number can be added - (staggered arrangement), as well as parentheses: \ch[charge-hshift=1ex]{SO4^2-}, - \ch{(SO4)^2-} The staggered arrangement is now recommended. -\end{zitat} - -\subsection{Bindungen}\label{ssec:bonds}\secidx[Bindungen]{Summenformeln} -\subsubsection{Natürliche Bindungen} -\chemformula kennt drei Sorten Bindungen, die ich \enquote{natürliche Bindungen} -nennen werde: -\begin{beispiel} - einfach: \ch{CH3-CH3} \\ - doppel: \ch{CH2=CH2} \\ - dreifach: \ch{CH+CH} -\end{beispiel} - -\subsubsection{Flexible Bindungen} -\paragraph{Predefined Bindungen} -Zusätzlich zu den drei natürlichen Bindungen gibt es ein paar weitere, die mit -folgendem Befehl aufgerufen werden können: -\begin{beschreibung} - \Befehl{bond}{<bond name>} -\end{beschreibung} -Die vordefinierten Bindungstypen sind in Tabelle~\ref{tab:bond_types} aufgeführt. - -\begin{table} - \centering - \caption{Bindungen, die mit \protect\cmd{bond} aufgerufen werden können.} - \label{tab:bond_types} - \begin{tabular}{lcl} - \toprule - \bfseries Name & \bfseries Aussehen & \bfseries Aliase \\ - \midrule - \code{single} & \bond{single} & \code{normal}, \code{sb} \\ - \code{double} & \bond{double} & \code{db} \\ - \code{triple} & \bond{triple} & \code{tp} \\ - \code{dotted} & \bond{dotted} & \code{semisingle} \\ - \code{deloc} & \bond{deloc} & \code{semidouble} \\ - \code{tdeloc} & \bond{tdeloc} & \code{semitriple} \\ - \code{co>} & \bond{co>} & \code{coordright} \\ - \code{<co} & \bond{<co} & \code{coordleft} \\ - \bottomrule - \end{tabular} -\end{table} - -\begin{beispiel} - \ch{C\bond{sb}C\bond{db}C\bond{tp}C\bond{deloc}C\bond{tdeloc}C\bond{co>}C\bond{<co}C} -\end{beispiel} - -\paragraph{Eigene Bindungen} -\chemformula stellt Befehle bereit, mit denen eigene Bindungen definiert werden -können: -\begin{beschreibung} - \Befehl{DeclareChemBond}{<name>}\ma{<code>} - \Befehl{RenewChemBond}{<name>}\ma{<code>} - \Befehl{DeclareChemBondAlias}{<new name>}\ma{<old name>} - \Befehl{ShowChemBond}{<name>} -\end{beschreibung} -Die Verwendung wird am ehesten durch ein Beispiel beschrieben. Schauen Sie zunächst, -wie die \code{single} und die \code{co>} Bindung definiert sind: -\begin{beispiel}[code only] - \DeclareChemBond{single} - { \draw[chembond] (chemformula-bond-start) -- (chemformula-bond-end) ; } - \DeclareChemBond{coordright} - { \draw[chembond,butt cap->] (chemformula-bond-start) -- (chemformula-bond-end) ; } - \DeclareChemBondAlias{co>}{coordright} -\end{beispiel} -Hier sind zwei Dinge wichtig: die Namen der Anfangs- und der Endkoordinaten, -\code{chemformula-bond-start} und \code{chemformula-bond-end}, und der \TikZ-Stil -der Bindungen \code{chembond}. - -Sagen wir, Sie wollen eine bestimmte Art von gestrichelter Bindung definieren. -Sie könnten folgendes tun: -\begin{beispiel} - \usetikzlibrary{decorations.pathreplacing} - \makeatletter - \DeclareChemBond{dashed} - { - \draw[ - chembond, - decorate, - decoration={ticks,segment length=\chemformula@bondlength/10,amplitude=1.5pt}] - (chemformula-bond-start) -- (chemformula-bond-end) ; - } - \makeatother - \chemsetup[chemformula]{bond-length=2ex} - \ch{C\bond{dashed}C} -\end{beispiel} - -Dieses Beispiel zeigte Ihnen ein weiteres Makro: \makeatletter\cmd{chemformula@bondlength}\makeatother. -Es existiert nur, damit Sie die Länge der Bindung, wie sie mit \key{bond-length} -festgelegt wird, direkt verwenden können.% (siehe auch Seite~\pageref{key:bond-length}). - -\subsection{Anpassung}\secidx[Anpassung]{Summenformeln}\label{ssec:compounds:customization} -Diese Optionen ermöglichen Ihnen, den Output anzupassen: -\begin{beschreibung} - \option{subscript-vshift}{<dim>} Extra vertikale Verschiebung der Tiefstellungen. - Default = \code{0pt} - \option{subscript-style}{text|math} Stil, der für die Tiefstellungen verwendet - wird. Default = \code{text} - \option{charge-hshift}{<dim>} Verschiebung von Hochstellungen, wenn sie einer - Tiefstellung folgen. Default = \code{.25em}\label{desc:charge-hshift} - \option{charge-style}{text|math} Stil, der für Hochstellungen verwendet wird. - Default = \code{text} - \option{adduct-space}{<dim>} Leerraum links und rechts des Addukt-Punktes. - Default = \code{.1333em} - \option{bond-length}{<dim>} Die Länge der Bindungen. Default = \code{.5833em} - \option{bond-offset}{<dim>} Der Abstand zwischen Atom und Bindung. Default = - \code{.07em} - \option{bond-style}{<tikz>} \TikZ-Optionen für die Bindungen. Zunächst - undefiniert. - \option{radical-style}{<tikz>} \TikZ-Optionen für den Radikalpunkt. Zunächst - undefiniert. - \option{radical-radius}{<dim>} Der Radius des Radikalpunktes. Default = - \code{.2ex} - \option{radical-hshift}{<dim>} Horizontaler Leerraum vor dem Radikalpunkt. - Default = \code{.15em} - \option{radical-vshift}{<dim>} Vertikale Position des Radikalpunktes relativ zur - aktuellen Grundlinie. Default = \code{.5ex} - \option{radical-space}{<dim>} Horizontaler Leerraum nach dem Radikalpunkt. - Default = \code{.15em} -\end{beschreibung} - -Vielleicht ist Ihnen aufgefallen, dass bei manchen Ionen die Ladungen nach rechts -verschoben sind:\secidx[Ladungen!Verschiebung]{Summenformeln} -\begin{beispiel} - \ch{SO4^2-} \ch{NH4+} \ch{Na+} -\end{beispiel} -Sie werden verschoben, wenn sie einer Tiefstellung \emph{folgen}, was der -\ac{iupac}-Empfehlung entspricht \cite[][p.\,51]{iupac:greenbook}. Den Betrag der -Verschiebung kann man mit der Option \key{charge-hshift} festlegen. -\begin{beispiel} - \ch{SO4^2-} \ch{NH4+} \ch{Na+} \\ - \chemsetup[chemformula]{charge-hshift=.5ex} - \ch{SO4^2-} \ch{NH4+} \ch{Na+} \\ - \chemsetup[chemformula]{charge-hshift=.5pt} - \ch{SO4^2-} \ch{NH4+} \ch{Na+} -\end{beispiel} - -Ungeachtet der \ac{iupac}-Empfehlung erstellt \chemformula keine voll gestaffelten -Hochstellungen in der Voreinstellung, da ich die in manchen Fällen schwer zu lesen -und in anderen Fällen hässlich finde. Da das aber eine subjektive Empfindung ist, -gibt Ihnen \chemformula nicht nur die Möglichkeit, einen absoluten Wert für die -Verschiebung festzulegen, sondern stellt auch eine Möglichkeit für voll gestaffelte -Hochstellungen bereit. Dafür verwenden Sie \key{charge-hshift}{full}. -\begin{beispiel} - \ch[charge-hshift=0pt]{C5H11+} \ch[charge-hshift=0pt]{SO4^2-} \\ - \ch{C5H11+} \ch{SO4^2-} \\ - \ch[charge-hshift=1ex]{C5H11+} \ch[charge-hshift=1ex]{SO4^2-} \\ - \ch[charge-hshift=full]{C5H11+} \ch[charge-hshift=full]{SO4^2-} -\end{beispiel} - -Wenn Sie nicht wollen, dass die Ladungen im Textmodus gesetzt werden, können Sie -zum Mathematikmodus schalten: -\begin{beispiel} - \ch{M^x+} \ch{SO4^2-} \\ - \chemsetup[chemformula]{charge-style = math} - \ch{M^x+} \ch{SO4^2-} -\end{beispiel} - -Die Option \key{subscript-vshift} kann verwendet werden, um die vertikale Verschiebung -der Tiefstellungen anzupassen.\secidx[Tiefstellungen!Verschiebung]{Summenformeln} -\begin{beispiel} - \ch{H2SO4} \ch{Na3PO4} \\ - \chemsetup[chemformula]{subscript-vshift=.5ex} - \ch{H2SO4} \ch{Na3PO4} \\ - \chemsetup[chemformula]{subscript-vshift=-.2ex} - \ch{H2SO4} \ch{Na3PO4} -\end{beispiel} - -Sie können außerdem wählen, in welchem Modus die Tiefstellungen gesetzt werden: -\begin{beispiel} - \ch{A_nB_m} \ch{H2SO4} \\ - \chemsetup[chemformula]{subscript-style = math} - \ch{A_nB_m} \ch{H2SO4} -\end{beispiel} - -Mit der Option \key{adduct-space} kann der Leerraum links und rechts des -Addukt-Zeichens festgesetzt werden. -\begin{beispiel} - \ch{Na3PO3*H2O} \\ - \chemsetup[chemformula]{adduct-space=.2em} - \ch{Na3PO3*H2O} -\end{beispiel} - -Die Länge der Bindungen ändern:\secidx[Bindungen!Laenge@Länge]{Summenformeln} -\begin{beispiel} - \chemsetup[chemformula]{bond-length=4mm}% - single: \ch{CH3-CH3} \\ - double: \ch{CH2=CH2} \\ - triple: \ch{CH+CH} -\end{beispiel} - -Sie können ebenfalls den Abstand zwischen Atom und Bindung einstellen: -\begin{beispiel} - \ch{H-H + N+N + O=O} \\ - \ch[bond-offset=1pt]{H-H + N+N + O=O} -\end{beispiel} -\secidx*{Summenformeln} - -\section{Spezielle Input-Typen}\secidx{Spezielle Input-Typen} -Es gibt einige \enquote{spezielle Input-Typen}. - -\subsection{Single-Token Input}\secidx[Single-Token Input]{Spezielle Input-Typen} -Die erste Sorte besteht nur aus einem Token, nämlich einem der folgenden: -\begin{beschreibung} - \befehl{ch}{ + } \ch{+} Erstellt ein Plus-Zeichen zwischen Formeln mit Leerraum - links und rechts:\\ - \cmd{ch}{2 Na + Cl2} \ch{2 Na + Cl2} - \befehl{ch}{ v } \ch{v} Zeichen für eine Fällung/Niederschlag: \cmd{ch}{BaSO4 v} \ch{BaSO4 v} - \befehl{ch}{ \lstinline+^+ } \ch{^} Zeichen für entweichendes Gas: \cmd{ch}{\lstinline=H2 ^=} \ch{H2 ^} -\end{beschreibung} - -Der Leerraum links und rechts des Plus kann mit einer Option angepasst werden: -\begin{beschreibung} - \option{plus-space}{<skip>} Eine elastische Länge. Default = - \code{.3em plus .1em minus .1em} -\end{beschreibung} -\begin{beispiel} - \ch{A + B}\\ - \ch[plus-space=4pt]{A + B} -\end{beispiel} - -\subsection{Optionen Input}\secidx[Optionen Input]{Spezielle Input-Typen} -Manchmal möchte man eine Option nur auf einen Teil einer, sagen wir, Reaktion -anwenden. Natürlich können Sie \cmd{ch} mehrmals verwenden. -\begin{beispiel} - \ch{H2O +}\textcolor{red}{\ch{H2SO4}}\ch{-> H3O+ + HSO4-} \\ - \ch{H2O +}\ch[subscript-vshift=2pt]{H2SO4}\ch{-> H3O+ + HSO4-} -\end{beispiel} -Das unterbricht allerdings die Eingabe im Quelltext und \emph{könnte} die Abstände -beeinflussen. Deshalb gibt es eine Alternative: -\begin{beschreibung}\makeatletter - \befehl{ch}{ @\{<options>\} } Die angegebenen Optionen sind \emph{nur} aktiv bis - nach der \emph{nächsten} Summenformel. -\end{beschreibung} -\begin{beispiel} - \ch{H2O +}\textcolor{red}{\ch{H2SO4}}\ch{-> H3O+ + HSO4-} \\ - \ch{H2O + @{format=\color{red}} H2SO4 -> H3O+ + HSO4-} \\ - oder nat\"urlich:\\ - \ch{H2O + \textcolor{red}{H2SO4} -> H3O+ + HSO4-}\\[1em] - \ch{H2O +}\ch[subscript-vshift=2pt]{H2SO4}\ch{-> H3O+ + HSO4-} \\ - \ch{H2O + @{subscript-vshift=2pt} H2SO4 -> H3O+ + HSO4-} -\end{beispiel} -\achtung{Das ist ein experimentelles Feature und mag in zukünftigen Versionen -fallen gelassen werden.} -\secidx*{Spezielle Input-Typen} - -\section{Geschützter Input}\secidx{Geschützter Input}[Geschuetzter Input] -In manchen Fällen kann es wünschenswert sein, \chemformula davon abzuhalten, den -Input zu verarbeiten. Es gibt zwei Möglichkeiten, das zu tun. - -\subsection{Text}\label{ssec:text}\secidx[text]{Geschützter Input}[Geschuetzter Input] -Wenn Sie etwas zwischen \lstinline+" "+ oder \lstinline+' '+ setzen, dann wird der -Input als normaler Text behandelt, abgesehen davon, das Leerzeichen nicht erlaubt -sind und mit \lstinline+~+ eingegeben werden müssen. -\begin{beschreibung} - \Befehl{ch}{ "<escaped text>" } - \Befehl{ch}{ '<escaped text>' } -\end{beschreibung} -\begin{beispiel} - \ch{"\ox{2,Ca}" O} \\ - \ch{"\ldots\," Na + "\ldots\," Cl2 -> "\ldots\," NaCl} \\ - \ch{'A~->~B'} -\end{beispiel} -In vielen Fällen wird das nicht nötig sein. Aber wenn Sie Schwierigkeiten haben, -einen Befehl innerhalb von \cmd{ch} zu verwenden, versuchen Sie die geschützte -Methode. - -\subsection{Mathematik}\secidx[math]{Geschützter Input}[Geschuetzter Input] -Wenn Sie speziell Mathematik-Input haben, setzen Sie ihn einfach zwischen -\lstinline+$ $+. Der Output unterscheidet sich vom geschützten Text (abgesehen -von Mathe-Layout) darin, dass ihm ein Leerraum folgt. Der Grund dafür ist, dass -ich davon ausgehe, das Mathe-Eingabe vor allem an Stelle von stöchiometrischen -Faktoren eingesetzt wird. -\begin{beschreibung} - \Befehl{ch}{ \string$<escaped math>\string$ } - \Befehl{ch}{ \string\(<escaped math>\string\) } -\end{beschreibung} -\begin{beispiel} - escaped text: \ch{"$x$" H2O} \\ - escaped math: \ch{$x$ H2O} \\ - also escaped math: \ch{\(x\) H2O} \\ - \ch{$2n$ Na + $n$ Cl2 -> $2n$ NaCl} -\end{beispiel} - -Der Leerraum, der nach dem geschützen Mathe-Input ausgegeben wird, kann angepasst -werden. -\begin{beschreibung} - \option{math-space}{<skip>} Eine elastische Länge. Default = - \code{.1667em plus .0333em minus .0117em} -\end{beschreibung} -\begin{beispiel} - \ch{$2n$ Na + $n$ Cl2 -> $2n$ NaCl} \\ - \chemsetup[chemformula]{math-space=.25em} - \ch{$2n$ Na + $n$ Cl2 -> $2n$ NaCl} \\ - \ch{$A->B$} -\end{beispiel} -\secidx*{Geschützter Input}[Geschuetzter Input] - -\section{Pfeile}\label{sec:arrows}\secidx{Pfeile} -\subsection{Pfeiltypen}\secidx[Typen]{Pfeile} -Pfeile werden auf die gleiche intuitive Weise eingegeben wie bei \paket{mhchem}. -Es gibt eine Reihe verschiedener Typen: -\begin{beschreibung} - \befehl{ch}{ -> } \ch{->} Standardpfeil nach rechts - \befehl{ch}{ <- } \ch{<-} Standardpfeil nach links - \befehl{ch}{ -/> } \ch{-/>} reagiert nicht (rechts) - \befehl{ch}{ </- } \ch{</-} reagiert nicht (links) - \befehl{ch}{ <-> } \ch{<->} Mesomerie-Pfeil - \befehl{ch}{ <> } \ch{<>} Reaktion in beide Richtungen - \befehl{ch}{ == } \ch{==} stöchiometrische Gleichung - \befehl{ch}{ <=> } \ch{<=>} Gleichgewichts-Pfeil - \befehl{ch}{ \lstinline+<=>>+ } \ch{<=>>} Gleichgewicht liegt rechts - \befehl{ch}{ \lstinline+<<=>+ } \ch{<<=>} Gleichgewicht liegt links - \befehl{ch}{ <o> } \ch{<o>} Isolobal-Pfeil -\end{beschreibung} -Diese Pfeile werden alle mit \TikZ gezeichnet. -\begin{beispiel} - \ch{H2 + Cl2 -> 2 HCl} \\ - \ch{H2O + CO3^2- <=> OH- + HCO3-} \\ - \ch{A <- B} \\ - \ch{\{[CH2=CH-CH2]- <-> [CH2-CH=CH2]- \}} \\ - \ch{A <> B} \\ - \ch{H+ + OH- <=>> H2O} \\ - \ch{2 NO2 <<=> N2O4} -\end{beispiel} - -\subsection{Beschriftung}\secidx[Beschriftung]{Pfeile} -Die Pfeile haben zwei optionale Argumente für Beschriftungen. -\begin{beschreibung} - \Befehl{ch}{ ->[<above>][<below>] } -\end{beschreibung} -\begin{beispiel} - \ch{A ->[a] B} \\ - \ch{A ->[a][b] B} \\ - \ch{A ->[\SI{100}{\celsius}] B} -\end{beispiel} -Der Beschriftungstext kann unabhängig vom Pfeil verarbeitet werden. Das Rezept -ist einfach: verwenden Sie Leerzeichen. -\begin{beispiel} - \ch{A ->[H2O] B} \\ - \ch{A ->[ H2O ] B} \\ - \ch{A ->[ "\ox{2,Ca}" F2 ] B} \\ - \ch{A ->[$\Delta$,~ \[H+ \]] B} -\end{beispiel} - -Mit den Leerzeichen verarbeitet \chemformula den Teil zwischen den Klammern als -normalen Input. Die Pfeile lesen ihre Argumente erst \emph{nach} der Verarbeitung. -Wie Sie sehen können \enquote{wachsen} die Pfeile mit der Länge der Beschriftungen. -Konstant bleibt der überstehende Teil. Im letzten Beispiel können Sie außerdem -sehen, dass eckige Klammern in den Pfeilargumenten durch \cmd{[} und \cmd{]} -erstellt werden sollten. Außerhalb von \cmd{ch} behalten Sie natürlich ihre -übliche Bedeutung. Diese Befehle sind nötig da die sonst übliche Methode (Verstecken -der Klammern in geschweiften Klammern) aufgrund der Art, wie \cmd{ch} sein Argument -liest, nicht funktioniert. -\begin{beispiel} - \ch{A ->[a] B} \\ - \ch{A ->[ab] B} \\ - \ch{A ->[abc] B} \\ - \ch{A ->[abc~abc] B} \\ - % needs the `chemfig' package: - \setatomsep{15pt} - \ch{A ->[ "\chemfig{-[:30]-[:-30]OH}" ] B} \\ - \ch{A ->[[]] B} vs. \ch{A ->[\[\]] B} -\end{beispiel} - -\subsection{Anpassung}\secidx[Anpassung]{Pfeile} -Mit folgenden Optionen können Sie das Erscheinungsbild der Pfeile anpassen: -\begin{beschreibung} - \option{arrow-offset}{<dim>} Die Länge, die ein Pfeil links und rechts über die - Beschriftung hinausragt. Die Länge eines leeren Pfeils beträgt zwei mal - \code{arrow-offset}. Eine \TeX-Länge. Default = \code{.75em} - \option{arrow-min-length}{<dim>} Die minimale Länge, die ein Pfeil hat, wenn - zwei mal \key{arrow-offset} plus die Breite der Beschriftung nicht größer ist. - Default = \code{0pt} - \option{arrow-yshift}{<dim>} Verschiebt einen Pfeil nach oben (positiver Wert) - oder nach unten (negativer Wert). Eine \TeX-Länge. Default = \code{0pt} - \option{arrow-ratio}{<factor>} Das Verhältnis der Pfeillängen der ver unbalancierten - Gleichgewichtspfeile. \code{.4} würde bedeuten, dass der kürzere Pfeil $0.4$ - mal so lang ist, wie der längere Pfeil. Default = \code{.6} - \option{compound-sep}{<dim>} Der Leerraum zwischen Formeln und Pfeilen. Eine - \TeX-Länge. Default = \code{.5em} - \option{label-offset}{<dim>} Der Leerraum zwischen Pfeilen und ihrer Beschriftung. - Eine \TeX-Länge. Default = \code{2pt} - \option{label-style}{<font command>} Die relative Schriftgröße der Beschriftung. - Default = \lstinline+\footnotesize+ -\end{beschreibung} - -Der folgende Code zeigt die Effekte der verschiedenen Optionen auf den -\lstinline+<=>>+ Pfeil: -\begin{beispiel} - Standard: \ch{A <=>>[x][y] B} \\ - l\"anger: \ch[arrow-offset=12pt]{A <=>>[x][y] B} \\ - h\"oher: \ch[arrow-yshift=2pt]{A <=>>[x][y] B} \\ - ausbalancierter: \ch[arrow-ratio=.8]{A <=>>[x][y] B} \\ - Bschriftung weiter weg: \ch[label-offset=4pt]{A <=>>[x][y] B} \\ - gr\"o\ss erer Abstand zu Formeln: \ch[compound-sep=2ex]{A <=>>[x][y] B} \\ - kleinere Beschriftungen: \ch[label-style=\tiny]{A <=>[x][y] B} -\end{beispiel} - -\subsection{Pfeiltypen bearbeiten}\label{sec:arrows_modify}\secidx[Typen!bearbeiten]{Pfeile} -Die Pfeile wurden mit dem Befehl -\begin{beschreibung} - \Befehl{DeclareChemArrow}{<tokens>}\ma{<tikz>} -\end{beschreibung} -definiert. \ma{<tokens>} sind die Zeichen, die ersetzt werden mit dem tatsächlichen -Pfeilcode. Der Hauptpfeil wurde \zB via -\begin{beispiel}[code only] - \DeclareChemArrow{->}{\draw[-cf] (cf_arrow_start) -- (cf_arrow_end) ;} -\end{beispiel} -definiert. Wenn Sie selbst Pfeile definieren wollen, benötigen Sie grundlegende -Kenntnisse von \TikZ\footnote{Bitte lesen Sie dazu das \textsf{pgfmanual}.}. - -Es gibt einige vordefinierte Koordinaten, die Sie verwenden können und sollten: -\begin{description} - \item[\code{(cf\_arrow\_start)}] Der Pfeilanfang. - \item[\code{(cf\_arrow\_end)}] Das Pfeilende. - \item[\code{(cf\_arrow\_mid)}] Die Pfeilmitte. - \item[\code{(cf\_arrow\_mid\_start)}] Der Anfang des kürzeren Pfeils in Typen - wie \lstinline+<=>>+. - \item[\code{(cf\_arrow\_mid\_end)}] Das Ende des kürzeren Pfeils in Typen wie - \lstinline+<=>>+. - \item[\code{cf}, \code{left cf}, \code{right cf}] Für \chemformula definierte - Pfeilspitzen. -\end{description} -\begin{beispiel} - \DeclareChemArrow{.>}{\draw[-cf,dotted,red] (cf_arrow_start) -- (cf_arrow_end);} - \DeclareChemArrow{n>}{\draw[-cf] (cf_arrow_start) .. controls ([yshift=3ex]cf_arrow_mid) .. (cf_arrow_end);} - \ch{A .> B} \ch{A .>[a][b] B} \ch{A n> B} -\end{beispiel} -Wenn Sie einen existierenden Pfeil umdefinieren möchten, können Sie folgende zwei -Befehle verwenden: -\begin{beschreibung} - \Befehl{RenewChemArrow}{<tokens>}\ma{<tikz>} - \Befehl{ShowChemArrow}{<tokens>} -\end{beschreibung} -Der zweite zeigt Ihnen die bestehende Definition, der erste definiert den bestehenden -Pfeil neu. -\begin{beispiel} - \texttt{\ShowChemArrow{->}} \\ - \RenewChemArrow{->}{\draw[->,red] (cf_arrow_start) -- (cf_arrow_end) ;} - \texttt{\ShowChemArrow{->}} \\ - \ch{A -> B} -\end{beispiel} -\secidx*{Pfeile} - -\section{Text unter Formeln}\secidx{Text unter Formeln} -\subsection{Syntax}\secidx[syntax]{Text unter Formeln} -\chemformula hat eine eingebaute Syntax, um Text unter Formeln zu schreiben. Sie -funktioniert ähnlich wie die optionalen Argumente der Pfeile. -\begin{beschreibung} - \Befehl{ch}{ !(<name>)( <formula> ) } -\end{beschreibung} -Wenn ein Ausrufezeichen von einem Paar von Klammern gefolgt wird, macht \chemformula folgendes: -\begin{beispiel} - \ch{!(ethanol)( CH2CH2OH )} -\end{beispiel} - -Das gleiche, was für die Pfeilbeschriftungen gilt, gilt auch hier: wenn Sie Leerzeichen -lassen, werden die verschiedenen Teile entsprechend ihres Typs verarbeitet, bevor -der Text unter die Formel geschrieben wird. -\begin{beispiel} - \ch{!(water)(H2O)} \quad - \ch{!( "\textcolor{blue}{water}" )( H2O )} \quad - \ch{!( $2n-1$ )( H2O )} \quad - \ch{!( H2O )( H2O )} \quad - \ch{!(oxonium)( H3O+ )} -\end{beispiel} - -Wenn Sie aus irgendeinem Grund ein Ausrufezeichen wollen, \emph{ohne} dass es -einen Text unter eine Formel setzt, müssen Sie lediglich darauf achten, dass ihm -keine Klammern folgen. -\begin{beispiel} - \ch{H2O~(!)} \\ - \ch{A!{}()} -\end{beispiel} - -\subsection{Anpassung}\secidx[Anpassung]{Text unter Formeln} -\chemformula stellt zwei Optionen bereit, um den Text anzupassen: -\begin{beschreibung} - \option{name-format}{<commands>} Das Ausgabeformat des Textes. Das kann beliebiger - Input sein. Default = \lstinline+\scriptsize\centering+ - \option{name-width}{<dim>|auto} Die Breite der Box, in die der Text geschrieben wird. - \code{auto} erkennt die Breite der Beschriftung und setzt die Box auf diese Breite. - Default = \code{auto} -\end{beschreibung} -\begin{beispiel} - \ch{!(S\"aure)( H2SO4 ) -> B} \\ - \ch[name-format=\sffamily\small]{!(S\"aure)( H2SO4 ) -> B} \\ - \ch[name-format=\scriptsize N:~]{!(S\"aure)( H2SO4 ) -> B} \\ - \ch[name-width=3em,name-format=\scriptsize\raggedright]{!(S\"aure)( H2SO4 ) -> B} -\end{beispiel} -\secidx*{Text unter Formeln} - -\section{Format und Schrift}\label{sec:format}\secidx{Format und Schrift} -Als Standardeinstellung nimmt \chemformula keine Veränderungen am Output der Formeln -vor. Lassen Sie uns einen Nonsens-Input nehmen, der alle \chemformula-Features zeigt: -\begin{beispiel} - \newcommand*\sample{\ch{H2C-C+C-CH=CH+ + CrO4^2- <=>[x][y] 2.5 Cl^{-.} + 3_1/2 Na*OH_{(aq)} + !(name)( A^n ) "\LaTeXe"}} - \sample -\end{beispiel} -\newcommand*\sample{\ch{H2C-C+C-CH=CH+ + CrO4^2- <=>[x][y] 2.5 Cl^{-.} + 3_1/2 Na*OH_{(aq)} + !(name)( A^n ) "\LaTeXe"}} -Nun ändern wir verschiedene Aspekte der Schrift und sehen, was passiert: -\begin{beispiel}[below] - \sffamily Hallo \sample \\ - \ttfamily Hallo \sample \normalfont \\ - \bfseries Hallo \sample \normalfont \\ - \itshape Hallo \sample -\end{beispiel} -Wie Sie sehen, adaptieren die meisten Features die Einstellungen des umliegenden Fonts. - -Wenn Sie dieses Default-Verhalten oder das Default-Format ändern wollen, können -Sie diese Option verwenden: -\begin{beschreibung} - \option{format}{<anything>} Fügt zu Beginn des \cmd{ch}-Befehls beliebigen Code - ein. -\end{beschreibung} -\begin{beispiel} - % blau und serifenlos: - \definecolor{newblue}{rgb}{.1,.1,.5}\chemsetup[chemformula]{format=\color{newblue}\sffamily} - \sffamily Hallo \sample \\ - \ttfamily Hallo \sample \normalfont \\ - \bfseries Hallo \sample \normalfont \\ - \itshape Hallo \sample -\end{beispiel} - -Sie können ebenfalls speziell die Schriftfamilie, Schriftserie und Schriftform des -Output setzen: -\begin{beschreibung} - \option{font-family}{<family>} Ändert die Schriftfamilie des Output mit: - \lstinline+\fontfamily{<family>}\selectfont+. - \option{font-series}{<series>} Ändert die Schriftserie des Output mit: - \lstinline+\fontseries{<series>}\selectfont+. - \option{font-shape}{<shape>} Ändert die Schriftform des Output mit: - \lstinline+\fontshape{<shape>}\selectfont+. -\end{beschreibung} -\begin{beispiel} - % immer fett: - \chemsetup[chemformula]{font-series=bx} - Hallo \sample \\ - \sffamily Hallo \sample \normalfont \\ - \chemsetup[chemformula]{font-family=lmr,font-series=m} Hallo \sample \normalfont \\ - \itshape Hallo \sample -\end{beispiel} - -Wenn Sie \XeLaTeX\ oder \LuaLaTeX\ verwenden und das Paket \paket{fontspec} geladen -haben, können Sie die Schrift von \chemformula auch damit ändern: -\begin{beschreibung} - \Option{font-spec}{\{<font>\}} oder mit Optionen - \Option{font-spec}{\{[<options>]<font>\}} -\end{beschreibung} -\begin{beispiel} - \chemsetup[chemformula]{font-spec={Linux Biolinum O}} \sample \\ - \chemsetup[chemformula]{font-spec={[Color=darkgray]Augie}} \sample \\ - \chemsetup[chemformula]{font-spec={Tipbrush Script}} \sample \\ - \chemsetup[chemformula]{font-spec={Latin Modern Sans}} \sample \\ - \bfseries \sample \normalfont \\ - \chemsetup[chemformula]{font-spec={Feathergraphy Decoration}} \sample -\end{beispiel} -\secidx*{Format und Schrift} - -\section{Verwendung in Mathematik-Umgebungen}\secidx{Mathematik-Umgebungen} -Der Befehl \cmd{ch} kann in Mathematikumgebungen eingesetzt werden. Er erkennt -\lstinline+\\+ und \lstinline+&+ und reicht sie weiter. Sie können aber die -optionalen Argumente von \lstinline+\\+ nicht innerhalb von \cmd{ch} verwenden. -\begin{beispiel} - \begin{align} - \ch{ - H2O & ->[a] H2SO4 \\ - Cl2 & ->[x][y] CH4 - } - \end{align} - \begin{align*} - \ch{ - RNO2 &<=>[ + e- ] RNO2^{-.} \\ - RNO2^{-.} &<=>[ + e- ] RNO2^2- - } - \end{align*} -\end{beispiel} -\secidx*{Mathematik-Umgebungen} - -\section{Weitere Beispiele} -Dieser Abschnitt zeigt weitere Beispiele für die Verwendung von \chemformula, auch -im Zusammenspiel mit \chemmacros' \code{reaction}-Umgebungen. - -\begin{beispiel} - \begin{reaction}[Synthese von Alkanen] - !(Synthesegas)( $n$ CO + $(2n+1)$ H2 ) ->[\SI{200}{\celsius}][\[CoNi\]] C_{$n$}H_{$2n+2$} + $n$ H2O - \end{reaction} -\end{beispiel} - -\begin{beispiel} - \begin{reactions*} - "a)" && CH4 + Cl2 &-> CH3Cl + HCl && "{\small Chlormethan/Methylchlorid}" \\ - "b)" && CH3Cl + Cl2 &-> CH2Cl2 + HCl && "{\small Dichlormethan/Methylenchlorid}" \\ - "c)" && CH2Cl2 + Cl2 &-> CHCl3 + HCl && "{\small Trichlormethan/Chloroform}" \\ - "d)" && CHCl3 + Cl2 &-> CCl4 + HCl && "{\small Tetrachlormethan/Tetrachlorkohlenstoff}" - \end{reactions*} -\end{beispiel} - -\begin{beispiel} - \chemsetup[ox]{parse=false}\ch{"\ox{\delm,C}" -{} "\ox{\delp,M}" \qquad ( <-> "\ox{\delp,C}" -{} "\ox{\delm,Br}" )} \\ - \ch[adduct-space=0pt]{X. + .Y <=> X-Y + Bindungsenergie} \\ - \ch[name-format=\normalsize]{!(\State{H}{f}\qquad)() !(\textcolor{red}{??})( CH4\gas{} ) + !(\num{0})( 2 O2\gas{} ) -> !(\num{-94.3})( CO2\gas{} ) + !(\num{-57.9})( H2O\lqd{} ) + !(\num{-192.1})( "\State{H}" )} -\end{beispiel} - -\begin{beispiel} - \begin{reactions*} - CH3MgBr + "\ox*{1,Cu}" X &-> "\glqq" CH3 "\ox*{1,Cu}\grqq" + MgBrX "\qquad X~$=$~Br,I,CN" \\ - 2 MeLi + CuI &-> !(Dimethylcuprat~(Gilmann-Cuprat))( Me2CuLi ) + Li - \end{reactions*} -\end{beispiel} - -\begin{beispiel} - % needs `chemfig' - \begin{reactions*} - H3C-CH3 + Cl2 &->[$\Delta$][$h\nu$] H3CCH2Cl + HCl & &"\Enthalpy{-27.1}" \\ - H3C-CH3 + "\Lewis{0.,Cl}" &-> H3CCH2 "\Lewis{0.,\vphantom{H}}" + HCl & &"\Enthalpy{-5.0}" \\ - H3C-CH2 "\Lewis{0.,\vphantom{H}}" + Cl2 &-> H3CCH2Cl + "\Lewis{0.,Cl}" & &"\Enthalpy{-23.0}" - \end{reactions*} -\end{beispiel} - -Das folgende Beispiel zeigt, wie das kürzen von Formeln erreicht werden -kann\footnote{Inspiriert durch eine Frage auf TeX.SE: \url{http://tex.stackexchange.com/q/30118/5049}}. -\begin{beispiel} - % needs `cancel' - \begin{align*} - \centering - \ch{\cancel{HCOOH\aq} + H2O\lqd{} &<=> H3O^+\aq{} + \cancel{HCOO^-\aq}} \\ - \ch{\cancel{HCOO^-\aq} + H2O\lqd{} &<=> \cancel{HCOOH\aq} + OH^-\aq}\\[-1ex] - \cline{1-2} - \ch{H2O\lqd{} + H2O\lqd{} &<=> H3O^+\aq{} + OH^-\aq} - \end{align*} -\end{beispiel} -\secidx*{CHEMFORMULA} - -\part{\texorpdfstring{\Ghsystem}{ghsystem}}\label{part:ghsystem}\secidx{GHSYSTEM} -\section{Setup} -Alle Optionen von \ghsystem gehören dem Modul \textcolor{module}{\code{ghsystem}} -an. Sie können also mit -\begin{beschreibung} - \Befehl{chemsetup}[ghsystem]{<options>} oder - \Befehl{chemsetup}{ghsystem/<option1>,ghsystem/<option2>} -\end{beschreibung} -eingestellt werden. Sie können den entsprechenden Befehlen auch lokal als optionales -Argument mitgegeben werden. - -\section{Die Gefahren- (H) und Sicherheitssätze (P) aufrufen}\secidx{Gefahren- und Sicherheitssätze}[Gefahren- und Sicherheitssaetze] -\subsection{Einfacher Aufruf}\secidx[Aufruf]{GHSYSTEM} -Der prinzipielle Aufruf ist einfach: -\begin{beschreibung} - \Befehl{ghs}[<options>]{<type>}\ma{<number>} - \Befehl[ghsa]{ghs*}[<options>]{<type>}\ma{<number>} -\end{beschreibung} -Es gibt drei Typen von Sätzen: \code{h}, \code{euh} und \code{p}. Das \ma{<type>} -Argument ignoriert Groß- und Kleinschreibung. -\begin{beispiel} - \ghs{h}{200} \\ - \ghs{H}{224} \\ - \ghs{euh}{001} \\ - \ghs{Euh}{202} \\ - \ghs{p}{201} -\end{beispiel} - -Die gesternte Version versteckt die Nummer und liefert nur den Satz. Wenn Sie den -Satz verstecken und nur die Nummer ausgeben wollen, können Sie dises Option -verwenden: -\begin{beschreibung} - \Option{hide}{\default{true}|false} -\end{beschreibung} - -Außerdem gibt es eine Option, mit der der Output angepasst werden kann. -\begin{beschreibung} - \option{space}{<space command>} Leerraum zwischen \code{<type>} und \code{<number>}. -\end{beschreibung} -\begin{beispiel} - \ghs{h}{200} \\ - \ghs[space=\,]{h}{200} \\ - \ghs*{h}{200} \\ - \ghs[hide]{h}{200} -\end{beispiel} - -\subsection{Sätze mit Platzhaltern}\secidx[Platzhalter]{GHSYSTEM} -Einige Sätze verwenden Platzhalter. Es gibt vier Stück: -\begin{itemize} - \item \textit{\textless Expositionsweg angeben, sofern schlüssig belegt ist, dass - diese Gefahr bei keinem anderen Expositionsweg besteht\textgreater} - \item \textit{\textless konkrete Wirkung angeben, sofern bekannt\textgreater} - \item \textit{\textless oder alle betroffenen Organe nennen, sofern bekannt\textgreater} - \item \textit{\textless Name des sensibilisierenden Stoffes\textgreater} -\end{itemize} - -Außer dem letzten, der ersetzt werden muss, sind sie in der Voreinstellung versteckt. -Durch die Option -\begin{beschreibung} - \option{fill-in}{\default{true}|false} Default = \code{false} -\end{beschreibung} -können sie sichtbar gemacht werden. -\begin{beispiel}[below] - \ghs{h}{340} \\ - \ghs[fill-in]{h}{340} \\ - \ghs{h}{360} \\ - \ghs[fill-in]{h}{360} \\ - \ghs{h}{370} \\ - \ghs[fill-in]{h}{370} \\ - \ghs{euh}{208} \\ - \ghs[fill-in]{euh}{208} -\end{beispiel} - -Mit folgenden Optionen können die Platzhalter ersetzt werden: -\begin{beschreibung} - \option{exposure}{<text>} Expositions-Platzhalter - \option{effect}{<text>} Effekt-Platzhalter - \option{organs}{<text>} Organ-Platzhalter - \option{substance}{<text>} Substanz-Platzhalter -\end{beschreibung} -\begin{beispiel} - \ghs[exposure=So werden Sie der Gefahr ausgesetzt.]{h}{340} \\ - \ghs[effect=Das sind die Effekte]{h}{360} \\ - \ghs[organs=dieses Organ]{h}{370} \\ - \ghs[substance=Substanz]{euh}{208} -\end{beispiel} - -\subsection{Sätze mit Lücken}\secidx[Saetze mit Luecken@Sätze mit Lücken]{GHSYSTEM} -Manche Sätze haben Lücken: -\begin{beispiel} - \ghs{p}{301} \\ - \ghs{p}{401} \\ - \ghs{p}{411} \\ - \ghs{p}{413} -\end{beispiel} - -Mit den folgenden Optionen können diese Lücken gefüllt werden: -\begin{beschreibung} - \option{text}{<text>} Füllt \enquote{unsichtbare Lücke}, die einem Doppelpunkt - folgt. - \option{dots}{<text>} Füllt Lücke, die durch \enquote{\ldots} angezeigt wird. - \option{C-temperature}{<num>} Füllt Celsius-Temperatur. - \option{F-temperature}{<num>} Füllt Fahrenheit-temperatur. - \option{kg-mass}{<num>} Füllt Kilogramm-Masse. - \option{lbs-mass}{<num>} Füllt Pfund-Masse. -\end{beschreibung} -\begin{beispiel} - \ghs[text=Arzt kontaktieren!]{p}{301} \\ - \ghs[dots=hier]{p}{401} \\ - \ghs[C-temperature=50, F-temperature=122]{p}{411} \\ - \ghs[kg-mass=5.0, lbs-mass=11, C-temperature=50, F-temperature=122]{p}{413} -\end{beispiel} - -\subsection{Kombinierte Sätze}\secidx[kombinierte Saetze@kombinierte Sätze]{GHSYSTEM} -Es existieren einige Kombinationen von Sätzen. Sie werden mit einem \code{+} -zwischen den Nummern eingegeben: -\begin{beispiel}[below] - \ghs{p}{235+410} \\ - \ghs{p}{301+330+331} -\end{beispiel} - -Beachten Sie, dass sie nur offizielle Kombinationen eingeben können. \emph{Sie -können die Sätze nicht frei kombinieren}. -\secidx*{Gefahren- und Sicherheitssätze}[Gefahren- und Sicherheitssaetze] - -\section{Piktogramme}\secidx{Piktogramme} -\subsection{Die Bilder} -Das GHS beinhaltet einige Piktogramme: - -\ghspic{explos} \ghspic{flame} \ghspic{flame-O} \ghspic{bottle} \ghspic{acid} -\ghspic{skull} \ghspic{exclam} \ghspic{health} \ghspic{aqpol} - -Der Befehl -\begin{beschreibung} - \Befehl{ghspic}[<options>]{<name>} -\end{beschreibung} -lädt sie. Tabelle~\ref{tab:ghs_pictograms} zeigt alle Piktogramme und ihre Dateinamen. -Genauer: sie zeigt die Namen, die beim Befehl \cmd{ghspic} verwendet werden müssen. -Tatsächlich heißen sie \lstinline=ghsystem_<name>.<filetype>=, wobei \code{<filetype>} -entweder \code{eps}, \code{pdf}, \code{jpg} oder \code{png} ist, siehe auch -Abschnitt~\ref{ssec:picture_type}. -\begin{beispiel} - \ghspic{skull} -\end{beispiel} - -Wenn Ihnen die Defaultgröße nicht gefällt, können Sie die Option -\begin{beschreibung} - \option{scale}{<factor>} Skaliert das Piktogramm. Default = \code{1} -\end{beschreibung} -verwenden. Tatsächlich sind die Bilder recht groß. Die Voreinstellung (Faktor = -$1$) skaliert die Bilder auf ein Zwanzigstel ihrer echten Größe. -\begin{beispiel} - \ghspic[scale=2]{skull} -\end{beispiel} - -Wenn Sie spezielle \lstinline=\includegraphics=-Optionen verwenden wollen, \zB -das Piktogramm rotieren, verwenden Sie diese Option: -\begin{beschreibung} - \Option{includegraphics}{\{<includegraphics keyvals>\}} -\end{beschreibung} -\begin{beispiel} - \ghspic[includegraphics={angle=90}]{skull} -\end{beispiel} - -\begin{longtable}{>{\ttfamily}ll>{\ttfamily}ll} - \caption{Alle verfügbaren GHS Piktogramme.\label{tab:ghs_pictograms}} \\ - \toprule - \normalfont\bfseries Name & \bfseries Piktogramm & \normalfont\bfseries Name & \bfseries Piktogramm \\ - \midrule\endfirsthead - \toprule - \normalfont\bfseries Name & \bfseries Piktogramm & \normalfont\bfseries Name & \bfseries Piktogramm \\ - \midrule\endhead - \bottomrule\endfoot - explos & \ghspic{explos} & explos-1 & \ghspic{explos-1} \\ - explos-2 & \ghspic{explos-2} & explos-3 & \ghspic{explos-3} \\ - explos-4 & \ghspic{explos-4} & explos-5 & \ghspic{explos-5} \\ - explos-6 & \ghspic{explos-6} & & \\ - flame & \ghspic{flame} & flame-2-white & \ghspic{flame-2-white} \\ - flame-2-black & \ghspic{flame-2-black} & flame-3-white & \ghspic{flame-3-white} \\ - flame-3-black & \ghspic{flame-3-black} & flame-4-1 & \ghspic{flame-4-1} \\ - flame-4-2 & \ghspic{flame-4-2} & flame-4-3-white & \ghspic{flame-4-3-white} \\ - flame-4-3-black & \ghspic{flame-4-3-black} & flame-5-2-white & \ghspic{flame-5-2-white} \\ - flame-5-2-black & \ghspic{flame-5-2-black} & & \\ - flame-O & \ghspic{flame-O} & flame-O-5-1 & \ghspic{flame-O-5-1} \\ - bottle & \ghspic{bottle} & bottle-2-black & \ghspic{bottle-2-white} \\ - bottle-2-white & \ghspic{bottle-2-black} & & \\ - acid & \ghspic{acid} & acid-8 & \ghspic{acid-8} \\ - skull & \ghspic{skull} & skull-2 & \ghspic{skull-2} \\ - skull-6 & \ghspic{skull-6} & & \\ - exclam & \ghspic{exclam} & & \\ - health & \ghspic{health} & & \\ - aqpol & \ghspic{aqpol} & & \\ -\end{longtable} - -\subsection{Der Bildtyp hängt von der Engine ab}\label{ssec:picture_type} -Sie wissen vermutlich, dass Sie nicht jeden Bildtyp mit jeder Compiler-Engine -verwenden können. \pdfTeX{} im \acs{dvi}-Modus verlangt \code{eps}-Dateien, -während \pdfTeX{} im \acs{pdf}-Modus, \XeTeX{} und \LuaTeX{} \code{eps}-Dateien -in \code{pdf}-Dateien konvertieren, vorausgesetzt, der Anwender hat Schreibrechte -in dem Verzeichnis, in dem die Bilder gespeichert sind. - -Die letztgenannten können jedoch \code{jpg}- und \code{png}-Dateien ohne Schwierigkeiten -einbinden, während \pdfTeX{} im \acs{dvi}-Modus das nicht kann. - -Um das Problem zu lösen, testet \ghsystem, welche Engine verwendet wird und falls -es \pdfTeX{} ist, in welchem Modus es verwendet wird. Dann wird entwder das -\code{eps}- oder das \code{png}-Bild für die Piktogramme verwendet. Sie können -den Bildtyp über die Option -\begin{beschreibung} - \Option{pic-type}{eps|pdf|jpg|png} -\end{beschreibung} -jedoch frei wählen. -\secidx*{Piktogramme} - -\section{Verfügbare Sprachen}\label{sec:ghsystem_language} -Bis jetzt sind die H- und P-Sätze nur auf deutsch, englisch und italienisch verfügbar. -Das Paket reagiert auf die \chemmacros Option \key[option]{german}, erkennt aber -die Spracheinstellung von \paket{babel} oder \paket{polyglossia} (noch) nicht. - -Sie können die Sprache auch explizit wählen. -\begin{beschreibung} - \Option{language}{english|german|italian} -\end{beschreibung} -\begin{beispiel} - \ghs{h}{201} - - \chemsetup[ghsystem]{language=english} - \ghs{h}{201} -\end{beispiel} - -Ich werde in irgendwann in der Zukunft weitere Sprachen implementieren. Das kann -aber eine Weile dauern. Wenn Sie gerne zu \ghsystem beisteuern möchten und die -Sätze in einer anderen Sprache tippen wollen, kontaktieren Sie mich\footnote{% -\href{mailto:contact@mychemistry.eu}{contact@mychemistry.eu}} gerne. Ich stelle -Ihnen dann eine Template-Datei, ein \acs{pdf} mit den offiziellen Übersetzungen -sowie jede weitere Hilfe, die sie benötigen. - -\section{Liste aller Sätze}\secidx{Liste aller Sätze}[Liste aller Saetze] -Wenn Sie gerne alle Sätze auf\-listen wollen, können Sie -\begin{beschreibung} - \Befehl{ghslistall}[<options>] -\end{beschreibung} -verwenden. - -Dieser Befehl erstellt eine Tabelle aller Sätze mit der \lstinline=longtable=-Umgebung -des \paket{longtable} Pakets. Ihr Erscheinungsbild kann mit den folgenden Optionen -angepasst werden. -\begin{beschreibung} - \option{table-head-number}{<text>} Default = \code{Nummer} - \option{table-head-text}{<text>} Default = \code{Satz} - \option{table-next-page}{<text>} Default = \code{weiter auf der nächsten Seite} - \option{table-caption}{<text>} \code{<text>} in \lstinline=\caption{<text>}=. - Default = \code{All H, EUH, and P Statements.} - \option{table-caption-short}{<text>} \code{<short>} in - \lstinline=\caption[<short>]{<text>}=. - \option{table-label}{<text>} Das Label, mit dem man auf die Tabelle \lstinline=\ref= - und ähnlichen Befehlen verweisen kann. Default = \code{tab:ghs-hp-statements} - \option{table-row-sep}{<dim>} Abstand zwischen den Zeilen. Eine \TeX-Länge. - Default = \code{3pt} - \option{table-rules}{\default{default}|booktabs|none} Der Stil der horizontalen - Linien in der Tabelle. \code{default} verwendet \lstinline=\hline=, \code{booktabs} - verwendet \lstinline=\toprule=, \lstinline=\midrule= und \lstinline=\bottomrule=. - Dieser Wert benötigt das \paket{booktabs} Paket, dass Sie dann einbinden müssen. - Default = \code{default} - \option{table-top-head-rule}{\default{default}|booktabs|none} Explizites Ändern - der Linie. Default = \code{default} - \option{table-head-rule}{\default{default}|booktabs|none} Explizites Ändern der - Linie. Default = \code{default} - \option{table-foot-rule}{\default{default}|booktabs|none} Explizites Ändern der - Linie. Default = \code{default} - \option{table-last-foot-rule}{\default{default}|booktabs|none} Explizites Ändern - der Linie. Default = \code{default} -\end{beschreibung} - -Der folgende Code zeigt, wie Tabelle~\ref{tab:ghs-hp-statements} erzeugt wurde: -\begin{beispiel}[code only] - \ghslistall[fill-in,table-rules=booktabs] -\end{beispiel} - -\ghslistall[fill-in,table-rules=booktabs] -\secidx*{Liste aller Sätze}[Liste aller Saetze]\secidx*{GHSYSTEM} - -\appendix -\part{Anhang}\index{ANHANG@\textbf{ANHANG}} -\addsec{Übersicht über die Optionen und Anpassungsmöglichkeiten}\label{sec:overview}\secidx{Übersicht über die Optionen (chemmacros)}[Uebersicht ueber die Optionen] -\minisec{Optionen} -In der folgenden Tabelle werden alle Optionen aufgelistet, die \chemmacros bietet. -Alle Optionen, die einem Modul angehören, können mit -\begin{beschreibung} - \Befehl{chemsetup}[<module>]{<options>} oder - \Befehl{chemsetup}{<module>/<options>} gesetzt werden. -\end{beschreibung} -Manche Optionen können ohne Wert verwendet werden. Dann wird der \default{unterstrichene} -Wert verwendet. Die Optionen der Module \code{\textcolor{module}{chemformula}} und -\code{\textcolor{module}{ghssystem}} werden hier nicht extra aufgelistet. -\small -\begin{longtable}{>{\ttfamily\color{key}\hspace{5mm}}l>{\ttfamily\color{module}}l>{\ttfamily}l>{\ttfamily}ll} - \toprule - \normalfont\normalcolor\bfseries Option & - \normalfont\normalcolor\bfseries Modul & - \normalfont\bfseries Werte & - \normalfont\bfseries Default & \\ - \midrule - \endhead - \bottomrule - \endfoot - \multicolumn{5}{l}{Paketoptionen:} \\ - bpchem & option & \default{true}|false & false & Seite~\pageref{key:option_bpchem} \\ - circled & option & formal|\default{all}|none & formal & Seite~\pageref{key:option_circled} \\ - circletype & option & chem|math & chem & Seite~\pageref{key:option_circletype} \\ - cmversion & option & 1|2|bundle & bundle & Seite~\pageref{key:option_cmversion} \\ - ghsystem & option & \default{true}|false & true & Seite~\pageref{key:option_ghsystem} \\ - iupac & option & auto|restricted|strict & auto & Seite~\pageref{key:option_iupac} \\ - language & option & <language> & english & Seite~\pageref{key:option_language} \\ - method & option & chemformula|mhchem & chemformula & Seite~\pageref{key:option_method} \\ - Nu & option & chemmacros|mathspec & chemmacros & Seite~\pageref{key:option_Nu} \\ - strict & option & \default{true}|false & false & Seite~\pageref{key:option_strict} \\ - synchronize & option & \default{true}|false & false & Seite~\pageref{key:option_synchronize} \\ - greek & option & math|textgreek|\default{upgreek} & upgreek & Seite~\pageref{key:option_greek} \\ - xspace & option & \default{true}|false & true & Seite~\pageref{key:option_xspace} \\ - \multicolumn{5}{l}{\cmd{ba}, \cmd{Nu}:} \\ - elpair & particle & \default{dots}|dash/false & false & Seite~\pageref{key:particle_elpair} \\ - \multicolumn{5}{l}{IUPAC-Befehle:} \\ - break-space & iupac & <dim> & .01em & Seite~\pageref{key:iupac_break-space} \\ - bridge-number & iupac & sub|super & sub & Seite~\pageref{key:iupac_bridge-number} \\ - cip-kern & iupac & <dim> & .075em & Seite~\pageref{key:iupac_cip-kern} \\ - coord-use-hyphen & iupac & \default{true}|false & true & Seite~\pageref{key:iupac_coord-use-hyphen} \\ - hyphen-pre-space & iupac & <dim> & .01em & Seite~\pageref{key:iupac_hyphen-pre-space} \\ - hyphen-post-space & iupac & <dim> & -.03em & Seite~\pageref{key:iupac_hyphen-post-space} \\ - \multicolumn{5}{l}{\cmd{DeclareChemLatin}:} \\ - format & latin & <anything> & \lstinline=\itshape= & Seite~\pageref{key:latin_format} \\ - \multicolumn{5}{l}{\cmd{pch}, \cmd{mch}, \cmd{fpch}, \cmd{fmch}:} \\ - append & charges & \default{true}|false & false & Seite~\pageref{key:charges_append} \\ - \multicolumn{5}{l}{acid/base:} \\ - p-style & acid-base & slanted|italics|upright & upright & Seite~\pageref{key:acid-base_p-style} \\ - \multicolumn{5}{l}{\cmd{ox}:} \\ - align & ox & center|right & center & Seite~\pageref{key:ox_align} \\ - parse & ox & \default{true}|false & true & Seite~\pageref{key:ox_parse} \\ - roman & ox & \default{true}|false & true & Seite~\pageref{key:ox_roman} \\ - pos & ox & top|super|side & top & Seite~\pageref{key:ox_pos} \\ - explicit-sign & ox & \default{true}|false & false & Seite~\pageref{key:ox_explicit-sign} \\ - decimal-marker & ox & comma|point & point & Seite~\pageref{key:ox_decimal-marker} \\ - \multicolumn{5}{l}{\cmd{OX}, \cmd{redox}:} \\ - dist & redox & <dim> & .6em & Seite~\pageref{key:redox_dist} \\ - sep & redox & <dim> & .2em & Seite~\pageref{key:redox_sep} \\ - \multicolumn{5}{l}{\cmd{Enthalpy}, \cmd{Entropy}, \cmd{Gibbs}:} \\ - exponent & & <anything> & \cmd{standardstate} & Seite~\pageref{key:none_exponent} \\ - delta & & <anything>/false & & Seite~\pageref{key:none_delta} \\ - subscript & & left|right & & Seite~\pageref{key:none_subscript} \\ - unit & & <unit> & & Seite~\pageref{key:none_unit} \\ - \multicolumn{5}{l}{\cmd{DeclareChemState}, \cmd{RenewChemState}:} \\ - exponent & & <anything> & \cmd{standardstate} & Seite~\pageref{key:none_exponent} \\ - delta & & <anything>|false & & Seite~\pageref{key:none_delta} \\ - subscript & & <anything> & & Seite~\pageref{key:none_subscript} \\ - subscript-left & & \default{true}|false & & Seite~\pageref{key:none_subscript-left} \\ - \multicolumn{5}{l}{\cmd{State}:} \\ - exponent & state & <anything> & \cmd{standardstate} & Seite~\pageref{key:state_exponent} \\ - delta & state & <anything>|false & & Seite~\pageref{key:state_delta} \\ - subscript-left & state & \default{true}|false & & Seite~\pageref{key:state_subscript-left} \\ - \multicolumn{5}{l}{\cmd{NMR}, \env{spectroscopy}{}:} \\ - unit & nmr & <unit> & \cmd{mega}\cmd{hertz} & Seite~\pageref{key:nmr_unit} \\ - nucleus & nmr & \{<num>,<atom symbol>\} & \{1,H\} & Seite~\pageref{key:nmr_nucleus} \\ - format & nmr & <anything> & & Seite~\pageref{key:nmr_format} \\ - pos-number & nmr & side/sub & side & Seite~\pageref{key:nmr_pos-number} \\ - coupling-unit & nmr & <unit> & \lstinline+\hertz+ & Seite~\pageref{key:nmr_coupling-unit} \\ - parse & nmr & \default{true}|false & true & Seite~\pageref{key:nmr_parse} \\ - delta & nmr & <anything> & & Seite~\pageref{key:nmr_delta} \\ - list & nmr & \default{true}|false & false & Seite~\pageref{key:nmr_list} \\ - list-setup & nmr & & siehe Text & Seite~\pageref{key:nmr_list-setup} \\ - use-equal & nmr & \default{true}|false & false & Seite~\pageref{key:nmr_use-equal} \\ - \multicolumn{5}{l}{\cmd{DeclareChemReaction}:} \\ - star & & \default{true}|false & false & Seite~\pageref{key:none_star} \\ - arg & & \default{true}|false & false & Seite~\pageref{key:none_arg} \\ - list-name & reaction & <anything> & List of reactions & Seite~\pageref{key:reaction_list-name} \\ - list-entry & reaction & <anything> & Reaction & Seite~\pageref{key:reaction_list-entry} \\ - \multicolumn{5}{l}{\cmd{mhName}:} \\ - align & mhName & <alignment> & \cmd{centering} & Seite~\pageref{key:mhName_align} \\ - format & mhName & <commands> & & Seite~\pageref{key:mhName_format} \\ - fontsize & mhName & <fontsize> & \cmd{tiny} & Seite~\pageref{key:mhName_fontsize} \\ - width & mhName & <dim> & & Seite~\pageref{key:mhName_width} \\ - \multicolumn{5}{l}{phases:} \\ - pos & phases & side|sub & side & Seite~\pageref{key:phases_pos} \\ - space & phases & <dim> & .1333em & Seite~\pageref{key:phases_space} \\ - \multicolumn{5}{l}{\cmd{newman}:} \\ - angle & newman & <angle> & 0 & Seite~\pageref{key:newman_angle} \\ - scale & newman & <factor> & 1 & Seite~\pageref{key:newman_scale} \\ - ring & newman & <tikz> & & Seite~\pageref{key:newman_ring} \\ - atoms & newman & <tikz> & & Seite~\pageref{key:newman_atoms} \\ - back-atoms & newman & <tikz> & & Seite~\pageref{key:newman_back-atoms} \\ - \multicolumn{5}{l}{\cmd{orbital} \ttfamily <type> = s|p|sp|sp2|sp3:} \\ - phase & orbital/<type> & +|- & + & Seite~\pageref{key:orbital_phase} \\ - scale & orbital/<type> & <factor> & 1 & Seite~\pageref{key:orbital_scale} \\ - color & orbital/<type> & <color> & black & Seite~\pageref{key:orbital_color} \\ - angle & orbital/<type> & <angle> & 90 & Seite~\pageref{key:orbital_angle} \\ - half & orbital/p & \default{true}|false & false & Seite~\pageref{key:orbital_half} \\ - overlay & orbital & \default{true}|false & false & Seite~\pageref{key:orbital_overlay} \\ - opacity & ornital & <num> & 1 & Seite~\pageref{key:orbital_opacity} -\end{longtable} -\normalsize - -\minisec{Anpassungsbefehle} -Eine ganze Reihe von Befehlen wurde vorgestellt, mit denen die Möglichkeiten von -\chemmacros erweitert werden können. Sie werden hier noch einmal aufgelistet. -\begin{beschreibung} - \befehl{DeclareChemArrow} Neuen Pfeil definieren, siehe - Seite~\pageref{cmd:DeclareChemArrow}. - \befehl{RenewChemArrow} Bestehende Pfeile verändern. - \befehl{DeclareChemBond} Eine neue Bindung definieren, siehe - Seite~\pageref{cmd:DeclareChemBond}. - \befehl{RenewChemBond} Eine Bindung umdefinieren. - \befehl{DeclareChemBondAlias} Ein Alias zu einer existierenden Bindung definieren. - \befehl{DeclareChemIUPAC} Neuen IUPAC-Befehl definieren, siehe - Seite~\pageref{cmd:DeclareChemIUPAC}. - \befehl{RenewChemIUPAC} IUPAC-Befehl umdefinieren. - \befehl{DeclareChemLatin} Neue lateinische Ausdrücke definieren, siehe - Seite~\pageref{cmd:DeclareChemLatin}. - \befehl{RenewChemLatin} Lateinische Ausdrücke umdefinieren. - \befehl{DeclareChemNMR} Neuen NMR-Befehl definieren, siehe - Seite~\pageref{cmd:DeclareChemNMR}. - \befehl{RenewChemNMR} NMR-Befehl umdefinieren. - \befehl{DeclareChemParticle} Neues Teilchen definieren, siehe - Seite~\pageref{cmd:DeclareChemParticle}. - \befehl{RenewChemParticle} Teilchen umdefinieren. - \befehl{DeclareChemPhase} Neuen Phasenbefehl definieren, siehe - Seite~\pageref{cmd:DeclareChemPhase}. - \befehl{RenewChemPhase} Phasenbefehl umdefinieren. - \befehl{DeclareChemReaction} Neue Reaktionsumgebung definieren, siehe - Seite~\pageref{cmd:DeclareChemReaction}. - \befehl{DeclareChemState} Neue Zustandsgröße definieren, siehe - Seite~\pageref{cmd:DeclareChemState}. - \befehl{RenewChemState} Zustandsgröße umdefinieren. -\end{beschreibung} -\secidx*{Übersicht über die Optionen (chemmacros)}[Uebersicht ueber die Optionen] - -\addsec{Vorschläge und Bugreports} -Feedback zu \chemmacros, \chemformula und \ghsystem ist hochwillkommen! Wenn Sie -Vorschläge haben, Ihnen Features fehlen oder Ihnen Bugs auf\-fallen, zögern Sie -nicht, mich zu kontaktieren. Wenn Sie irgendwelche Fehler finden, seien es chemische, -falsche Dokumentation \usw, wäre ich über eine kurze E-Mail\footnote{\href{% -mailto:contact@mychemistry.eu}{contact@mychemistry.eu}} dankbar. - -Wenn Sie einen Bug finden, wäre es am besten, Sie schickten mir ein minimales Beispiel, -mit dem ich den Bug reproduzieren kann. Sie können ihn auch als \enquote{Issue} -auf \url{https://bitbucket.org/cgnieder/chemmacros/} melden. - -Vielen Dank an alle, die mir schon Feedback zukommen ließen, vor allem (in -alphabetischer Reihenfolge): -\begin{itemize} - \item Peter Cao - \item Christina Lüdigk - \item Dr.\ Paul King - \item Jonas Rivetti (Besonderen Dank für seine Übersetzung der H- und P-Sätze - ins Italienische!) - \item Christoph Schäfer - \item Timo Stein -\end{itemize} - -\printbibliography[title=Quellen] - -{\catcode`\^=11 \catcode`\#=11 \catcode`\|=11 -\printindex} - -\end{document}
\ No newline at end of file |