summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/beamer/beamerthemeexamplebase.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/latex/beamer/beamerthemeexamplebase.tex')
-rw-r--r--Master/texmf-dist/doc/latex/beamer/beamerthemeexamplebase.tex51
1 files changed, 51 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/latex/beamer/beamerthemeexamplebase.tex b/Master/texmf-dist/doc/latex/beamer/beamerthemeexamplebase.tex
new file mode 100644
index 00000000000..9915f74e038
--- /dev/null
+++ b/Master/texmf-dist/doc/latex/beamer/beamerthemeexamplebase.tex
@@ -0,0 +1,51 @@
+% $Header: /cvsroot/latex-beamer/latex-beamer/doc/beamerthemeexamplebase.tex,v 1.5 2004/10/07 20:53:04 tantau Exp $
+
+% Copyright 2004 by Till Tantau <tantau@users.sourceforge.net>.
+%
+% This file can be redistributed and/or modified under
+% the terms of the GNU Public License, version 2.
+
+\beamertemplatesolidbackgroundcolor{black!5}
+\beamertemplatetransparentcovered
+
+\usepackage{times}
+
+\title{There Is No Largest Prime Number}
+\subtitle{With an introduction to a new proof technique}
+
+\author[Euklid]{Euklid of Alexandria}
+\institute[Univ. Alexandria]{Department of Mathematics\\ University of Alexandria}
+\date[ISPN '80]{27th International Symposium on Prime Numbers, --280}
+
+\begin{document}
+
+\begin{frame}
+ \titlepage
+ \tableofcontents
+\end{frame}
+
+\section{Results}
+\subsection{Proof of the Main Theorem}
+
+\begin{frame}<1>
+ \frametitle{There Is No Largest Prime Number}
+ \framesubtitle{The proof uses \textit{reductio ad absurdum}.}
+
+ \begin{theorem}
+ There is no largest prime number.
+ \end{theorem}
+ \begin{proof}
+ \begin{enumerate}
+ % The strange way of typesetting math is to minimize font usage
+ % in order to keep the file sizes of the examples small.
+ \item<1-| alert@1> Suppose $p$ were the largest prime number.
+ \item<2-> Let $q$ be the product of the first $p$ numbers.
+ \item<3-> Then $q$\;+\,$1$ is not divisible by any of them.
+ \item<1-> Thus $q$\;+\,$1$ is also prime and greater than $p$.\qedhere
+ \end{enumerate}
+ \end{proof}
+\end{frame}
+
+\end{document}
+
+