summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/generic
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/generic')
-rw-r--r--Master/texmf-dist/doc/generic/xlop/LISEZ.MOI8
-rw-r--r--Master/texmf-dist/doc/generic/xlop/READ.ME (renamed from Master/texmf-dist/doc/generic/xlop/README)6
-rw-r--r--Master/texmf-dist/doc/generic/xlop/XLOP0335
-rw-r--r--Master/texmf-dist/doc/generic/xlop/fr-user.pdfbin283832 -> 0 bytes
-rw-r--r--Master/texmf-dist/doc/generic/xlop/history.txt7
-rw-r--r--Master/texmf-dist/doc/generic/xlop/xlop-doc-fr.pdfbin0 -> 336088 bytes
-rw-r--r--Master/texmf-dist/doc/generic/xlop/xlop-doc-fr.tex (renamed from Master/texmf-dist/doc/generic/xlop/fr-user.tex)277
-rw-r--r--Master/texmf-dist/doc/generic/xlop/xlop-doc.pdfbin0 -> 317393 bytes
-rw-r--r--Master/texmf-dist/doc/generic/xlop/xlop-doc.tex2271
9 files changed, 2443 insertions, 161 deletions
diff --git a/Master/texmf-dist/doc/generic/xlop/LISEZ.MOI b/Master/texmf-dist/doc/generic/xlop/LISEZ.MOI
index 01be2e2d666..ae96e144eac 100644
--- a/Master/texmf-dist/doc/generic/xlop/LISEZ.MOI
+++ b/Master/texmf-dist/doc/generic/xlop/LISEZ.MOI
@@ -31,12 +31,14 @@ Installation
------------
L'extension étant prévue pour pouvoir fonctionner aussi bien sous TeX
que sous LaTeX, les recommandations de la TDS indiquent que l'endroit
-le plus correct pour placer ces fichiers (xlop.tex et xlop.sty) est :
-[texmf]/tex/generic/xlop/.
+le plus correct pour placer le fichier xlop.tex est
+ [texmf]/tex/generic/xlop/
+et celui pour placer le fichier xlop.sty est
+ [texmf]/tex/latex/xlop/
Il reste les fichiers de documentation (LISEZ.MOI, README,
history.txt, manual.sty et fr-user.*). Leur place normale devrait
-être [texmf]/doc/generic/xlop/.
+être [texmf]/doc/xlop/.
Il reste à rafraichir la base en lançant la commande texhash (ou
mktexlsr, ou ...) et tout devrait être opérationnel.
diff --git a/Master/texmf-dist/doc/generic/xlop/README b/Master/texmf-dist/doc/generic/xlop/READ.ME
index c87c71c828a..83b40a26c55 100644
--- a/Master/texmf-dist/doc/generic/xlop/README
+++ b/Master/texmf-dist/doc/generic/xlop/READ.ME
@@ -26,8 +26,10 @@ Distribution consists of files:
Installation
------------
xlop can be used under TeX or LaTeX. Thus, TDS recommendations are
-that the best place to put files (xlop.tex and xlop.sty) is
-[texmf]/tex/generic/xlop/.
+that the best place to put the file xlop.tex is
+ [texmf]/tex/generic/xlop/
+and that the best place to put xlop xlop.sty is
+ [texmf]/tex/latex/xlop/
For documentation files (README, history.txt, manual.sty, and
fr-user.*), best place should be [texmf]/doc/generic/xlop/.
diff --git a/Master/texmf-dist/doc/generic/xlop/XLOP03 b/Master/texmf-dist/doc/generic/xlop/XLOP03
deleted file mode 100644
index b742723029a..00000000000
--- a/Master/texmf-dist/doc/generic/xlop/XLOP03
+++ /dev/null
@@ -1,35 +0,0 @@
-xlop is still under construction. In fact, xlop 0.2 is just a beta
-release; xlop 0.3 will provide:
-
- * Full redefinition about internal number representation (faster
- and less memory space).
- * Some macros improved (\opprint, \opdisplay, \opput, ...).
- * New parameters (format=normal/sci/eng, carrymul,
- hyphen (multiline for very long numbers), fine division and
- multiplication control, ...)
- * Calculation on basis 2 to 36
- e.g. \opadd[style=text]{"2"11010}{"2"10010} will display
- 11010 + 10010 = 101100
- * Support language (languages defined in babel, oldrussian, and
- babylon) e.g. \div[displayintermediary=all]{33}{2} displays
-
- language= french english
-
- 33 | 2 16.5
- -2 |--- ______
- --- | 16,5 2 ) 33
- 13 | 20
- -12 | --
- ---- | 13
- 10 | 12
- -10 | ----
- --- | 1.0
- 0 | 1.0
- ---
- 0
- Language define decimal separator, thousand separator, type of
- displayed multiplication, type of displayed division (Author knows
- 3 types of multiplications and 2 types of divisions) .
- * High level functions (exp, log, sin, asin, sinh, argsin, (idem
- for cos, tan, and cot), sqrt, root).
- * last but not least, english documentation!
diff --git a/Master/texmf-dist/doc/generic/xlop/fr-user.pdf b/Master/texmf-dist/doc/generic/xlop/fr-user.pdf
deleted file mode 100644
index 4e30e3edc6c..00000000000
--- a/Master/texmf-dist/doc/generic/xlop/fr-user.pdf
+++ /dev/null
Binary files differ
diff --git a/Master/texmf-dist/doc/generic/xlop/history.txt b/Master/texmf-dist/doc/generic/xlop/history.txt
index 97ef8d73097..19a54ce28b9 100644
--- a/Master/texmf-dist/doc/generic/xlop/history.txt
+++ b/Master/texmf-dist/doc/generic/xlop/history.txt
@@ -50,6 +50,11 @@
Correction d'un bogue sur la division
4 janvier 2006 version 0.22
-------------
+--------------
Correction d'un bogue sur l'affichage de la multiplication posée
+16 décembre 2010 version 0.23
+---------------
+ Correction d'un bogue sur la division
+ Ajout de \opexport
+ Manuel en anglais
diff --git a/Master/texmf-dist/doc/generic/xlop/xlop-doc-fr.pdf b/Master/texmf-dist/doc/generic/xlop/xlop-doc-fr.pdf
new file mode 100644
index 00000000000..b24c2aaca8c
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/xlop/xlop-doc-fr.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/generic/xlop/fr-user.tex b/Master/texmf-dist/doc/generic/xlop/xlop-doc-fr.tex
index 9a8a37be4fc..4dfffa85b5e 100644
--- a/Master/texmf-dist/doc/generic/xlop/fr-user.tex
+++ b/Master/texmf-dist/doc/generic/xlop/xlop-doc-fr.tex
@@ -1,6 +1,7 @@
\documentclass[12pt]{report}
\usepackage{manual}
\usepackage[frenchb]{babel}
+\usepackage[autolanguage]{numprint}
\fvset{label=source}% français
\begin{document}
@@ -163,10 +164,10 @@ pouvoir réaliser des calculs complexes sous forme infixe :
\`A quelques exceptions près qui seront étudiées en temps voulu, les
macros de \package{xlop} peuvent éventuellement avoir un argument
optionnel entre crochets pour modifier localement la valeur des
-paramètres de fonctionnement, les autres arguments (obligatoires)
-étant des nombres. Les deux sections de ce chapitre décrivent en
-détail ce qu'est un nombre pour \package{xlop} et comment se servir
-de ses paramètres.
+paramètres de fonctionnement, les autres arguments (qui sont
+obligatoires) étant presque toujours des nombres. Les deux sections de
+ce chapitre décrivent en détail ce qu'est un nombre pour
+\package{xlop} et comment se servir des paramètres.
\section{Au début était le nombre}
\label{sec:Au début etait le nombre}
@@ -177,15 +178,15 @@ pencher sur la particularité de \package{xlop} qui est de pouvoir
manipuler des nombres de taille quelconque.
\index{nombre!taille}Pour être tout à fait précis, la taille théorique
-maximum d'un nombre est de $2^{31}-1$ chiffres. En pratique, cette
-limite ne pourra pas être atteinte pour deux raisons essentielles. La
-première est qu'une multiplication avec deux opérandes ayant $2^{25}$
-chiffres demanderait plus de $7\,000$ années de calcul sur
-l'ordinateur de l'auteur ! La seconde est beaucoup plus restrictive
-car elle est liée aux limites de taille des piles de \TeX{}. Voici un
-tableau indiquant une compilation sous \TeX{} avec une multiplication
-de deux opérandes de même taille sur une machine Linux, pentium~II~600
-et 256~Mo de RAM :
+maximum d'un nombre est de $2^{31}-1$ chiffres\index{nombre!limite}.
+En pratique, cette limite ne pourra pas être atteinte pour deux
+raisons essentielles. La première est qu'une multiplication avec deux
+opérandes ayant $2^{25}$ chiffres demanderait plus de $7\,000$ années
+de calcul sur l'ordinateur de l'auteur ! La seconde est beaucoup plus
+restrictive car elle est liée aux limites de taille des piles de
+\TeX{}. Voici un tableau indiquant une compilation sous \TeX{} avec
+une multiplication de deux opérandes de même taille sur une machine
+Linux, pentium~II~600 et 256~Mo de RAM :
\begin{center}
\begin{tabular}{|l|*{6}{c|}}
\hline
@@ -194,21 +195,19 @@ et 256~Mo de RAM :
\end{tabular}
\end{center}
Le \og crash \fg{} indiqué dans le tableau est dû au débordement de la
-table de hachage (hash table).
-\index{hash table}%
+table de hachage (hash table). \index{hash table}%
\index{depassement de capacite@dépassement de capacité}%
Sous \LaTeX{}, la limite avant crash sera plus réduite. D'autre part,
ces tests ont été effectués sur un fichier minimum : avec un document
source classique, cette limite sera un peu plus basse. Une autre
limite qui risque d'être atteinte relativement rapidement est la
-taille du spouleur (spool size).
-\index{spool size}%
+taille du spouleur (spool size). \index{spool size}%
Pour composer ce document qui contient un grand nombre d'appel aux
macros de \package{xlop}, l'auteur a augmenté la taille du spouleur
-à~$250\,000$ ($125\,000$ s'étant révélé insuffisante) en éditant la
-ligne \verb+pool_size+ du fichier \file{texmf.cnf}. De même, la table
-de hachage a dû être augmentée en stipulant la valeur \texttt{1000} au
-niveau de la ligne \verb+hash_extra+ du fichier \file{texmf.cnf}.
+de~$125\,000$ à~$250\,000$ en éditant la ligne \verb+pool_size+ du
+fichier \file{texmf.cnf}. De même, la table de hachage a dû être
+augmentée en stipulant la valeur \texttt{1000} au niveau de la ligne
+\verb+hash_extra+ du fichier \file{texmf.cnf}.
\subsection{Syntaxe}
\label{subsec:Syntaxe}
@@ -226,6 +225,7 @@ explications plus humaines suivront :
\*sep* \\
\sameline \textnormal{et} \*chiffre*
\end{syntaxBNF}
+\index{syntaxe BNF}\index{BNF}\index{grammaire BNF}
Le symbole \texttt{caractère} désigne presque n'importe quel caractère
accepté par \TeX{}. Les seules exceptions sont les caractères \verb+%+,
@@ -241,16 +241,18 @@ contrainte comme le montre le code suivant :
\opadd*{2}{2}{a/b_{^c}!&$}
\opprint{\prefix_{^c}!&$}
\end{SideBySideExample}
-On notera en particulier que \verb+a/b_{^c}!&$+ et
-\verb+\prefix_{^c}!&$+ représentent exactement le même nom, si
-\verb+\prefix+ a la définition adéquate évidemment. Cette possibilité
-d'obtenir un nom en utilisant des macros peut sembler inutile mais il
-n'en est rien. On peut ainsi réaliser des boucles avec des noms tels
-que \verb+r1+, \verb+r2+, \ldots, \verb+r<n>+ en utilisant le code
-\verb+r\the\cpt+ comme nom où \verb+cpt+ est un compteur (au sens
-\TeX{}, le mécanisme des compteurs avec \LaTeX{} empêche d'être aussi
-flexible). Nous verrons un exemple d'utilisation de cette forme à la
-section~\ref{sec:Creation d'operations complexes}
+\index{nom de nombre}%
+On notera que \verb+a/b_{^c}!&$+ et \verb+\prefix_{^c}!&$+
+représentent très exactement le même nom, si \verb+\prefix+ a la
+définition adéquate évidemment. Cette possibilité d'obtenir un nom en
+utilisant des macros peut sembler inutile mais il n'en est rien. On
+peut ainsi réaliser des boucles\index{boucle} avec des noms tels que
+\verb+r1+, \verb+r2+, \ldots, \verb+r<n>+ en utilisant le code
+\verb+r\the\cpt+ comme nom où \verb+cpt+ est un compteur au sens
+\TeX{}. Le mécanisme des compteurs avec \LaTeX{} donne un code un peu
+plus long avec \verb+r\number\value{cpt}+ où \verb+cpt+ est maintenant
+un compteur au sens \LaTeX. Nous verrons un exemple d'utilisation de
+cette forme à la section~\ref{sec:Creation d'operations complexes}
page~\pageref{sec:Creation d'operations complexes}.
\index{nombre!valide}En pratique, que signifient toutes ces règles ?
@@ -284,9 +286,10 @@ maintenant.\opset{decimalsepsymbol={,}}
\subsection{Symboles}
\label{subsecSymboles}
-Le paramètre \parameter{afterperiodsymbol} indique le symbole qui
-suit l'écriture d'un quotient en ligne lors d'une division avec
-recherche de période. Sa valeur par défaut est \verb+$\ldots$+
+Le paramètre \parameter{afterperiodsymbol} indique le symbole qui suit
+l'écriture d'un quotient en ligne lors d'une division avec recherche
+de période\index{division!période}. Sa valeur par défaut est
+\verb+$\ldots$+
Le paramètre \parameter{equalsymbol} indique le symbole utilisé pour
l'égalité. Sa valeur par défaut est \verb+$=$+. En réalité, le
@@ -345,10 +348,10 @@ l'opération et nous y reviendrons lors de la présentation des
différentes opérations.
Le paramètre \parameter{style} indique si l'opération doit être posée
-(valeur \verb+display+ qui est la valeur par défaut) ou bien être
-affichée en ligne (valeur \verb+text+). On reviendra sur ce paramètre
-lors de la présentation de la division car les possibilités sont alors
-un peu plus nombreuses.
+(avec la valeur \verb+display+ qui est la valeur par défaut) ou bien
+être affichée en ligne (valeur \verb+text+). On reviendra sur ce
+paramètre lors de la présentation de la division car les possibilités
+sont alors un peu plus nombreuses.
\begin{SideBySideExample}
\opadd[style=text]{45}{172}
\end{SideBySideExample}
@@ -393,12 +396,12 @@ possibles sont :
Dans les opérations posées, les chiffres sont placés dans des boîtes
de dimensions fixées. La largeur est donnée par le paramètre
\parameter{columnwidth} et la hauteur par le paramètre
-\parameter{lineheight}. La valeur par défaut de \texttt{lineheight}
-est \verb+\baselineskip+ ce qui fait que les lignes des opérations
-seront espacées, par défaut, comme les lignes d'un paragraphe. La
-valeur par défaut de \texttt{columnwidth} est de \texttt{2ex} car la
-largeur \og normale \fg{} des chiffres aurait donné des résultats peu
-lisibles.
+\parameter{lineheight}. La valeur par défaut du paramètre
+\texttt{lineheight} est \verb+\baselineskip+ ce qui fait que les
+lignes des opérations seront espacées, par défaut, comme les lignes
+d'un paragraphe. La valeur par défaut de \texttt{columnwidth} est de
+\texttt{2ex} car la largeur \og normale \fg{} des chiffres aurait
+donné des résultats peu lisibles.
\begin{SideBySideExample}
\opadd[columnwidth=0.5em]
{45.89}{127.5}
@@ -407,7 +410,7 @@ Ce piètre résultat est dû en partie au fait que la virgule est placé
dans une boîte dont la largeur est contrôlée par le paramètre
\parameter{decimalsepwidth} dont la valeur par défaut est nulle. Un
essai d'amélioration peut être effectué en donnant à ce paramètre la
-largeur \fg{} normale \og d'une virgule.
+largeur \og{} normale \fg d'une virgule.
\begin{SideBySideExample}
\opadd[columnwidth=0.5em,
decimalsepwidth=0.27778em]
@@ -433,8 +436,8 @@ publiques uniquement pour pouvoir les lire, pas pour les modifier.
Les deux paramètres suivants permettent de spécifier les largeurs des
traits horizontaux et verticaux tracés par \package{xlop}. Il s'agit
-des paramètres \parameter{hrulewidth} et \parameter{vrulewidth} dont
-la valeur par défaut est \texttt{0.4pt}.
+des deux paramètres \parameter{hrulewidth} et \parameter{vrulewidth}
+dont la valeur par défaut est \texttt{0.4pt}.
Ces traits sont composés sans perturber la grille, c'est-à-dire sans
ajouter d'espace vertical. Ainsi, avec des valeurs importantes pour
@@ -517,6 +520,7 @@ On peut également utiliser une macro à un paramètre comme style.
resultstyle.2=\hole]
{45.89}{127.5}
\end{SideBySideExample}
+\index{operation@opération!à trou}%
Lorsque le style est une macro, le chiffre constitue le dernier
argument de cette macro. Voici un exemple plus compliqué et utilisant
l'extension \package{pst-node} de la suite \package{pstricks} :
@@ -624,8 +628,8 @@ dans l'affichage posé.
\section{Soustraction}
\label{sec:soustraction}
La soustraction est gérée par la macro \macro{opsub}. La soustraction,
-lorsqu'elle est posée n'affiche que des nombres positifs. Cela va
-avoir pour conséquence d'affficher une addition lorsqu'une des
+lorsqu'elle est posée, n'affiche que des nombres positifs. Par
+conséquence cette macro va afficher une addition lorsqu'une des
opérandes est négative.
\begin{SideBySideExample}
\opsub{-245}{72}
@@ -650,9 +654,9 @@ Bien entendu, l'opération en ligne donnera le résultat exact.
Outre les paramètres généraux vus à la section~\ref{sec:Parametres de
- xlop}, \verb+\opsub+ est sensible aux paramètres
-\texttt{carrysub}, \texttt{lastcarry}, \texttt{offsetcarry},
-\texttt{deletezero} et \texttt{behaviorsub}.
+ xlop}, \verb+\opsub+ est sensible à \texttt{carrysub},
+\texttt{lastcarry}, \texttt{offsetcarry}, \texttt{deletezero} et
+\texttt{behaviorsub}.
Le paramètre \parameter{carrysub} est un paramètre booléen
qui indique si les retenues doivent être ou non présentes. Sa valeur
@@ -724,7 +728,6 @@ et l'opération ne sera pas effectuée.
\section{Multiplication}
\label{sec:Multiplication}
La multiplication est gérée par la macro \macro{opmul}.
-
Nous présenterons les paramètres \texttt{hfactor},
\texttt{displayintermediary}, \texttt{shiftintermediarysymbol},
\texttt{displayshiftintermediary} et finalement \texttt{deletezero},
@@ -855,7 +858,7 @@ puisqu'il n'y a même plus d'approximation !
Une division non euclidienne peut également s'arrêter sur la détection
de la survenue d'une période. Pour cela, il suffit de donner la valeur
-\texttt{true} au paramètre \parameter{period}.
+\texttt{true} au paramètre \parameter{period}\index{division!période}.
\begin{SideBySideExample}
\opdiv[period]{100}{3}
\end{SideBySideExample}
@@ -1071,7 +1074,7 @@ un style particulier aux chiffres individuels.
\end{SideBySideExample}
Les macros \macro{oplput} et \macro{oprput} permettent de placer un
-objet à un emplacement déterminé. La syntaxe de ces deux commandes ne
+objet à un emplacement déterminé. La syntaxe de ces commandes ne
suit pas celle des autres macros de \package{xlop} puisque
l'emplacement est indiqué sous forme de coordonnées entre
parenthèses. Les coordonnées utilisent \macro{opcolumnwidth} et
@@ -1108,6 +1111,27 @@ les traits verticaux. On rappelle que les paramètres
\oplput(1,0){T}\oplput(2,0){W}\oplput(3,0){O}
\end{CenterExample}
+La macro \macro{opexport}\refstepcounter{stuff}\label{macro-opexport}
+permet d'exporter un nombre dans une macro. Il s'agit d'un ajout de la
+version 0.23 qui est très utile pour faire dialoguer \package{xlop}
+avec le monde extérieur. Le premier argument est un nombre au sens
+\package{xlop}, c'est-à-dire soit un nombre écrit directement avec des
+chiffres, soit un nom de variable. Le nombre sera écrit sous une forme
+directement compréhensible par \TeX{} dans le deuxième argument qui
+doit donc être un nom de macro. On notera cependant que le séparateur
+décimal sera celui désigné par \parameter{decimalsepsymbol} débarrassé
+de ses éventuelles accolades.
+\begin{SideBySideExample}
+ \opmul*{5}{3.141592654}{C}
+ \opexport{C}{\fivepi}
+ \texttt{\meaning\fivepi}
+\end{SideBySideExample}
+
+On peut se servir de cette macro, par exemple, pour afficher des
+nombres calculés par \package{xlop} dans un tableau avec un alignement
+décimal ou encore pour initialiser un compteur ou une longueur (ne pas
+oublier l'unité dans ce dernier cas).
+
\section{Chiffres d'un nombre}
\label{sec:Chiffres d'un nombre}
Les macros \macro{opwidth}, \macro{opintegerwidth} et
@@ -1138,9 +1162,11 @@ du nombre passé en argument.
\end{SideBySideExample}
Les macros \macro{integer} et \macro{opdecimal} donnent respectivement
-la partie entière et la partie décimale d'un nombre. Le premier
-argument est le nombre à traiter et le second est la variable qui
-contiendra le résultat.
+la partie entière et la partie décimale d'un nombre.
+\index{nombre!partie entière}\index{partie entière}%
+\index{nombre!partie décimale}\index{partie décimale}%
+Le premier argument est le nombre à traiter et le second est la
+variable qui contiendra le résultat.
\begin{SideBySideExample}
\opcopy{-37.69911}{a}%
\opinteger{a}{ia}%
@@ -1190,7 +1216,7 @@ Pour des raisons techniques, \package{xlop} donne des définitions
globales aux six tests précédents. Ceux-ci ne seront donc pas protégés
par les groupes. Comme ces tests sont utilisés par un grand nombre de
macros de \package{xlop}, une conséquence pratique est qu'il faut
-\textbf{toujours} réaliser les tests \verb+\ifop...+ immédiatement
+\emph{toujours} réaliser les tests \verb+\ifop...+ immédiatement
après le \macro{opcmp}, ou, du moins, avant toute autre utilisation de
macros de \package{xlop} sous peine de bogues éventuels difficiles à
comprendre !
@@ -1227,16 +1253,18 @@ Les macros qui nous restent à voir proviennent soit de commandes
utilisées de façon interne et qu'il aurait été dommage de ne pas
rendre publiques, soit de demandes d'utilisateurs.
-Les macros utilisées de façon interne sont \macro{opgcd} qui donne le
-pgcd de deux nombres et \macro{opdivperiod} qui donne la longueur de
+Les macros utilisées de façon interne sont \macro{opgcd}\index{pgcd}
+qui donne le pgcd de deux nombres et
+\macro{opdivperiod}\index{division!période} qui donne la longueur de
la période d'un quotient de deux nombres. Pour des raisons
d'efficacité, ces macros n'utilisent pas les nombres de \package{xlop}
mais des nombres directement accessibles à \TeX{}. Cela a pour
conséquence que les nombres passés en paramètres dans les deux
-premiers arguments ne devront pas excéder \texttt{2147483647} pour
-\macro{opgcd} et \texttt{214748364} pour \macro{opdivperiod}. Un
-message d'avertissement rappellera à l'ordre en cas de dépassement. Le
-résultat sera stocké dans la variable indiqué en troisième paramètre.
+premiers arguments ne devront pas dépasser la valeur
+\texttt{2147483647} pour \macro{opgcd} et \texttt{214748364} pour
+\macro{opdivperiod}. Un message d'avertissement rappellera à l'ordre
+en cas de dépassement. Le résultat sera stocké dans la variable
+indiqué en troisième paramètre.
Il y aura également quelques vérifications sur les deux premiers
paramètres. Un pgcd ne peut pas avoir d'argument nul et le calcul de
@@ -1262,16 +1290,16 @@ trouve :
de longueur $\opprint{p}$.
\end{SideBySideExample}
-Les macros \macro{opcastingoutnines} et \macro{opcastingoutelevens}
-vont permettre de composer des preuves par neuf et par onze.
-L'extension \package{xlop} ne propose pas directement ces compositions
-puisqu'elles nécessitent des traits en diagonal et donc le recours à
-d'autres extensions. En réalité, la macro \macro{opcastingoutnines} va
-faire la somme modulo~9 des chiffres du premier argument et stockera
-le résultat dans le second argument tandis que la macro
-\macro{opcastingoutelevens} fera la somme des chiffres de rangs
-impairs, la somme des chiffres de rangs pairs puis la différence
-modulo~11 de ces deux sommes.
+Les macros \macro{opcastingoutnines}\index{preuve!par neuf} et
+\macro{opcastingoutelevens}\index{preuve!par onze} vont permettre de
+composer des preuves par neuf et par onze. L'extension \package{xlop}
+ne propose pas directement ces compositions puisqu'elles nécessitent
+des traits en diagonal et donc le recours à d'autres extensions. En
+réalité, la macro \macro{opcastingoutnines} va faire la somme modulo~9
+des chiffres du premier argument et stockera le résultat dans le
+second argument tandis que la macro \macro{opcastingoutelevens} fera
+la somme des chiffres de rangs impairs, la somme des chiffres de rangs
+pairs puis la différence modulo~11 de ces deux sommes.
\begin{SideBySideExample}
\newcommand\castingoutnines[3]{%
\opcastingoutnines{#1}{cna}%
@@ -1299,16 +1327,15 @@ Les deux macros suivantes sont très simples. Il s'agit de
sauvegarde dans la variable indiquée par le second argument et de
\macro{opabs} qui réalise la même chose mais avec la valeur absolue.
-La macro \macro{oppower} permet de calculer des puissances entières de
-nombres. Cette macro demande trois paramètres, le troisième paramètre
-étant la variable recevant le résultat du premier paramètre à la
-puissance le deuxième paramètre. Le deuxième paramètre doit être un
-nombre entier. Lorsque le premier argument est nul, si le deuxième
-paramètre est nul, le résultat sera~1, s'il est strictement positif,
-le résultat sera nul et s'il est strictement négatif il y aura une
-erreur et aucun résultat ne sera fourni. Il n'y a aucune limitation
-sur le premier paramètre ce qui peut entraîner quelques problèmes. Par
-exemple :
+La macro \macro{oppower} calcule des puissances entières. Cette macro
+demande trois paramètres, le troisième paramètre étant la variable
+recevant le résultat du premier paramètre à la puissance le deuxième
+paramètre. Le deuxième paramètre doit être un nombre entier. Lorsque
+le premier argument est nul, si le deuxième paramètre est nul, le
+résultat sera~1, s'il est strictement positif, le résultat sera nul et
+s'il est strictement négatif il y aura une erreur et aucun résultat ne
+sera fourni. Il n'y a aucune limitation sur le premier paramètre ce
+qui peut entraîner quelques problèmes. Par exemple :
\begin{CenterExample}[xrightmargin=0pt]
\opcopy{0.8}{a}\opcopy{-17}{n}%
\oppower{a}{n}{r}%
@@ -1322,7 +1349,7 @@ Avec $0{,}7$ au lieu de $0{,}8$, le problème aurait été encore pire :
$\opprint{a}^{\opprint{n}}$ a \opprint{dr} chiffres apr\`es la
virgule.
\end{CenterExample}
-Tout cela est dû au fait que lorsque l'exposant est négatif,
+Cela est dû au fait que lorsque l'exposant est négatif,
\package{xlop} calcule \emph{d'abord} l'inverse du nombre pour
\emph{ensuite} calculer la puissance avec l'opposé de l'exposant. Si
on avait laissé $-17$ au lieu de $-8$ dans l'exemple précédent, les
@@ -1426,6 +1453,7 @@ de ces trois macros.
\end{tabular}
\end{center}
+\index{expression complexe|(}
La dernière macro qui nous reste à voir est \macro{opexpr} qui permet
de réaliser le calcul d'une expression complexe. Cette macro demande
deux paramètres : le premier est l'expression à calculer donnée sous
@@ -1471,9 +1499,9 @@ correspondantes (la fonction \texttt{xxx} faisant appel à la macro
\texttt{round}, le nombre \texttt{i} indique le rang sur lequel doit
se faire l'arrondi.
-La macro \macro{opexpr} accepte un argument optionnel puisqu'elle peut
+La macro \macro{opexpr} accepte un argument optionnel car elle peut
réaliser des divisions et que ces divisions doivent pouvoir être
-contrôlées via les paramètres \parameter{maxdivstep},
+contrôlées \emph{via} les paramètres \parameter{maxdivstep},
\parameter{safedivstep} et \parameter{period}.
Notre premier exemple est assez basique :
\begin{CenterExample}[xrightmargin=0pt]
@@ -1493,6 +1521,7 @@ macro :
(\try)))))}{r}
La fraction continue de base $u_n=2$ vaut \opprint{r} au rang~5.
\end{CenterExample}
+\index{expression complexe|)}
\appendix
\chapter{Aide-mémoire}
@@ -1500,8 +1529,11 @@ macro :
\section{Temps de compilation}
\label{sec:Temps de compilation}
Les temps de compilation ont été mesurés sur une machine à processeur
-Pentium~II~600\,MHz ayant 256\,Mo de RAM et tournant sous linux
-(Debian woody). Le principe a été de faire un fichier TeX{} minimum
+Pentium~II~600\,MHz ayant 256\,Mo de RAM et tournant sous Linux
+(Debian woody)\footnote{En réalité, ces mesures ont été effectuées en
+ 2004 lors de la sortie de la version 0.2. L'auteur étant fainéant,
+ il n'a pas repris ces tests avec son matériel actuel (bien plus
+ performant) !}. Le principe a été de faire un fichier TeX{} minimum
dont le schéma général est donné par :
\begin{verbatim}
\input xlop
@@ -1613,6 +1645,7 @@ paramètres. Cela dit, le tableau permet d'avoir quand même une idée de
ce à quoi il faut s'attendre.
\index{compilation (temps de)|)}\index{temps de calcul|)}
+\clearpage
\section{Liste des macros}
\label{sec:Liste des macros}
\noindent\index{macros!table des|(}%
@@ -1674,6 +1707,8 @@ ce à quoi il faut s'attendre.
\verb+\opdivperiod{T1}{T2}{N}+ &
Calcule la longueur de la période de la division de \verb+T1+
par \verb+T2+ et place le résultat dans \verb+N+. \\\hline
+ \verb+\opexport[P]{n}\cmd+ &
+ Copie le nombre \verb+n+ dans la macro \verb+\cmd+. \\\hline
\verb+\opexpr[P]{F}{N}+ &
\'Évalue la formule \texttt{F} est place le résultat final dans le
nombre \texttt{N}. \\\hline
@@ -1772,10 +1807,11 @@ Dans ce tableau, les paramètres :
\item \texttt{T} et \texttt{Ti} (où \texttt{i} représente un indice)
indiquent que le paramètre doit être un nombre donné sous forme
décimale ou sous forme d'un nom de variable mais ne devant pas
- excéder la taille des nombres directement acceptables par \TeX{} (en
- l'occurrence $-2147483648 \le \mathtt{T} \le 2147483647$).
+ excéder la taille des nombres directement acceptables par \TeX{}
+ ($-2147483648 \le \mathtt{T} \le 2147483647$ en l'occurrence).
\end{itemize}
+\newpage
\section{Liste des paramètres}
\label{sec:Liste des parametres}
\index{parametres@paramètres!table des|(}%
@@ -2007,15 +2043,15 @@ nombre correspondant à cette longueur avec l'unité \texttt{sp}.
\dimen0=#1\relax
\count255=\dimen0
\opcopy{\the\count255}{#2}}
- \getsize{1pt}{r}$1\,\mathrm{pt} = \opprint{r}\,\mathrm{sp}$\quad
- \getsize{1pc}{r}$1\,\mathrm{pc} = \opprint{r}\,\mathrm{sp}$\quad
- \getsize{1in}{r}$1\,\mathrm{in} = \opprint{r}\,\mathrm{sp}$\quad
- \getsize{1bp}{r}$1\,\mathrm{bp} = \opprint{r}\,\mathrm{sp}$\quad
- \getsize{1cm}{r}$1\,\mathrm{cm} = \opprint{r}\,\mathrm{sp}$\quad
- \getsize{1mm}{r}$1\,\mathrm{mm} = \opprint{r}\,\mathrm{sp}$\quad
- \getsize{1dd}{r}$1\,\mathrm{dd} = \opprint{r}\,\mathrm{sp}$\quad
- \getsize{1cc}{r}$1\,\mathrm{cc} = \opprint{r}\,\mathrm{sp}$\quad
- \getsize{1sp}{r}$1\,\mathrm{sp} = \opprint{r}\,\mathrm{sp}$\quad
+ \getsize{1pt}{r}$1\,\mathrm{pt}=\opprint{r}\,\mathrm{sp}$\quad
+ \getsize{1pc}{r}$1\,\mathrm{pc}=\opprint{r}\,\mathrm{sp}$\quad
+ \getsize{1in}{r}$1\,\mathrm{in}=\opprint{r}\,\mathrm{sp}$\quad
+ \getsize{1bp}{r}$1\,\mathrm{bp}=\opprint{r}\,\mathrm{sp}$\quad
+ \getsize{1cm}{r}$1\,\mathrm{cm}=\opprint{r}\,\mathrm{sp}$\quad
+ \getsize{1mm}{r}$1\,\mathrm{mm}=\opprint{r}\,\mathrm{sp}$\quad
+ \getsize{1dd}{r}$1\,\mathrm{dd}=\opprint{r}\,\mathrm{sp}$\quad
+ \getsize{1cc}{r}$1\,\mathrm{cc}=\opprint{r}\,\mathrm{sp}$\quad
+ \getsize{1sp}{r}$1\,\mathrm{sp}=\opprint{r}\,\mathrm{sp}$\quad
\end{CenterExample}
N'oubliez cependant pas que le but principal de \package{xlop} est
d'\emph{afficher} automatiquement les opérations.
@@ -2053,7 +2089,7 @@ L'utilisation des macros de \package{xlop} associées au mécanisme de
boucle de \TeX{} permet de créer des opérations à volonté. Nous ne
donnerons que deux exemples. Le premier est la décomposition d'un
nombre en facteurs premiers, le second est un calcul général de
-fraction continue.\index{nombre!premier}%
+fraction continue.\index{nombre!premier}\index{boucle|(}%
\index{decomposition@décomposition en nombres premiers}
\begin{Verbatim}[xrightmargin=0pt]
\newcount\primeindex
@@ -2227,11 +2263,12 @@ la macro pour protéger les modifications de paramètres de
\`A ce propos, on notera également qu'un paramètre vide n'est pas
accepté. C'est tout à fait volontaire, l'auteur de l'extension pensant
qu'un utilisateur tapant des crochets sans rien mettre à l'intérieur
-est sans doute en train de commettre une erreur. Pour palier à cette
+est sans doute en train de commettre une erreur. Pour pallier à cette
impossibilité de transmettre un paramètre vide
\index{parametre@paramètre!vide}%
il existe le paramètre particulier \parameter{nil} qui a exactement ce
rôle.
+\index{boucle|)}
On notera enfin l'astuce \verb+{\setbox2=\box2}+ qui permet
d'obtenir un registre de boîte vide et les manipulations finales
@@ -2269,9 +2306,9 @@ carrées de~2 et~3.
\opcopy{result}{#2}%
}
\endgroup
- \continuedfraction{1,1,1,1,1,1,1,1,1,1}{r}\opprint{r}\quad
- \continuedfraction{1,2,2,2,2,2,2,2,2,2}{r}\opprint{r}\quad
- \continuedfraction{1,1,2,1,2,1,2,1,2,1}{r}\opprint{r}
+ \continuedfraction{1,1,1,1,1,1,1,1,1,1,1,1}{r}\opprint{r}\quad
+ \continuedfraction{1,2,2,2,2,2,2,2,2,2,2,2}{r}\opprint{r}\quad
+ \continuedfraction{1,1,2,1,2,1,2,1,2,1,2,1}{r}\opprint{r}
\end{CenterExample}
\makeatother
Une fois n'est pas coutume, nous avons fait appel à des commandes
@@ -2310,9 +2347,16 @@ de \LaTeX{} ou bien en indiquant un code de catégorie égal à~11
\makeatother
\end{SideBySideExample}
+On notera que cette façon de faire ne fonctionne plus forcément
+lorsque le séparateur décimal est entre accolade car la macro
+\verb+\opprint{var}+ contiendra ces accolades. Dans ce cas, le plus
+simple est de passer par la macro \macro{opexport} décrite à la
+page~\pageref{macro-opexport}.
+
\chapter{Versions futures}
\label{chap:Versions futures}
-L'extension \package{xlop} en est à sa version~0.2 qui est
+L'extension \package{xlop} en est à sa version~0.23 qui n'est qu'une
+version déboguée de la version~0.2 qui est elle même
essentiellement une version corrigée de la version~0.1 (première
version publique). La prochaine version sera la~0.3 dont la version
\og stable \fg{} sera alors la version~0.4.
@@ -2325,7 +2369,9 @@ arrêté mais il y a déjà plusieurs points prévus :
\item ajout de fonctions de haut niveau avec les racines
(\macro{oproot} pour les racines quelconques et \macro{opsqrt} pour
la racine carrée), exponentielle, logarithme, fonctions
- trigonométriques (directes, inverses, hyperboliques) ;
+ trigonométriques (directes, inverses, hyperboliques) en passant par
+ l'extension \package{xfp} qui est une version déboguée (par
+ l'auteur) de l'extension \package{fp} ;
\item ajout d'une macro permettant de réaliser une écriture formatée,
c'est-à-dire une écriture d'un nombre où les longueurs des parties
entière et décimale seront indiquées (si ces longueurs ne sont pas
@@ -2347,17 +2393,8 @@ arrêté mais il y a déjà plusieurs points prévus :
\item manuel en anglais.
\end{itemize}
-Pour le premier point, seules la division anglo-saxonne, la
-multiplication dite russe et la multiplication dite babylonienne sont
-en cours d'étude, l'auteur ne connaissant pas les habitudes des autres
-pays en la matière. Si vous connaissez d'autres façons de poser les
-opérations à part celles présentées dans ce manuel, la division
-anglo-saxonne, la multiplication russe (double colonne avec des
-divisions par deux sur une colonne et des multiplications par deux sur
-l'autre) et la multiplication babylonienne (ou vénitienne qui consiste
-à faire une grande grille de multiplication à un chiffre et à effectuer
-les sommes finales en diagonale), l'auteur vous sera éternellement
-reconnaissant de le contacter à l'adresse :
+Pour toute demande ou rapport de bogue, l'auteur vous sera
+éternellement reconnaissant de le contacter à l'adresse :
\begin{verbatim}
Jean-Come.Charpentier@wanadoo.fr
\end{verbatim}
@@ -2366,7 +2403,7 @@ en plaçant le mot \og \texttt{xlop} \fg{} dans le sujet du message.
Il serait souhaitable d'avoir un manuel du hacker qui expliquerait en
détail le code source. Cet outil pourrait être tout à fait bénéfique
pour que chacun puisse apporter plus facilement des améliorations au
-code. Malheureusement, le code actuel fait plus de~\nombre{3900}
+code. Malheureusement, le code actuel fait plus de~\nombre{4000}
lignes et le travail nécessaire risque d'être trop important.
Éventuellement, il pourra y avoir un manuel du hacker expliquant les
spécifications générales du code sans entrer dans trop de détails
diff --git a/Master/texmf-dist/doc/generic/xlop/xlop-doc.pdf b/Master/texmf-dist/doc/generic/xlop/xlop-doc.pdf
new file mode 100644
index 00000000000..0d3bbaa5900
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/xlop/xlop-doc.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/generic/xlop/xlop-doc.tex b/Master/texmf-dist/doc/generic/xlop/xlop-doc.tex
new file mode 100644
index 00000000000..17ec50a0516
--- /dev/null
+++ b/Master/texmf-dist/doc/generic/xlop/xlop-doc.tex
@@ -0,0 +1,2271 @@
+\documentclass[12pt]{report}
+\usepackage{manual}
+\usepackage[english]{babel}
+\usepackage[autolanguage]{numprint}
+\usepackage{dcolumn}
+
+\newcommand*\boi{\textbackslash}
+\newcommand*\at{@}
+\fvset{label=source}% english
+
+\renewcommand\parameter[1]{\texttt{#1}\index{#1@\texttt{#1}}%
+ \index{parameter!\texttt{#1}}}
+
+\begin{document}
+\begin{titlepage}
+ \null\par\vfill
+ \begin{center}
+ \begin{minipage}{0.75\linewidth}
+ \hrule width\linewidth height2pt depth0pt
+ \hrule width0pt height3pt depth0pt
+ \hrule width\linewidth height1pt depth0pt
+ \hrule width0pt height18pt depth0pt
+ \begin{center}
+ \Huge\bfseries XLOP v \fileversion\par\vskip18pt
+ User Manual
+ \end{center}
+ \hrule width0pt height6pt depth0pt
+ \hrule width\linewidth height1pt depth0pt
+ \hrule width0pt height3pt depth0pt
+ \hrule width\linewidth height2pt depth0pt
+ \end{minipage}
+ \end{center}
+ \vfill
+ \begin{center}
+ Jean-Côme Charpentier\\
+ \today
+ \end{center}
+ \vfill\null\par
+\end{titlepage}
+\newpage
+\pagenumbering{roman}
+\tableofcontents
+\newpage
+\pagenumbering{arabic}
+
+\chapter{Overview}
+\label{chap:Présentation}
+The \package{xlop} package is intended to make automatic arithmetic
+operation on arbitrary sized numbers and to display result either on
+display mode or inline mode. Here is a first exemple for an overview
+of the syntax:
+\begin{SideBySideExample}
+ \opadd{45,05}{78,4}
+\end{SideBySideExample}
+We comment this first example in order to give an idea about how use
+\package{xlop}.
+Addition is displayed ``like in school'': this is the default
+displaying. We have an alignment on dots (operand's dot and result's
+dot), operator symbol is put on the left and it is vertically centered
+between the operands, and the decimal separator is a dot even though we
+have specified operands with comma. Finally, note that there is a
+carry above the first operand.
+
+Alignment on dot is obligatory. The other points above are deal with
+options. Many macros accept an optional argument which controls some
+aspects of displaying or computing operation. For that, we use a
+``keyval-like'' syntax: we specify a sequence of parameter's
+modifications through an affectation's comma separated sequence. One
+affectation has one of the two possible syntax below:
+\begin{verbatim}
+ <parameter>=<value>
+ <parameter>
+\end{verbatim}
+the second one is a shorthand for:
+\begin{verbatim}
+ <parameter>=true
+\end{verbatim}
+In this affectation sequence, we can put space(s) after comma. But
+don't put space around the equal sign nor before comma: if you put
+space(s) here, that means that parameter name or value has a space.
+
+So, if you want a comma as decimal separator , an operator symbol side
+by side with the second operand, and no carry, you have just to say:
+\begin{SideBySideExample}
+ \opadd[decimalsepsymbol={,},
+ voperator=bottom,
+ carryadd=false]{45.05}{78.4}
+\end{SideBySideExample}
+Note the trick which consists to put the comma between braces in the
+decimal separator symbol definition. In fact, if you say:
+\begin{Verbatim}[xrightmargin=0pt]
+ \opadd[decimalsepsymbol=,,voperator=bottom,
+ carryadd=false]{45.05}{78.4}
+\end{Verbatim}
+\package{xlop} drives mad! It don't understand what is this sort of
+list!
+
+Another important point, though it is less apparent, is that the
+figures are put in very precise places. Each figure is put in a box of
+fixed width and fixed height (user can change these values), decimal
+separator is put in a null-width box (by default), and the lines have
+a regular interspace (with or without horizontal rule). This allows
+exact spacing and to place what we want where we want.
+\begin{SideBySideExample}
+ \psset{xunit=\opcolumnwidth,
+ yunit=\oplineheight}
+ \opadd{45.05}{78.4}
+ \oplput(1.5,3){carry}
+ \psline{->}(1,3.15)(-3.25,3.15)
+\end{SideBySideExample}
+This example uses package
+\package{pstricks}\index{pstricks@\package{pstricks}}
+
+We have said that \package{xlop} package is able to deal with
+arbitrary sized numbers. We come again about this subject and, for
+now, we just give an example which shows what is possible. Don't look
+at the code, some explanations will be given later in this manual, for
+now just admire the result!
+\begin{CenterExample}[xrightmargin=0pt]
+ \opdiv[style=text,period]{1}{49}
+\end{CenterExample}
+
+The package \package{xlop} provides some other features. It is
+possible to manipulate numbers through variables. These variables can
+be created with an assignation or as a computation result. You can
+also manipulate the figures individually:
+\begin{SideBySideExample}
+ \opadd*{45.05}{78.4}{r}%
+ The first figure after dot of
+ $45.05+78.4$ is
+ \opgetdecimaldigit{r}{1}{d}%
+ $\opprint{d}$.
+\end{SideBySideExample}
+you can make tests:
+\begin{SideBySideExample}
+ \opadd*{45.05}{78.4}{r}%
+ The sum $45.05+78.4$ is
+ \opcmp{r}{100}%
+ \ifopgt greater than
+ \else\ifoplt less than
+ \else equal to
+ \fi\fi
+ $100$.
+\end{SideBySideExample}
+you can use some operations and some functions:
+\begin{SideBySideExample}
+ gcd of $182$ and $442$ is
+ \opgcd{182}{442}{d}$\opprint{d}$
+\end{SideBySideExample}
+you can compute complex expression in infix form:
+\begin{SideBySideExample}
+ \opexpr{(2+3^2)/(gcd(22,33))}{r}%
+ $$\frac{2+3^2}{\gcd(22,33)} =
+ \opprint{r}$$
+\end{SideBySideExample}
+
+\chapter{\package{xlop} Instructions}
+Except some macros which will be examined later, the \package{xlop}'s
+macros can have an optional argument between squared braces in order
+to localy modify parameter's values. The other arguments (mandatory)
+are (nearly) always numbers. The two sections of this chapter describe
+in details what is a number for \package{xlop} and how use parameters.
+
+\section{In the Beginning Was the Number}
+\label{sec:Au début etait le nombre}
+\subsection{Size}
+\label{subsec:Taille}
+Before we see the general syntax of number, we examin the very
+particular \package{xlop} feature: the ability to deal with arbitrary
+sized number.
+
+\index{number!size}To be precise, the theoric maximum size of a number
+is $2^{31}-1$ digits\index{number!limit}. In practice, this limit
+can't be reached for two essential reasons. The first one is that a
+multiplication with two numbers with $2^{25}$~digits needs more than
+$7\,000$ years to be performed on the author computer! The second one
+is more restrictive because it is linked to \TeX{} stack size limits.
+Here is a table showing a \TeX{} compilation for a multiplication with
+two operands of same size, on a linux computer, pentium~II~600 and
+256~Mb RAM:\footnote{In fact it was the author computer in 2004. The
+ actual author computer is \emph{more} powerfull but the author is
+ lazy, and he have not remake the tests!}
+\begin{center}
+ \begin{tabular}{|l|*{6}{c|}}
+ \hline
+ number of digits & 100 & 200 & 300 & 400 & 425 & 450 \\\hline
+ compilation time (s) & 2 & 8 & 18 & 32 & 36 & crash \\\hline
+ \end{tabular}
+\end{center}
+The ``crash'' in the table is due to an overstack for hash table.
+\index{hash table}%
+\index{overflow}%
+On \LaTeX{}, the limit before crash will be reduced. These tests are
+made on a minimal file. With a typical document, this limit will be
+reduced too. The spool size is another limit quickly reached.
+\index{spool size}%
+To typeset this document which contain many calls to the
+\package{xlop} macros, the author has grown up the spool size
+to~$250000$ ($125\,000$ was insufficient) editing the line
+\verb+pool_size+ in the \file{texmf.cnf} file. Also, the author has
+grown up the hash table to~\texttt{1000} in the line
+\verb+hash_extra+.
+
+\subsection{Syntax}
+\label{subsec:Syntaxe}
+Now we present the syntax using the BNF grammar. There will be human
+explanations later:
+\begin{syntaxBNF}
+ \*number* & \{\*sign*\}\*positive* \alt \*name* \\
+ \*sign* & + \alt - \\
+ \*positive* & \*integer* \alt \*sep*\*integer* \alt \\
+ \sameline \*integer*\*sep* \alt \*integer*\*sep*\*integer* \\
+ \*sep* & . \alt , \\
+ \*integer* & \*digit*\{\*digit*\} \\
+ \*name* & \*start*\{character\} \\
+ \*start* & character \textnormal{except } \*sign*\textnormal{,}
+ \*sep* \\
+ \sameline \textnormal{, and } \*digit*
+\end{syntaxBNF}
+\index{syntax!BNF}\index{BNF grammar}
+
+The \texttt{character} symbol means nearly any character accepted by
+\TeX{}. The exceptions are characters \verb+%+ and \verb+#+ which are
+completely prohibited. In fact, the use of active characters is
+risked. For instance, on \LaTeX{}, the \verb+~+ definition prohibits the
+use of it inside a variable name. In the other hand, the \verb+\ +is
+always the escape char, that is, the variable name will be the name
+\emph{after} all is expanded. There isn't any other restraint as the
+following code show it:
+\begin{SideBySideExample}
+ \newcommand\prefix{a/b}
+ \opadd*{2}{2}{a/b_{^c}!&$}
+ \opprint{\prefix_{^c}!&$}
+\end{SideBySideExample}
+\index{number!name}%
+Note particullary that \verb+a/b_{^c}!&$+ and \verb+\prefix_{^c}!&$+
+produce exactly the same name\ldots{} obviously if \verb+\prefix+ have
+the right definition! This possibility to have a name using macro
+could seem useless but it is not true. For instance, you can realize
+loops\index{loop} with names as \verb+r1+, \verb+r2+, \ldots,
+\verb+r<n>+ using the code \verb+r\the\cpt+ as variable name, where
+\verb+cpt+ is a counter in the \TeX{} meaning. With \LaTeX{}, the code
+is more verbose with \verb+r\number\value{cpt}+ where \verb+cpt+ is
+now a \LaTeX{} counter. We will see an example using this syntax in
+the section~\ref{sec:Creation d'operations complexes}
+page~\pageref{sec:Creation d'operations complexes}.
+
+\index{number!valid}In practice, what does it mean all these rules?
+First, they means that a number writes in a decimal form can be
+preceded by any sequence of plus or minus signs. Obviously, if there
+is a odd number of minus signs, the number will be negative. Next, a
+decimal number admits only one decimal separator symbol which can
+be a dot or a comma, this one can be put anywhere in the
+number. Finally, a number is write in basis~10. Be carefull: these
+rules mean that \verb+-a+ is not valid.
+
+The package uses some private names and it is safe to not begin a
+variable name with the character \texttt{@}.
+
+\section{\package{xlop} Parameters}
+\label{sec:Parametres de xlop}
+\index{parameter!syntax|(}
+Parameter assignments are local to the macro when they are indicated
+in the optional argument. To make global a parameter assignment, you
+have to use the \macro{opset} macro. For example:
+\begin{Verbatim}[xrightmargin=0pt]
+ \opset{decimalsepsymbol={,}}
+\end{Verbatim}
+give the comma as decimal separator symbol for the whole document, at
+least, until another redefinition with \verb+\opset+.
+
+\subsection{Symbols}
+\label{subsecSymboles}
+The \parameter{afterperiodsymbol} parameter indicates the symbol that
+follows a quotient in line in a division with period
+search\index{division!period}. Its default value is \verb+$\ldots$+
+
+The \parameter{equalsymbol} parameter indicates the symbol used for
+equality. Its default value is \verb+$=$+. In fact, this parameter is
+defined with:
+\begin{Verbatim}[xrightmargin=0pt]
+ \opset{equalsymbol={$=$}}
+\end{Verbatim}
+that is, with braces in order to protect the equal sign. Without
+theses braces, there will be a compilation error. You have to process
+like that when there is an equal sign or a comma in the
+value.\index{parameter!with ``='' or ``,''\quad}
+
+The parameter \parameter{approxsymbol} indicates the symbol used for
+approximations. Its default value is \verb+$\approx$+.
+
+The parameter \parameter{decimalsepsymbol} indicates the symbol used
+for the decimal separator. Its default value is a dot.
+
+Parameters \parameter{addsymbol}, \parameter{subsymbol},
+\parameter{mulsymbol}, and \parameter{divsymbol} indicate the symbols
+used for the four arithmetic operations. The default value are
+\verb!$+$!, \verb!$-$!, \verb!$\times$! et \verb!$\div$! respectively.
+
+\subsection{General Displaying}
+\label{subsec:Presentation generale}
+The \parameter{voperation} parameter indicates the way a dispayed
+operation is put with respect to the baseline. The possible values are
+\verb+top+, \verb+center+, and \verb+bottom+, the latter one is the
+default value.
+\begin{SideBySideExample}
+ top\quad
+ \opadd[voperation=top]{45}{172}\par
+ center\quad
+ \opadd[voperation=center]{45}{172}\par
+ bottom\quad
+ \opadd[voperation=bottom]{45}{172}
+\end{SideBySideExample}
+
+The \parameter{voperator} parameter indicates how the operator symbol
+is put with repect to operands. The possible values are \verb+top+,
+\verb+center+ (default value), and \verb+bottom+.
+\begin{SideBySideExample}
+ top\quad
+ \opadd[voperator=top]{45}{172}\par
+ center\quad
+ \opadd[voperator=center]{45}{172}\par
+ bottom\quad
+ \opadd[voperator=bottom]{45}{172}
+\end{SideBySideExample}
+
+The \parameter{deletezero} parameter indicates if some numbers in
+operation should be displayed with or whithout non-significant
+zeros. Exact rôle of this parameter depends of the actual
+operation. We will see that when we will study the different
+operations.
+
+The \parameter{style} parameter indicates the way an operation is
+displayed: display with \verb+display+ value (default value) or inline
+with \verb+text+ value. We will see when we will study division
+because there is many possibilities with this operation.
+\begin{SideBySideExample}
+ \opadd[style=text]{45}{172}
+\end{SideBySideExample}
+In inline operations, \package{xlop} takes care to not typeset the
+formula in mathematic mode in a direct way. This allow to specify what
+you want as in the next example, and it is also for that that you have
+to specify the classical values of symbols between mathematic
+delimiters.
+\begin{SideBySideExample}
+ \opadd[addsymbol=plus,
+ equalsymbol=equal,
+ style=text]{42}{172}
+\end{SideBySideExample}
+Meanwhile, \package{xlop} introduces exactly the same penalities and
+the same spaces as for a mathematic formula.
+
+The \parameter{parenthesisnegative} parameter indicates how to typeset
+negative numbers in inline operations. The possible values are:
+\begin{itemize}
+\item \texttt{none} which typesets negative numbers without
+ parenthesis;
+\item \texttt{all} which typesets negative numbers with parenthesis;
+\item \texttt{last} which typesets negative numbers with parenthesis
+ but the first one.
+\end{itemize}
+\begin{SideBySideExample}
+ \opadd[style=text,
+ parenthesisnegative=none]
+ {-12}{-23}\par
+ \opadd[style=text,
+ parenthesisnegative=all]
+ {-12}{-23}\par
+ \opadd[style=text,
+ parenthesisnegative=last]
+ {-12}{-23}
+\end{SideBySideExample}
+
+\subsection{Dimensions}
+\label{subsec:Dimensions}
+In displayed operations, figures are put in fixed size boxes. The
+width is given by the \parameter{lineheight} parameter and the height
+is given by the \parameter{lineheight} parameter. The default value of
+\texttt{lineheight} is \verb+\baselineskip+ that is, interline space
+in operation is the same (by default) as in the normal text. The
+default value for \texttt{columnwidth} is \texttt{2ex} because the
+``normal'' width of figures would give bad results.
+\begin{SideBySideExample}
+ \opadd[columnwidth=0.5em]
+ {45.89}{127.5}
+\end{SideBySideExample}
+One reason for this bad result is that the decimal separator is put in
+a box which width is controlled by the \parameter{decimalsepwidth}
+parameter and the default value of this parameter is null. You can
+improve this presentation giving a ``normal'' width to the dot.
+\begin{SideBySideExample}
+ \opadd[columnwidth=0.5em,
+ decimalsepwidth=0.27778em]
+ {45.89}{127.5}
+\end{SideBySideExample}
+It is better but give a positive width to the box that contain the
+decimal separator is risked. It will be more difficult to place
+extern object and it is counter against the idea to have a fixed
+grid. You should avoid this in normal time.
+
+The \parameter{columnwidth} and \parameter{lineheight} parameters
+correspond to the only dimensions that \package{xlop} provides as
+public one, that is,
+\verb+\opcolumnwidth+\index{opcolumnwidth@\texttt{$\backslash$opcolumnwidth}}
+and
+\verb+\oplineheight+\index{oplineheight@\texttt{$\backslash$oplineheight}}
+respectively. It is dangerous to directly modify these dimensions
+since a modification in a ``normal'' way doesn't only change the
+dimension value. Package \package{xlop} make these dimensions public
+only for reading, not for writting.
+
+The two next parameters allow to specify width of horizontal and
+vertical rules stroked by \package{xlop}. We have
+\parameter{hrulewidth} and \parameter{vrulewidth} parameters. The
+default values are both \texttt{0.4pt}.
+
+These rules are typeset with no change on grid. That is, with no space
+added. Therefore, with great values for thickness, the rules could
+run over numbers.
+\begin{SideBySideExample}
+ \opadd[hrulewidth=8pt]{42}{172}
+\end{SideBySideExample}
+
+There is also a paramater which allows to control the horizontal shift
+of decimal separator. It is the \parameter{decimalsepoffset} paramater
+with a default value of~\texttt{-0.35}. This value indicates a length
+with the unit \verb+\opcolumnwidth+. We will see an example at
+section~\ref{sec:Division} page~\pageref{sec:Division}.
+
+\subsection{Figure's Styles}
+\label{subsec:Styles des chiffres}
+The \package{xlop} package provides five types of numbers and
+associates five style paramaters:
+\begin{itemize}
+\item operands with \parameter{operandstyle};
+\item result with \parameter{resultstyle};
+\item remainders with \parameter{remainderstyle};
+\item intermediary numbers with \parameter{intermediarystyle};
+\item carries with \parameter{carrystyle}.
+\end{itemize}
+\begin{SideBySideExample}
+ \opadd[operandstyle=\blue,
+ resultstyle=\red,
+ carrystyle=\scriptsize\green]
+ {45.89}{127.5}
+\end{SideBySideExample}
+Keep in mind that, in this manual, we use
+\package{pstricks}\index{pstricks} package.
+
+\index{parameter!index|(}%
+In fact, the management of these styles is even more powerfull since
+you can distingish different number of a same class. In one operation,
+you have several operands, and, possibly several remainders and
+several intermediary numbers. You can access to the style of these
+numbers adding an index to the matching style.
+\begin{SideBySideExample}
+ \opadd[operandstyle=\blue,
+ operandstyle.1=\lightgray,
+ resultstyle=\red,
+ carrystyle=\scriptsize\green]
+ {45.89}{127.5}
+\end{SideBySideExample}
+In this example, we indicate that the first operand must be typesetted
+with the \verb+\lightgray+ style. We don't indicate anything for the
+second operand, so it takes the basic style for its class. (Then with
+\verb+\blue+ style.)
+
+This mechanism is even more powerfull since you can write two level
+index for operands, carries, and intermediary numbers (one level for
+result and carry) in order to access to each style figure of these
+numbers. To simplify index, a positive index indicates the rank of a
+figure in the integer part (right to left order, index~1 is for the
+unit figure) and a negative index indicates the rank of a figure in
+the decimal part (left to right order, $-1$ is for the tenth figure).
+\begin{SideBySideExample}
+ \opadd[operandstyle.1.1=\white,
+ operandstyle.1.-2=\white,
+ operandstyle.2.3=\white,
+ resultstyle.2=\white,
+ deletezero=false]
+ {045.89}{127.50}
+\end{SideBySideExample}
+You can also use a macro with one parameter as a style.
+\begin{SideBySideExample}
+ \newcommand\hole[1]{$\bullet$}
+ \opadd[operandstyle.1.1=\hole,
+ operandstyle.1.-2=\hole,
+ operandstyle.2.3=\hole,
+ resultstyle.2=\hole]
+ {45.89}{127.5}
+\end{SideBySideExample}
+\index{operation!with hole}%
+When the style is a macro with argument, this one is the figure. Here
+is a more complicated example using \package{pst-node} package of the
+\package{pstricks} bundle:
+\begin{SideBySideExample}
+ \newcommand\OPoval[3]{%
+ \dimen1=#2\opcolumnwidth
+ \ovalnode{#1}
+ {\kern\dimen1 #3\kern\dimen1}}
+ \opadd[voperation=top,
+ operandstyle.1.1=\OPoval{A}{0},
+ operandstyle.2.2=\OPoval{C}{0.8}]
+ {45}{172}\qquad
+ \begin{minipage}[t]{2cm}
+ \pnode(0,0.2em){B}\ figure
+ \ncarc{->}{A}{B}\par
+ \pnode(0,0.2em){D}\ number
+ \ncarc{<-}{D}{C}
+ \end{minipage}
+\end{SideBySideExample}
+As for figures, the decimal separator take account to number style. To
+access individually to the decimal separator style, you have to use
+\texttt{d} index, numeric indexes are for figures.
+\begin{SideBySideExample}
+ \newcommand\hole[1]{\texttt{\_}}
+ \opmul[intermediarystyle=\hole,
+ resultstyle=\hole,
+ resultstyle.d=\white]{2.46}{35.7}
+\end{SideBySideExample}
+\index{parameter!index|)}%
+\index{parameter!syntax|)}
+
+\chapter{Arithmetic Operations}
+\label{chap:Opérations arithmétiques}
+\section{Addition}
+\label{sec:Addition}
+Addition is deal by the \macro{opadd} macro. When it is in display
+mode, it display only nonnegative numbers. Then, it displays a
+substraction when one of the operands is nonpositive.%
+\index{number!nonpositive in displayed operation}
+\begin{SideBySideExample}
+ \opadd{-245}{72}
+\end{SideBySideExample}
+In a general manner, the principle is to display the operation that
+allows to find the result as you make it ``by hand''. On the contrary,
+the inline mode shows always an addition since we can now write
+nonpositive numbers.
+\begin{SideBySideExample}
+ \opadd[style=text]{-245}{72}
+\end{SideBySideExample}
+In addition to the general parameters discussed in the
+section~\ref{sec:Parametres de xlop}, the macro \verb+\opadd+ uses
+parameters \texttt{carryadd}, \texttt{lastcarry}, and
+\texttt{deletezero}.
+
+The \parameter{carryadd} parameter is a boolean
+parameter\index{parameter!boolean}, that is, it accepts only the
+values \texttt{true} and \texttt{false}. By habit, when you don't
+specify the value and the equal sign, that is like assignment
+\texttt{=true}. This parameter indicates if the carries must be showed
+or not. Its default value is \texttt{true}.
+
+The \parameter{lastcarry} parameter is also a boolean parameter. It
+indicates if a carry without matching digit for the two operands must
+be showed or not. Its default value is \texttt{false}. Take care to
+the exact rôle of this parameter. For instance, if the second operand
+in the following example is~15307, the last carry would be showed for
+any value of the \texttt{lastcarry} parameter since there is a
+matching digit in the second operand.
+\begin{SideBySideExample}
+ \opadd{4825}{5307}
+\end{SideBySideExample}
+\begin{SideBySideExample}
+ \opadd[carryadd=false]{4825}{5307}
+\end{SideBySideExample}
+\begin{SideBySideExample}
+ \opadd[lastcarry]{4825}{5307}
+\end{SideBySideExample}
+
+The \parameter{deletezero} parameter is also a boolean parameter. It
+indicates if non-significant zeros must be deleted or not. Its default
+value is \texttt{true}. When this parameter is \texttt{false}, the
+operands and the result have the same number of digits. For that,
+\package{xlop} package adds non-significant zeros. Also, the
+non-significant zeros of operands are not removed.
+\begin{SideBySideExample}
+ \opadd{012.3427}{5.2773}\par
+ \opadd[deletezero=false]
+ {012.3427}{5.2773}
+\end{SideBySideExample}
+
+This parameter has exactly the same rôle for inline mode than for
+displayed mode.
+\begin{SideBySideExample}
+ \opadd[style=text]{02.8}{1.2}\par
+ \opadd[style=text,
+ deletezero=false]{02.8}{1.2}\par
+\end{SideBySideExample}
+
+\section{Substraction}
+\label{sec:soustraction}
+Substraction is made by \macro{opsub} macro. In displayed mode, the
+substraction shows only nonnegative numbers. For that, it shows an
+addition when one operand is nonpositive.
+\begin{SideBySideExample}
+ \opsub{-245}{72}
+\end{SideBySideExample}
+In a general way, the principle is to display the operation which
+allow to find the result as you make it ``by hand''. On the contrary,
+inline mode shows always a substraction since you can now write
+nonpositive numbers.
+\begin{SideBySideExample}
+ \opsub[style=text]{-245}{72}
+\end{SideBySideExample}
+This principle apply also when the first operand is less than the
+second one (positive case). In this case, we have an operand
+inversion.
+\begin{SideBySideExample}
+ \opsub{1.2}{2.45}
+\end{SideBySideExample}
+Of course, inline operation gives an exact result.
+\begin{SideBySideExample}
+ \opsub[style=text]{1.2}{2.45}
+\end{SideBySideExample}
+
+In addition to general parameters we have seen at
+section~\ref{sec:Parametres de xlop}, \verb+\opsub+ takes account of
+\texttt{carrysub}, \texttt{lastcarry}, \texttt{offsetcarry},
+\texttt{deletezero}, and \texttt{behaviorsub} parameters.
+
+The \parameter{carrysub} parameter is a boolean one which indicates if
+carries must be present or not. Its default value is \texttt{false}.
+(Remember that the default value of \texttt{carryadd} parameter is
+\texttt{true}.)
+\begin{SideBySideExample}
+ \opsub[carrysub]{1234}{567}
+\end{SideBySideExample}
+
+In the last example, you can see that there is no carry above the last
+digit of 1234. This is quite common (at least in France). If you want
+display this last carry, you have to use the \parameter{lastcarry}
+parameter. This parameter does not have the same behavior in
+substraction and in addition since here, the last carry is not
+displayed when the second operand does not have correspondent
+digit. (For addition, last carry is not displayed when \emph{all} the
+operands do not have correspondent digit.)
+\begin{SideBySideExample}
+ \opsub[carrysub,lastcarry]{1234}{567}
+\end{SideBySideExample}
+Note that, in this case, it is better to set the
+\parameter{deletezero} parameter to \texttt{false} in order to have a
+nicer result.
+\begin{SideBySideExample}
+ \opsub[carrysub,
+ lastcarry,
+ deletezero=false]{1234}{567}
+\end{SideBySideExample}
+
+Perhaps it seems to you that showing carries for substraction is a bit
+more dense. You can enlarge the figure box with the
+\parameter{opcolumnwidth} parameter. You can also indicate the carry
+horizontal shift using the \parameter{offsetcarry} parameter. Its
+default value is \texttt{-0.35}.
+\begin{SideBySideExample}
+ \opsub[carrysub,
+ lastcarry,
+ deletezero=false]{12.34}{5.67}
+
+ \bigskip
+ \opsub[carrysub,
+ lastcarry,
+ columnwidth=2.5ex,
+ offsetcarry=-0.4,
+ decimalsepoffset=-3pt,
+ deletezero=false]{12.34}{5.67}
+\end{SideBySideExample}
+
+It is possible that a substraction with two positive numbers and with
+the first one less than the second one signs an user error. In this
+case, and only in this case, the \parameter{behaviorsub} parameter
+allows a call to order. The three possible values are:
+\begin{itemize}
+\item \texttt{silent} which is the default value and which gives the
+ result;
+\item \texttt{warning} which gives also the result but shows the
+ warning message:
+\begin{Verbatim}[xrightmargin=0pt,frame=none]
+ xlop warning. Substraction with first operand less than second one
+ See documentation for further information.
+\end{Verbatim}
+\item \texttt{error} which shows the error message:
+\begin{Verbatim}[xrightmargin=0pt,frame=none]
+ xlop error. See documentation for further information.
+ Type H <return> for immediate help.
+ ! Substraction with first operand less than second one.
+\end{Verbatim}
+ and the operation is not performed.
+\end{itemize}
+
+\section{Multiplication}
+\label{sec:Multiplication}
+The multiplication is under the control of the \macro{opmul} macro.
+
+The parameters we will see below are \texttt{hfactor},
+\texttt{displayintermediary}, \texttt{shiftintermediarysymbol}, and
+\texttt{deletezero}. We studied the other parameters in
+section~\ref{sec:Parametres de xlop}.
+
+The \parameter{shiftintermediarysymbol} parameter indicates what is
+the symbol used for showing the shifting of intermediary numbers
+(default value is \verb+$\cdot$+). The
+\parameter{displayshiftintermediary} parameter can take value
+\texttt{shift} (default value) which shows this symbol only for
+shifting greater than one level, value \texttt{all} which shows this
+symbol for all the shiftings, and the value \texttt{none} which means
+that this symbol will be never showed.
+\begin{CenterExample}[xrightmargin=0pt]
+ \opmul[displayshiftintermediary=shift]{453}{1001205}\qquad
+ \opmul[displayshiftintermediary=all]{453}{1001205}\qquad
+ \opmul[displayshiftintermediary=none]{453}{1001205}
+\end{CenterExample}
+
+In fact, null intermediary numbers are not display because of the
+default value \texttt{none} of the \parameter{displayintermediary}
+parameter. The value \texttt{all} shows all the intermediary numbers,
+even null intermediary numbers.
+\begin{SideBySideExample}
+ \opmul[displayintermediary=all]
+ {453}{1001205}
+\end{SideBySideExample}
+Note that null intermediary numbers are displayed with the same width
+than the first factor width.
+
+The \parameter{displayintermediary} parameter accepts the value
+\texttt{nonzero} which means the same than the \texttt{none} value
+except when second factor has only one digit.
+\begin{CenterExample}[xrightmargin=0pt]
+ \opmul{3.14159}{4}\qquad
+ \opmul[displayintermediary=nonzero]{3.14159}{4}
+\end{CenterExample}
+
+The \parameter{hfactor} parameter indicates how align operands. The
+default value, \texttt{right}, gives a raggedleft alignment. The
+\texttt{decimal} value gives an alignment on dot.
+\begin{CenterExample}[xrightmargin=0pt]
+ \opmul{3.1416}{12.8}\qquad\opmul[hfactor=decimal]{3.1416}{12.8}
+\end{CenterExample}
+
+For displayed multiplication, the \parameter{deletezero} parameter is
+only for operands. The result keeps its non-significant zeros since
+there are necessary in order to make a correct dot shifting when we
+work ``by hand''.
+\begin{CenterExample}[xrightmargin=0pt]
+ \opmul[deletezero=false]{01.44}{25}\qquad
+ \opmul{01.44}{25}
+\end{CenterExample}
+In the other hand, this parameter has its usual behaviour in inline
+multiplication.
+\begin{CenterExample}[xrightmargin=0pt]
+ \opmul[deletezero=false,style=text]{01.44}{25}\qquad
+ \opmul[style=text]{01.44}{25}
+\end{CenterExample}
+
+\section{Division}
+\label{sec:Division}
+The \package{xlop} package deals with ``normal'' division via
+\macro{opdiv} macro and with euclidean division via \macro{opidiv}
+macro. Division is a very complex operation so it is not strange that
+there are many parameters to control it.
+
+Pay attention that the \package{xlop} package v. 0.23 is unable to
+deal with ``english'' division. In this package version, the division
+is the ``french'' one, which is more or less used as it in some other
+countries. The \package{xlop} package v. 0.3 will allow ``enlish''
+division (and many more feautures).
+
+\subsection{End Control}
+\label{subsec:Controle de l'arret}
+In the following text, term \emph{step} means the set of process which
+allow to get one digit for the quotient. This number of steps is (not
+only) under the control of \parameter{maxdivstep},
+\parameter{safedivstep}, and \parameter{period} parameters. It is only
+partially true because a classical division will stop automatically
+when a remainder will be zero, whatever the values of these three
+parameters and a euclidean division will stop with an integer quotient
+without attention for these three parameters.
+\begin{SideBySideExample}
+ \opdiv{25}{7}
+\end{SideBySideExample}
+\begin{SideBySideExample}
+ \opidiv{25}{7}
+\end{SideBySideExample}
+The first example stops because of the value of \parameter{maxdivstep}
+which is 10 by default. Pay attention that the maximum step number
+could cause strange result when it is too small.
+\begin{SideBySideExample}
+ \opdiv[maxdivstep=2]{1248}{3}
+\end{SideBySideExample}
+Clearly, the last result is false. In the other hand, \package{xlop}
+package did what we have ask, that is, obtain two digits (maximum) for
+the quotient.
+
+The inline mode differ with zero remainder or not and with the type of
+division (classical or euclidean).
+\begin{SideBySideExample}
+ \opdiv[style=text]{3.14}{2}\par
+ \opdiv[style=text]{3.14}{3}\par
+ \opidiv[style=text]{314}{2}\par
+ \opidiv[style=text]{314}{3}
+\end{SideBySideExample}
+Note the use of \parameter{equalsymbol} or \parameter{approxsymbol}
+parameter according to the case. Note also that \package{xlop}
+displays results with floor, not with round. We will see how obtain a
+round in section~\ref{sec:Operations evoluees}.
+
+For inline mode of \verb+\opdiv+, \package{xlop} take account of
+\parameter{maxdivstep}. It means that we can obtain results very false
+with too small values of this parametrer and, unlike with display mode
+division, inline mode don't allow to understand what is wrong.
+\begin{SideBySideExample}
+ \opdiv[maxdivstep=2,style=text]
+ {1248}{3}
+\end{SideBySideExample}
+In addition, if the last remainder is zero, we obtain a must:
+\begin{SideBySideExample}
+ \opdiv[maxdivstep=1,style=text]
+ {1208}{3}
+\end{SideBySideExample}
+because there is no approximation at all!
+
+A classical division can stop with period detection. For that, you
+have just to give the value \texttt{true} for the \parameter{period}
+parameter\index{division!period}.
+\begin{SideBySideExample}
+ \opdiv[period]{100}{3}
+\end{SideBySideExample}
+
+To avoid comparizons between each remainder with all previous
+remainder, \package{xlop} calculates immediatly the period
+length. That allows to process only one comparizon for each step, then
+to have a much more efficient process.\footnote{Thanks to Olivier
+ Viennet about mathematic precisions that allows to implement these
+ calculations.} Unfortunately, these calculations are made with
+numbers that are directly accesible to \TeX{}. As consequence, you
+can't use operand with absolute value greater than
+$\left\lfloor\frac{2^{31}-1}{10}\right\rfloor = 214748364$.
+
+In order to avoid too long calculations, \package{xlop} don't process
+beyond the value of \parameter{safedivstep} parameter in division with
+period. Its default value is~50. However, \package{xlop} package show
+this problem. For example, if you ask for such a division with the
+code:
+\begin{Verbatim}[xrightmargin=0pt,frame=none]
+ \opdiv[period]{1}{289}
+\end{Verbatim}
+you obtain the warning message:
+\begin{Verbatim}[xrightmargin=0pt,frame=none]
+ xlop warning. Period of division is too big (272 > safedivstep).
+ Division will stop before reach it.
+ See documentation for further information.
+\end{Verbatim}
+which indicates that this division period is~272 and that it can be
+achieved because of the \texttt{safedivstep} value.
+
+The inline mode for division with period have some particularities.
+\begin{SideBySideExample}
+ \opdiv[period,style=text]{150}{7}
+\end{SideBySideExample}
+We obtain an equality rather than an approximation, there is a rule
+under the period, and there is ellipsis after the period. All these
+components can be configured. The equality symbol is given
+by the \parameter{equalsymbol} parameter (default value is
+\verb+{$=$}+). The rule thickness is given by
+the \parameter{hrulewidth} parameter (default value is
+\texttt{0.4pt}). The vertical offset of this rule is given
+by \parameter{vruleperiod} parameter (default value is \texttt{-0.2})
+which indicates a vertical offset taking \verb+\oplineheight+ as
+unit. The ellipsis are given by the
+parameter \parameter{afterperiodsymbol} (default value
+\verb+$\ldots$+).
+\begin{SideBySideExample}
+ \opdiv[period,style=text,
+ equalsymbol=$\approx$,
+ hrulewidth=0.2pt,
+ vruleperiod=0.7,
+ afterperiodsymbol=]
+ {150}{7}
+\end{SideBySideExample}
+
+\subsection{Other Features}
+\label{subsec:Elements supplementaires}
+Displayed divisions can include successive substractions which allow
+remainder calculations. For \package{xlop}, the numbers which are
+substracted are intermediary numbers, so the different ways to
+represent substractions use \parameter{displayintermediary} parameter
+see for multiplication. The default value, valeur \texttt{none}, don't
+display any substraction; the value \texttt{all} displays all the
+substractions, and the value \texttt{nonzero} displays substractions
+with non-zero numbers
+\begin{CenterExample}[xrightmargin=0pt]
+ \opdiv[displayintermediary=none,voperation=top]
+ {251}{25}\quad
+ \opdiv[displayintermediary=nonzero,voperation=top]
+ {251}{25}\quad
+ \opdiv[displayintermediary=all,voperation=top]
+ {251}{25}
+\end{CenterExample}
+
+When we write a display division, we can draw a ``bridge'' over the
+part of dividend which is taken in count for the first step of
+calculation. The \package{xlop} package allow to draw this symbol
+thanks to the boolean parameter \parameter{dividendbridge} (default
+value is \texttt{false}).
+\begin{SideBySideExample}
+ \opdiv[dividendbridge]{1254}{30}
+\end{SideBySideExample}
+
+\subsection{Non Integer Numbers and Negative Numbers}
+\label{subsec:Nombres non entiers et negatifs}
+The \parameter{shiftdecimalsep} parameter governs non integer operands
+aspect/ Its default value is \texttt{both} which indicates that
+decimal separator is shifted in order to obtain integer divisor and
+integer dividend. The value \texttt{divisor} indicates that there is
+the shifting that allows an integer divisor. The value \texttt{none}
+indicates that there isn't any shifting.
+\begin{CenterExample}[xrightmargin=0pt]
+ \opdiv[shiftdecimalsep=both]{3.456}{25.6}\quad
+ \opdiv[shiftdecimalsep=divisor]{3.456}{25.6}\quad
+ \opdiv[shiftdecimalsep=none]{3.456}{25.6}
+\end{CenterExample}
+
+Parameter \parameter{strikedecimalsepsymbol} gives the symbol used
+to show the old place of decimal separator when this one is
+shifted. The default value is empty, that is, there isn't any
+symbol. This explain why you don't see anything on previous examples.
+\begin{CenterExample}[xrightmargin=0pt]
+ \opset{strikedecimalsepsymbol={\rlap{,}\rule[-1pt]{3pt}{0.4pt}}}
+ \opdiv[shiftdecimalsep=both]{3.456}{25.6}\quad
+ \opdiv[shiftdecimalsep=divisor]{3.456}{25.6}\quad
+ \opdiv[shiftdecimalsep=none]{3.456}{25.6}
+\end{CenterExample}
+
+When there is a non empty symbol for the striked decimal separator, it
+is possible to have non-significant zeros in operands.
+\begin{SideBySideExample}
+ \opdiv[shiftdecimalsep=divisor,
+ strikedecimalsepsymbol=%
+ \hspace{-3pt}\tiny$\times$]
+ {0.03456}{2.56}
+\end{SideBySideExample}
+
+We have already seen that \macro{opidiv} macro gives integer
+quotient. This is true even with non integer operands. It is somewhere
+strange to perform an euclidian division with non integer operands. The
+\macro{opidiv} macro will be strict about the
+presentation. Parameters \parameter{maxdivstep}, \parameter{safedivstep},
+and \parameter{period} haven't any effect, as
+for \parameter{shiftdecimalsep} parameter since operands are changed
+to integer ones.
+\begin{SideBySideExample}
+ \opidiv[strikedecimalsepsymbol=%
+ \hspace{-3pt}\tiny$\times$]
+ {34.57}{7}
+\end{SideBySideExample}
+
+When operands are negative, the inline \macro{opidiv} numbers is
+different from the displayed \macro{opidiv} ones. Remainder will be
+between zero (include) and absolute value of divisor (exclude).
+\begin{SideBySideExample}
+ \opdiv[style=text]{124}{7}\par
+ \opidiv[style=text]{124}{7}\par
+ \opidiv[style=text]{124}{-7}\par
+ \opidiv[style=text]{-124}{7}\par
+ \opidiv[style=text]{-124}{-7}
+\end{SideBySideExample}
+
+This condition for remainder is valid even with non integer divisor.
+\begin{SideBySideExample}
+ \opidiv[style=text]{1.24}{0.7}\par
+ \opidiv[style=text]{1.24}{-0.7}\par
+ \opidiv[style=text]{-1.24}{0.7}\par
+ \opidiv[style=text]{-1.24}{-0.7}
+\end{SideBySideExample}
+
+\chapter{Other Commands}
+\label{chap:Autres commandes}
+\section{Starred Macros}
+\label{sec:Macros etoilees}
+The five macros seen in previous chapter have a starred version. These
+starred macros perform the calculation and don't display
+anything. Result is record in a variable given as argument.
+
+Since these commands don't display anything, parameters don't make
+sens and aren't allowed for \macro{opadd*}, \macro{opsub*},
+\macro{opmul*}, and \macro{opidiv*}. In the other hand,
+parameters \parameter{maxdivestep}, \parameter{safedivstep},
+and \parameter{period} influence calculations, then \macro{opdiv*}
+macro accepts an optional argument to take account of them.
+\begin{SideBySideExample}
+ \opmul*{2}{2}{a}%
+ \opmul*{a}{a}{a}\opmul*{a}{a}{a}%
+ \opadd[style=text]{a}{1}
+\end{SideBySideExample}
+For macros \macro{opdiv} and \macro{opidiv}, there are two extra
+arguments to record quotient and final remainder.
+\begin{SideBySideExample}
+ \opdiv*[maxdivstep=1]{-88}{16}{q}{r}%
+ \opmul*{q}{16}{bq}%
+ \opmul[style=text]{16}{q}\par
+ \opadd[style=text]{bq}{r}
+\end{SideBySideExample}
+
+\section{Input-Output}
+\label{sec:Entree-sorties}
+The \macro{opcopy} macro copies its first argument into its second
+one. Then, the first argument is a number write in decimal form or
+\emph{via} a variable, whereas the second one is a variable name.
+
+The \macro{opprint} macro displays its argument. The following example
+uses the counter \macro{time} which indicates numbers of minutes since
+midnight.
+\begin{SideBySideExample}
+ \opidiv*{\the\time}{60}{h}{m}%
+ It is \opprint{h}~hours
+ \opprint{m}~minutes
+\end{SideBySideExample}
+We will see at section~\ref{sec:Comparaisons} how to improve this
+example with tests.
+
+The \macro{opdisplay} macro also displays a number but here, each
+figure is in a box. The width of this box is given
+by \parameter{columnwidth} and the height of this box is given
+by \parameter{lineheight}. Style is specified by the first
+argument. This macro accepts an optional argument in order to give a
+specific style for individual figures.
+\begin{SideBySideExample}
+ \opdisplay[resultstyle.1=\bfseries,
+ resultstyle.-2=\bfseries]
+ {resultstyle}{129.192}
+\end{SideBySideExample}
+Macros \macro{oplput} and \macro{oprput} allow to put anything
+anywhere. The syntax of both of them is different from the other ones
+of \package{xlop} since the place is indicated with coordinates
+between parenthesis. The coordinates use \macro{opcolumnwidth} and
+\macro{oplineheight} as units. Then user is able to build his own
+``operations''.
+\begin{SideBySideExample}
+ \psset{xunit=\opcolumnwidth,
+ yunit=\oplineheight}%
+ \psgrid[subgriddiv=1,gridlabels=7pt,
+ griddots=5](0,1)(10,-2)
+ \oplput(2,0){Hello}
+ \oprput(8,-1){world!}
+ $\bullet$
+\end{SideBySideExample}
+On example above, note that these macros don't move the reference
+point. As a precaution, they kill the trailing space and then, there
+is no need to protect the end of line with a \verb+%+.
+
+Macros \macro{ophline} and \macro{opvline} complete the previous ones
+to give all the tools the user needs to build its own operations.
+\macro{ophline} allows to draw a horizontal rule; its length is given
+by the parameter after coordinates. \macro{opvline} does the same for
+vertical rules. Remember that parameters \parameter{hrulewidth}
+and \parameter{vrulewidth} indicate the thickness of these rules.
+\begin{CenterExample}[xrightmargin=0pt]
+ \par\vspace{2\oplineheight}
+ \oplput(1,2){O}\oplput(2,2){N}\oplput(3,2){E}
+ \oplput(0,1.5){$+$}
+ \oplput(1,1){O}\oplput(2,1){N}\oplput(3,1){E}
+ \ophline(0,0.8){4}
+ \oplput(1,0){T}\oplput(2,0){W}\oplput(3,0){O}
+\end{CenterExample}
+
+Macro \macro{opexport}\refstepcounter{stuff}\label{macro-opexport}
+allow to export a number in a macro. It's an extra to version~0.23
+which is very usefull to exchange datas between \package{xlop} and the
+outside world. The first argument is a number in the \package{xlop}
+sense, that is, either a number write with figures, or a variable
+name. The number is translated in a form directly acceptable for
+\TeX{} and hold in the second argument which should be a macro
+name. However, note that decimal separator will be the one specified
+by \parameter{decimalsepsymbol} (without its possible braces).
+\begin{SideBySideExample}
+ \opmul*{5}{3.141592654}{F}
+ \opexport{F}{\fivepi}
+ \texttt{\meaning\fivepi}
+\end{SideBySideExample}
+We can use this macro to typeset numbers calculated by \package{xlop}
+in an array with a decimal alignment, or to initialize a counter or a
+length (don't forget the unit in the last case).
+
+\section{Figures of Numbers}
+\label{sec:Chiffres d'un nombre}
+Macros \macro{opwidth}, \macro{opintegerwidth}, and
+\macro{opdecimalwidth} indicate number of digits of the whole number,
+of its integer part, of its decimal part respectively. The first
+argument is the examined number and the second one indicates the
+variable where result will be record.
+\begin{SideBySideExample}
+ \opcopy{123456.1234}{a}%
+ \opwidth{a}{na}%
+ \opintegerwidth{a}{ia}%
+ \opdecimalwidth{a}{da}%
+ \opprint{a} is written with
+ \opprint{na} figures (\opprint{ia} in
+ the integer part and \opprint{da} in
+ the decimal part).
+\end{SideBySideExample}
+
+Macro \macro{opunzero} delete all the non-significant
+zeros\index{non-significant zero} of the number passed as argument.
+\begin{SideBySideExample}
+ \opcopy{00150.00250}{a}%
+ Before : \opprint{a}\par
+ \opunzero{a}%
+ After : \opprint{a}
+\end{SideBySideExample}
+
+Macros \macro{integer} and \macro{opdecimal} give the integer part and
+the decimal part of a number respectively.
+\index{number!integer part}\index{integer part}%
+\index{number!decimal part}\index{decimal part}%
+First argument is the number to process, and the second one is the
+variable name which hold the result.
+\begin{SideBySideExample}
+ \opcopy{-37.69911}{a}%
+ \opinteger{a}{ia}%
+ \opdecimal{a}{da}%
+ Integer part: \opprint{ia}\par
+ Decimal part: \opprint{da}
+\end{SideBySideExample}
+
+Six macros allow to write or read a figure of a number. You can read
+or read a figure according to its place in the whole number, or in the
+integer part, or in the decimal part. Figures for whole number and for
+decimal part are numbered from right to left, figures for integer part
+are numbered from left to right. For instance, with the number
+1234.56789, the second figure is 8, the second figure of the integer
+part is 3, and the second figure of the decimal part is 6. It is now
+easy to guess the rôle of the six next macros:
+\begin{itemize}
+\item \parameter{opgetdigit} ;
+\item \parameter{opsetdigit} ;
+\item \parameter{opgetintegerdigit} ;
+\item \parameter{opsetintegerdigit} ;
+\item \parameter{opgetdecimaldigit} ;
+\item \parameter{opsetdecimaldigit} ;
+\end{itemize}
+Syntax is the same for these macros. The first argument is the
+processed number (reading or writting), the second one is the index of
+te figure, and the third one is the variable name which hold the
+result (figure read or changed number). If index is out of the range,
+the reading macros give \texttt{0} as result and writing macros
+extend the number in order to reach this index (for that, zero will be
+created in new slots).
+
+\section{Comparisons}
+\label{sec:Comparaisons}
+When you want complex macros, often you need to realize tests. For
+that, \package{xlop} gives the macro \macro{opcmp}. The two
+arguments are numbers and this macro setup the tests \macro{ifopgt},
+\macro{ifopge}, \macro{ifople}, \macro{ifoplt}, \macro{ifopeq}, and
+\macro{ifopneq} to indicate that first operand is greater, greater or
+equal, less or equal, less, equal, or different to the second operand
+respectively.
+
+For technical reasons, \package{xlop} give global definitions for the
+six tests above. Then, they are not protected by groups. Since these
+tests are used by many \package{xlop} macros, you must \emph{always}
+use tests \verb+\ifop...+ immediately after \macro{opcmp}, or, at
+least, before any use of a \package{xlop} macro. Otherwise, there will
+be bugs hard to fix!
+
+Let's resume the hour display macro see at
+section~\ref{sec:Entree-sorties}. But now, we check if argument is
+between 0 (include) and 1440 (exclude), then we process tests in order
+to know if ``hour'' is plural or not, as for ``minute''.
+
+\begin{CenterExample}[xrightmargin=0pt]
+ \newcommand\hour[1]{%
+ \opcmp{#1}{0}\ifopge
+ \opcmp{#1}{1440}\ifoplt
+ \opidiv*{#1}{60}{h}{m}%
+ \opprint{h} hour%
+ \opcmp{h}{1}\ifopgt
+ s%
+ \fi
+ \opcmp{m}{0}\ifopneq
+ \space\opprint{m} minute%
+ \opcmp{m}{1}\ifopgt
+ s%
+ \fi
+ \fi
+ \fi\fi
+ }
+ \hour{60} -- \hour{1080} -- \hour{1081} -- \hour{1082}
+\end{CenterExample}
+
+\section{Advanced Operations}
+\label{sec:Operations evoluees}
+The macros left to be examined are either internal macros and which it
+will be a shame to keep private , or macro asked for users.
+
+Internal macros are \macro{opgcd}\index{gcd} which gives gcd of two
+numbers and macro \macro{opdivperiod}\index{division!period} which
+gives the period length of quotient of two numbers. For efficiency
+reason, these macros don't use \package{xlop} number, they rather use
+numbers directly understand by \TeX{}. There are two consequences: the
+numbers can't be greater than \texttt{2147483647} for \macro{opgcd};
+it can't be greater than \texttt{214748364} for
+\macro{opdivperiod}. A warning is displayed for an overflow. Result is
+put in the third parameter.
+
+There is also some checks on the two first parameters: a gcd mustn't
+have null argument; length of period can't be processed with null
+quotient. Futhermore, if an argument is a non integer number, only the
+integer part will be take account.
+\begin{SideBySideExample}
+ \opcopy{5376}{a}%
+ \opcopy{2304}{b}%
+ \opgcd{a}{b}{gcd(ab)}%
+ $\gcd(\opprint{a},\opprint{b}) =
+ \opprint{gcd(ab)}$
+\end{SideBySideExample}
+You can play and find long period of divisions. Without going into
+mathematical details, square of prime numbers are good choices. For
+instance with $257^2=66049$ you obtain:
+\begin{SideBySideExample}
+ \opdivperiod{1}{66049}{p}%
+ $\frac{1}{66049}$ have a period
+ of length $\opprint{p}$.
+\end{SideBySideExample}
+
+With macros \macro{opcastingoutnines}\index{casting out of nines} and
+\macro{opcastingoutelevens}\index{casting out of elevens} you can
+build casting out of nines and casting out of elevens. \package{xlop}
+don't typeset directly these ``operations'' since they need diagonal
+rules, and then, need some particular packages. In fact, macro
+\macro{opcastingoutnines} calculates the sum modulo~9 of first
+argument digits and put the result in second argument. Macro
+\macro{opcastingoutelevens} calculates the sum modulo~11 of the even
+rank digits of first argument, calculates the sum moldulo~11 of the
+odd rank digits of first argument, and calculates the difference of
+these two sums.
+\begin{SideBySideExample}
+ \newcommand\castingoutnines[3]{%
+ \opcastingoutnines{#1}{cna}%
+ \opcastingoutnines{#2}{cnb}%
+ \opmul*{cna}{cnb}{cna*cnb}
+ \opcastingoutnines{cna*cnb}{cna*cnb}%
+ \opcastingoutnines{#3}{cn(a*b)}%
+ \begin{pspicture}(-3.5ex,-3.5ex)%
+ (3.5ex,3.5ex)
+ \psline(-3.5ex,-3.5ex)(3.5ex,3.5ex)
+ \psline(-3.5ex,3.5ex)(3.5ex,-3.5ex)
+ \rput(-2.75ex,0){\opprint{cna}}
+ \rput(2.75ex,0){\opprint{cnb}}
+ \rput(0,2.75ex){\opprint{cna*cnb}}
+ \rput(0,-2.75ex){\opprint{cn(a*b)}}
+ \end{pspicture}
+ }
+ \castingoutnines{157}{317}{49669}
+\end{SideBySideExample}
+In passing, this example shows that $157\times317\neq49669$! The right
+operation is \opmul[style=text]{157}{317}.
+
+The two next macros are very simple. We have \macro{opneg} which
+calculates the opposite of its first argument and store it in the
+variable indicated by the second argument. We have also \macro{opabs}
+which does the same with absolute value.
+
+Macro \macro{oppower} calculates integer powers of numbers. This macro
+has three parameters. The third one store the first argument to the
+power of the second argument. When the first argument is zero: if the
+second argument is zero, result is~1; if the second argument is
+positive, result is~0; if the second argument is negative, there is an
+error. There isn't any limitation on first parameter. This leads to
+some problems, for instance:
+\begin{CenterExample}[xrightmargin=0pt]
+ \opcopy{0.8}{a}\opcopy{-17}{n}%
+ \oppower{a}{n}{r}%
+ $\opprint{a}^{\opprint{n}} = \opprint{r}$
+\end{CenterExample}
+With $0.7$ rather than $0.8$, problem is worse:
+\begin{CenterExample}[xrightmargin=0pt]
+ \opcopy{0.7}{a}\opcopy{-8}{n}%
+ \oppower{a}{n}{r}%
+ \opdecimalwidth{r}{dr}
+ $\opprint{a}^{\opprint{n}}$ has \opprint{dr}
+ figures after dot.
+\end{CenterExample}
+In fact, when exponent is negative, \emph{first} \package{xlop}
+calulates inverse of the number and \emph{after that}, it calculates
+the power with opposite of the exponent. In this example, if we had
+left $-17$ rather than $-8$, then there will be a capacity overflow
+capacity of \TeX{}.
+
+Three macros allow a control about precision. They allow to
+approximate a number giving the rank of the approximation. There are
+\macro{opfloor}, \macro{opceil}, and \macro{opround}. They need three
+parameters which are (in order): start number, rank of approximation,
+variable name to store the result.
+
+Rank is an integer value giving number of digits after decimal
+separator which must be present. If this rank is negative,
+approximation will be done before the decimal separator. If rank
+is positive and indicates more digits than decimal part has, then
+zeros will be added. If rank is negative and indicates more digits
+than integer part has, then approximation will be locked in order to
+give the first digit of the number at least.
+
+Here is a summary table which allow to understand how these macros
+work.
+\begin{center}
+ \opcopy{3838.3838}{a}
+ \begin{tabular}{|r|l|l|l|}
+ \hline
+ \multicolumn{4}{|c|}{\textbf{\texttt{\textbackslash
+ op\ldots{}\{3838.3838\}\{n\}\{r\}}}}\\\hline
+ \multicolumn{1}{|c|}{\textbf{\texttt{n}}} &
+ \multicolumn{1}{c|}{\textbf{\texttt{floor}}} &
+ \multicolumn{1}{c|}{\textbf{\texttt{ceil}}} &
+ \multicolumn{1}{c|}{\textbf{\texttt{round}}} \\\hline
+ \opcopy{6}{n}$\opprint{n}$ &
+ \opfloor{a}{n}{r}$\opprint{r}$ &
+ \opceil{a}{n}{r}$\opprint{r}$ &
+ \opround{a}{n}{r}$\opprint{r}$ \\
+ \opcopy{4}{n}$\opprint{n}$ &
+ \opfloor{a}{n}{r}$\opprint{r}$ &
+ \opceil{a}{n}{r}$\opprint{r}$ &
+ \opround{a}{n}{r}$\opprint{r}$ \\
+ \opcopy{3}{n}$\opprint{n}$ &
+ \opfloor{a}{n}{r}$\opprint{r}$ &
+ \opceil{a}{n}{r}$\opprint{r}$ &
+ \opround{a}{n}{r}$\opprint{r}$ \\
+ \opcopy{0}{n}$\opprint{n}$ &
+ \opfloor{a}{n}{r}$\opprint{r}$ &
+ \opceil{a}{n}{r}$\opprint{r}$ &
+ \opround{a}{n}{r}$\opprint{r}$ \\
+ \opcopy{-1}{n}$\opprint{n}$ &
+ \opfloor{a}{n}{r}$\opprint{r}$ &
+ \opceil{a}{n}{r}$\opprint{r}$ &
+ \opround{a}{n}{r}$\opprint{r}$ \\
+ \opcopy{-2}{n}$\opprint{n}$ &
+ \opfloor{a}{n}{r}$\opprint{r}$ &
+ \opceil{a}{n}{r}$\opprint{r}$ &
+ \opround{a}{n}{r}$\opprint{r}$ \\
+ \opcopy{-6}{n}$\opprint{n}$ &
+ \opfloor{a}{n}{r}$\opprint{r}$ &
+ \opceil{a}{n}{r}$\opprint{r}$ &
+ \opround{a}{n}{r}$\opprint{r}$ \\\hline
+ \end{tabular}
+ \opcopy{-3838.3838}{a}
+ \begin{tabular}{|r|l|l|l|}
+ \hline
+ \multicolumn{4}{|c|}{\textbf{\texttt{\textbackslash
+ op\ldots{}\{-3838.3838\}\{n\}\{r\}}}}\\\hline
+ \multicolumn{1}{|c|}{\textbf{\texttt{n}}} &
+ \multicolumn{1}{c|}{\textbf{\texttt{floor}}} &
+ \multicolumn{1}{c|}{\textbf{\texttt{ceil}}} &
+ \multicolumn{1}{c|}{\textbf{\texttt{round}}} \\\hline
+ \opcopy{6}{n}$\opprint{n}$ &
+ \opfloor{a}{n}{r}$\opprint{r}$ &
+ \opceil{a}{n}{r}$\opprint{r}$ &
+ \opround{a}{n}{r}$\opprint{r}$ \\
+ \opcopy{4}{n}$\opprint{n}$ &
+ \opfloor{a}{n}{r}$\opprint{r}$ &
+ \opceil{a}{n}{r}$\opprint{r}$ &
+ \opround{a}{n}{r}$\opprint{r}$ \\
+ \opcopy{3}{n}$\opprint{n}$ &
+ \opfloor{a}{n}{r}$\opprint{r}$ &
+ \opceil{a}{n}{r}$\opprint{r}$ &
+ \opround{a}{n}{r}$\opprint{r}$ \\
+ \opcopy{0}{n}$\opprint{n}$ &
+ \opfloor{a}{n}{r}$\opprint{r}$ &
+ \opceil{a}{n}{r}$\opprint{r}$ &
+ \opround{a}{n}{r}$\opprint{r}$ \\
+ \opcopy{-1}{n}$\opprint{n}$ &
+ \opfloor{a}{n}{r}$\opprint{r}$ &
+ \opceil{a}{n}{r}$\opprint{r}$ &
+ \opround{a}{n}{r}$\opprint{r}$ \\
+ \opcopy{-2}{n}$\opprint{n}$ &
+ \opfloor{a}{n}{r}$\opprint{r}$ &
+ \opceil{a}{n}{r}$\opprint{r}$ &
+ \opround{a}{n}{r}$\opprint{r}$ \\
+ \opcopy{-6}{n}$\opprint{n}$ &
+ \opfloor{a}{n}{r}$\opprint{r}$ &
+ \opceil{a}{n}{r}$\opprint{r}$ &
+ \opround{a}{n}{r}$\opprint{r}$ \\\hline
+ \end{tabular}
+\end{center}
+
+\index{complex expression|(}
+The very last macro we have to study is \macro{opexpr}. It calculates
+a complex expression. This macro needs two parameters: the first one
+is the expression in infix form (the natural one for human), the
+second one is the variable name where the result is stored.
+
+Initially, expression must have been polish one (for instance,
+notation used on old HP calculator, or PostScript language), but
+another work with Christophe Jorssen has given the actual form for
+expression in \package{xlop}, more pleasant for users.
+
+Formulas accept usual arithmetic operators \texttt{+}, \texttt{-},
+\texttt{*}, and \texttt{/}. They accept also \texttt{:} operator for
+euclidian division, and \verb+^+ for power. The \texttt{-} operator
+has both rôle of substraction and unary operator for opposite. The
+\texttt{+} has also these rôles, here the unary operator do\dots{}
+nothing! Operands are written in decimal form or \emph{via} variable
+name. However, \macro{opexpr} introduces a restriction about variable
+name since variable names must be different to function names
+recognized by \macro{opexpr}. Accessible functions are:
+\begin{itemize}
+\item \texttt{abs(a)} ;
+\item \texttt{ceil(a,i)} ;
+\item \texttt{decimal(a)} ;
+\item \texttt{floor(a,i)} ;
+\item \texttt{gcd(a,b)} ;
+\item \texttt{integer(a)} ;
+\item \texttt{mod(a,b)} gives result of \texttt{a} modulo
+ \texttt{b} ;
+\item \texttt{rest(a,b)} gives remainder of \texttt{a} divide by
+ \texttt{b} (difference between remainider and modulo is the same as
+ between non euclidian division and euclidian division);
+\item \texttt{round(a,i)}.
+\end{itemize}
+where functions that aren't listed above ask the matching macros.
+(function \texttt{xxx} calls macro \verb+\opxxx+) For functions
+\texttt{ceil}, \texttt{floor}, and \texttt{round}, the number
+\texttt{i} indicates rank for approximation.
+
+Macro \macro{opexpr} accept optional argument since it can realize
+division which can be controlled
+by \parameter{maxdivstep},\parameter{safedivstep},
+and \parameter{period} parameters. Our first example is quite basic:
+\begin{CenterExample}[xrightmargin=0pt]
+ \opexpr{3--gcd(15*17,25*27)*2}{r}%
+ $3--\gcd(15\times17,25\times27)\times2 = \opprint{r}$
+\end{CenterExample}
+
+Here is another example that shows that datas can come from a macro:
+\begin{CenterExample}[xrightmargin=0pt]
+ \newcommand\try{2}%
+ \opexpr{\try+1/
+ (\try+1/
+ (\try+1/
+ (\try+1/
+ (\try+1/
+ (\try)))))}{r}
+ Continued fraction of base $u_n=2$ equal \opprint{r} at rank~5.
+\end{CenterExample}
+\index{complex expression|)}
+
+\appendix
+\chapter{Short Summary}
+\label{chap:Aide-mémoire}
+\section{Compilation times}
+\label{sec:Temps de compilation}
+Compilation times was measured on a computer with
+processor Pentium II 600\,MHz, RAM 256\,MB, on linux system (Debian
+woody).\footnote{In fact, these measures was done in 2004, when the
+ 0.2 version was released. Author is somewhere lasy and he doesn't
+ measure with his new computer (more efficient)!}. The principle is
+to do a minimal file \texttt{.tex}. The general canvas is:
+\begin{verbatim}
+ \input xlop
+ \count255=0
+ \loop
+ \ifnum\count255<1000
+ <operation to test>
+ \advance\count255 by1
+ \repeat
+ \bye
+\end{verbatim}
+Compilation time with \verb+<operation to test>+ empty was substract
+from the others test. Only the user time was take account. Results are
+given in millisecond and should be read with great precautions.
+
+\index{compilation time|(}\index{time (calculation)|(}%
+Next table gives operation times in milliseconds. Operands used had
+decimal notation but some trails with variable has shown that times
+was very closed.
+
+First line indicates the numbers of digits for both operands.
+Operands were build like this:
+\begin{itemize}
+\item $\mathrm{A} = 1$ et $\mathrm{B} = 9$ for one digit;
+\item $\mathrm{A} = 12$ et $\mathrm{B} = 98$ for two digits;
+\item $\mathrm{A} = 123$ et $\mathrm{B} = 987$ for three digits;
+\item $\mathrm{A} = 12345$ et $\mathrm{B} = 98765$ for five digits;
+\item $\mathrm{A} = 1234567890$ et $\mathrm{B} = 9876543210$ for ten
+ digits;
+\item $\mathrm{A} = 12345678901234567890$ et $\mathrm{B} =
+ 98765432109876543210$ for twenty digits;
+\end{itemize}
+Here is results, some comments follow:
+
+\bigskip\noindent\hbox to\linewidth{\hss
+ \begin{tabular}{|r|*{6}{l|}}
+ \cline{2-7}
+ \multicolumn{1}{l|}{} &
+ \multicolumn{1}{c|}{1} &
+ \multicolumn{1}{c|}{2} &
+ \multicolumn{1}{c|}{3} &
+ \multicolumn{1}{c|}{5} &
+ \multicolumn{1}{c|}{10} &
+ \multicolumn{1}{c|}{20} \\\hline
+ \verb+\opadd*{A}{B}{r}+ &
+ 1.1 & 1.4 & 1.6 & 2.1 & 3.3 & 5.8 \\\cline{2-7}
+ \verb+\opadd*{B}{A}{r}+ &
+ 1.1 & 1.4 & 1.6 & 2.1 & 3.3 & 5.8 \\\hline
+ \verb+\opsub*{A}{B}{r}+ &
+ 1.7 & 2.1 & 2.4 & 3.0 & 4.8 & 8.3 \\\cline{2-7}
+ \verb+\opsub*{B}{A}{r}+ &
+ 1.5 & 1.7 & 2.0 & 2.6 & 4.0 & 7.0 \\\hline
+ \verb+\opmul*{A}{B}{r}+ &
+ 4.6 & 6.3 & 8.2 & 12.8 & 29.9 & 87.0 \\\cline{2-7}
+ \verb+\opmul*{B}{A}{r}+ &
+ 5.0 & 6.6 & 8.5 & 13.2 & 30.3 & 87.8 \\\hline
+ \verb+\opdiv*{A}{B}{q}{r}+ &
+ 46.4 & 53.8 & 53.8 & 64.3 & 85.8 & 124.7 \\\cline{2-7}
+ \verb+\opdiv*{B}{A}{q}{r}+ &
+ 12.4 & 48.9 & 55.7 & 58.6 & 72.8 & 111.0 \\\hline
+ \verb+\opdiv*[maxdivstep=5]{A}{B}{q}{r}+ &
+ 26.8 & 30.0 & 32.6 & 37.6 & 49.5 & 73.5 \\\cline{2-7}
+ \verb+\opdiv*[maxdivstep=5]{B}{A}{q}{r}+ &
+ 12.4 & 29.1 & 32.6 & 35.2 & 43.3 & 67.9 \\\hline
+ \verb+\opidiv*{A}{B}{q}{r}+ &
+ 10.8 & 12.2 & 13.5 & 16.0 & 22.3 & 35.5 \\\cline{2-7}
+ \verb+\opidiv*{B}{A}{q}{r}+ &
+ 11.6 & 13.0 & 14.2 & 16.6 & 23.0 & 36.7 \\\hline
+ \verb+\opidiv*{A}{2}{q}{r}+ &
+ 10.7 & 12.0 & 15.3 & 22.3 & 42.9 & 83.0 \\\hline
+ \end{tabular}
+ \hss
+}
+\par\bigskip
+It is normal that inversion of operands don't have sensible influence
+for addition. Then, it could be strange that there is influence for
+substraction. In fact, when the second operand is bigger than the
+second one, there is additional process (double inversion, operation
+on the sign of the result).
+
+It is normal that division time is greater than the multiplication
+one. It could be abnormal that division seems catch up! In fact, the
+multiplication complexity grows quickly with the operand length. In
+the other hand, division complexity is stopped
+by \parameter{maxdivstep} parameter. It is clear on example where
+there is only five steps.
+
+Some results seems odd. For instance \verb+\opdiv*{9}{1}{q}{r}+ is
+very fast. These is due to the one digit quotient.
+\verb+\opdiv*{123}{987}{q}{r}+, even more odd, is rather fast. Here,
+explanation is quite subtle: this is due to many zeros in the
+quotient.
+
+When operands have comparable length, euclidian division is much
+faster than non euclidian one. This is because quotient has few
+digits (only one for all the numbers \texttt{A} and \texttt{B}). The
+last line of the table is more relevant for this operation time.
+
+All these remarks are written to put the emphasis on the difficulty to
+evaluate the compilation time: it depends on too many parameters. On
+the other hand, this table give a pretty good idea of what can be
+expected.
+\index{compilation time|)}\index{time (calculation)|)}%
+
+\newpage
+\section{Macros List}
+\label{sec:Liste des macros}
+\index{macros!table of|(}%
+\noindent\begin{longtable}{|l|p{6.3cm}|}
+ \hline
+ \multicolumn{1}{|c|}{\textbf{Macro}} &
+ \multicolumn{1}{c|}{\textbf{Description}} \\\hline\hline
+ \endfirsthead
+ \hline
+ \multicolumn{1}{|c|}{\textbf{Macro}} &
+ \multicolumn{1}{c|}{\textbf{Description}} \\\hline\hline
+ \endhead
+ \hline
+ \multicolumn{2}{|c|}{$\ldots$ to be continued $\ldots$}\\
+ \hline
+ \endfoot
+ \hline
+ \endlastfoot
+ \verb+\opabs{n}{N}+ &
+ \verb+N+ stores the absolute value of \verb+n+. \\\hline
+ \verb+\opadd[P]{n1}{n2}+ &
+ Displays result of \verb-n1+n2-. \\\hline
+ \verb+\opadd*{n1}{n2}{N}+ &
+ Calcules \verb-n1+n2- and put result in \verb+N+. \\\hline
+ \verb+\opcastingoutelevens{n}{N}+ &
+ Calcules difference (modulo 11) of sum of rank odd digits and sum of
+ rank even digits of \verb+n+ and put the result in \verb+N+.\\\hline
+ \verb+\opcastingoutnines{n}{N}+. &
+ Calcules sum modulo 9 of digits of \verb+n+ and put result in
+ \verb+N+. \\\hline
+ \verb+\opceil{n}{T}{N}+ &
+ Places in \verb+N+ the approximation (ceiling) of \verb+n+ to rank
+ \verb+T+. \\\hline
+ \verb+\opcmp{n1}{n2}+ &
+ Compares numbers \verb+n1+ and \verb+n2+ and setup the tests
+ \verb+\ifopeq+, \verb+\ifopneq+, \verb+\ifopgt+, \verb+\ifopge+,
+ \verb+\ifople+ et \verb+\ifoplt+. \\\hline
+ \verb+\opcopy{n}{N}+ &
+ Copy number \verb+n+ in \verb+N+. \\\hline
+ \verb+\opdecimal{n}{N}+ &
+ Copy decimal part (positive integer number) of \verb+n+ in
+ \verb+N+. \\\hline
+ \verb+\opdecimalwidth{n}{N}+ &
+ \verb+N+ stores the width of decimal part of number \verb+n+.
+ \\\hline
+ \verb+\opdisplay[P]{S}{n}+ &
+ Display number \verb+n+ width style \verb+S+ puting each figure in a
+ box which have a width of \verb+\opcolumnwidth+ and a height of
+ \verb+\oplineheight+. \\\hline
+ \verb+\opdiv[P]{n1}{n2}+ &
+ Display result of n1/n2. \\\hline
+ \verb+\opdiv*[P]{n1}{n2}{N1}{N2}+ &
+ Calculates \verb+n1/n2+, put the quotient in \verb+N1+ and the
+ remainder in \verb+N2+. \\\hline
+ \verb+\opdivperiod{T1}{T2}{N}+ &
+ Calculates length of period of \verb+T1+ divide by \verb+T2+ and put
+ the result in \verb+N+. \\\hline
+ \verb+\opexport[P]{n}\cmd+ &
+ Copy number \verb+n+ in macro \verb+\cmd+. \\\hline
+ \verb+\opexpr[P]{F}{N}+ &
+ Evaluates formula \texttt{F} and put the final result in
+ \texttt{N}. \\\hline
+ \verb+\opfloor{n}{T}{N}+ &
+ Put in \verb+N+ the apprimation (floor) of \verb+n+ at rank
+ \verb+T+. \\\hline
+ \verb+\opgcd{T1}{T2}{N}+ &
+ Calculates gcd of \verb+T1+ and \verb+T2+ and put result in
+ \verb+N+. \\\hline
+ \verb+\opgetdecimaldigit{n}{T}{N}+ &
+ Build the number \verb+N+ with the only digit in slot
+ \verb+T+ of decimal part of \verb+n+. \\\hline
+ \verb+\opgetdigit{n}{T}{N}+ &
+ Build the number \verb+N+ with the only digit in slot
+ \verb+T+ of number \verb+n+. \\\hline
+ \verb+\opgetintegerdigit{n}{T}{N}+ &
+ Build the number \verb+N+ width the only digit in slot
+ \verb+T+ of integer part of \verb+n+. \\\hline
+ \verb+\ophline(T1,T2){T3}+ &
+ Draw a horizontal rule of length \verb+T3+, of thickness
+ \verb+hrulewidth+, and which begin at \verb+(T1,T2)+ in relation to
+ reference point. \\\hline
+ \verb+\opidiv[P]{n1}{n2}+ &
+ Display the result of \verb+n1/n2+. (euclidian division, that is,
+ with integer division) \\\hline
+ \verb+\opidiv*{n1}{n2}{N1}{N2}+ &
+ Calculates \verb+n1/n2+ (euclidian division), put quotient
+ (integer) in \verb+N1+ and remainder (between 0 (include) and
+ \verb+|n2|+ (exclude)) in \verb+N2+. \\\hline
+ \verb+\opinteger{n}{N}+ &
+ Copy integer part (positive integer number) of \verb+n+
+ in \verb+N+. \\\hline
+ \verb+\opintegerwidth{n}{N}+ &
+ Number \verb+N+ stores the width of integer part of number \verb+n+.
+ \\\hline
+ \verb+\oplput(T1,T2){<object>}+ &
+ Put \verb+<object>+ to the right of the point with coordinates
+ \verb+(T1,T2)+ in relation to reference point. \\\hline
+ \verb+\opmul[P]{n1}{n2}+ &
+ Display result of \verb+n1*n2+. \\\hline
+ \verb+\opmul*{n1}{n2}{N}+ &
+ Calculates \verb+n1*n2+ and put the result in \verb+N+. \\\hline
+ \verb+\opneg{n}{N}+ &
+ Number \verb+N+ stores opposite of \verb+n+. \\\hline
+ \verb+\oppower{n}{T}{N}+ &
+ Calculates \verb+n+ to the power of \verb+T+ and put the result in
+ \verb+N+. \\\hline
+ \verb+\opprint{n}+ &
+ Display number \verb+n+ in a direct way. \\\hline
+ \verb+\opround{n}{T}{N}+ &
+ Put in \verb+N+ the approximation of \verb+n+ at rank \verb+T+.
+ \\\hline
+ \verb+\oprput(T1,T2){<object>}+ &
+ Put \verb+<object>+ to the left of the point with coordinates
+ \verb+(T1,T2)+ in relation to reference point. \\\hline
+ \verb+\opset{L}+ &
+ Allocates globally \package{xlop} parameters given in the list
+ \verb+L+. \\\hline
+ \verb+\opsetdecimaldigit{n}{T}{N}+ &
+ Modify the digit of rank \verb+T+ in decimal part of \verb+N+ in
+ order to have the value \verb+n+ for this digit. \\\hline
+ \verb+\opsetdigit{n}{T}{N}+ &
+ Modify the digit of rank \verb+T+ of \verb+N+ in
+ order to have the value \verb+n+ for this digit. \\\hline
+ \verb+\opsetintegerdigit{n}{T}{N}+ &
+ Modify the digit of rank \verb+T+ in integer part of \verb+N+ in
+ order to have the value \verb+n+ for this digit. \\\hline
+ \verb+\opsub[P]{n1}{n2}+ &
+ Display result of \verb+n1-n2+. \\\hline
+ \verb+\opsub*{n1}{n2}{N}+ &
+ Calculates \verb+n1-n2+ and put the result in \verb+N+. \\\hline
+ \verb+\opunzero{N}+ &
+ Delete non-significant zeros of \verb+N+. \\\hline
+ \verb+\opvline(T1,T2){T3}+ &
+ Draw a vertical ruleof length \verb+T3+, of thickness
+ \verb+hrulewidth+ and which begin at \verb+(T1,T2)+ in relation to
+ reference point. \\\hline
+ \verb+\opwidth{n}{N}+ &
+ Number \verb+N+ stores number of digits of number \verb+n+. \\\hline
+\end{longtable}\index{macros!table of|)}
+
+In this table, parameters:
+\begin{itemize}
+\item \texttt{n} and \texttt{ni} (where \texttt{i} is an index)
+ indicate that parameter must be a number given in decimal form or a
+ variable name;
+\item \texttt{N} and \texttt{Ni} (where \texttt{i} is an index)
+ indicate that parameter must be a number given in decimal form or a
+ variable name;
+\item \texttt{[P]} indicates that the macro accept an optional
+ parameter which allow to modify parameter of \package{xlop};
+\item \texttt{T} and \texttt{Ti} (where \texttt{i} is an index)
+ indicate that parameter must be a number given in decimal form or a
+ variable name but must be less than numbers acceptable by \TeX{},
+ that is, $-2147483648 \le \mathtt{T} \le 2147483647$.
+\end{itemize}
+
+\section{Parameter list}
+\label{sec:Liste des parametres}
+\index{parameter@parameter!table of|(}%
+\begingroup
+\advance\hoffset by-1.75cm \advance\linewidth by1.75cm
+\begin{longtable}{|l|l|p{7cm}|}
+ \hline
+ \multicolumn{1}{|c|}{\textbf{Parameter}} &
+ \multicolumn{1}{c|}{\textbf{Default}} &
+ \multicolumn{1}{c|}{\textbf{Signification}} \\\hline\hline
+ \endfirsthead
+ \hline
+ \multicolumn{1}{|c|}{\textbf{Parameter}} &
+ \multicolumn{1}{c|}{\textbf{Default}} &
+ \multicolumn{1}{c|}{\textbf{Signification}} \\\hline\hline
+ \endhead
+ \hline
+ \multicolumn{3}{|c|}{$\ldots$ to be continued $\ldots$}\\
+ \hline
+ \endfoot
+ \hline
+ \endlastfoot
+ \verb+afterperiodsymbol+ &
+ \verb+$\ldots$+ &
+ Symbol used after a period of a division. \\\hline
+ \verb+approxsymbol+ &
+ \verb+$\approx$+ &
+ Symbol used as approximation relation in inline operations. \\\hline
+ \verb+equalsymbol+ &
+ \verb+{$=$}+ &
+ Symbol used as equality relation in inline operations. \\\hline
+ \verb+addsymbol+ &
+ \verb-$+$- &
+ Symbol used as addition operator. \\\hline
+ \verb+subsymbol+ &
+ \verb+$-$+ &
+ Symbol used as substraction operator. \\\hline
+ \verb+mulsymbol+ &
+ \verb+$\times$+ &
+ Symbol used as multiplication operator. \\\hline
+ \verb+divsymbol+ &
+ \verb+$\div$+ &
+ Symbol used as multiplication operator for inline
+ operations. \\\hline
+ \verb+decimalsepsymbol+ &
+ \verb+.+ &
+ Symbol used as decimal separator. \\\hline
+ \verb+strikedecimalsepsymbol+ &
+ &
+ Symbol used as decimal separator moved in dividend and divisor for
+ display division. \\\hline
+ \verb+shiftintermediarysymbol+ &
+ \verb+$\cdot$+ &
+ Symbol used to show intermediary numbers shifting for display
+ multiplication. \\\hline
+ \verb+displayshiftintermediary+ &
+ \verb+shift+ &
+ Indicates that the shifting character for multiplications will be
+ displayed only for additional shifting (value \verb+shift+), for
+ all the shifting (value \verb+all+), or never (value
+ \verb+none+). \\\hline
+ \verb+voperation+ &
+ \verb+bottom+ &
+ Vertical alignement for displayed operation. The value \verb+bottom+
+ indicates that the bottom of operation will be aligned with
+ baseline. The value \verb+top+ indicates that the top of operation
+ will be aligned with baseline. The value \verb+center+ indicates
+ that operation will be verticaly centred with baseline. \\\hline
+ \verb+voperator+ &
+ \verb+center+ &
+ Vertical alignement for operators in displayed operations. The value
+ \verb+top+ put operator at the level of first operand. The value
+ \verb+bottom+ put operator at the level of second operand. The value
+ \verb+center+ put operator between operands. \\\hline
+ \verb+hfactor+ &
+ \verb+decimal+ &
+ Sort of operands alignement for displayed operation. The value
+ \verb+decimal+ indicates an alignement on decimal separator. The
+ value \verb+right+ indicates a flushright alignement. \\\hline
+ \verb+vruleperiod+ &
+ \verb+-0.2+ &
+ Vertical position of rule which indicates period of quotient for
+ inline division. \\\hline
+ \verb+dividendbridge+ &
+ \verb+false+ &
+ Indicates if there is a ``bridge'' above dividend. \\\hline
+ \verb+shiftdecimalsep+ &
+ \verb+both+ &
+ Indicates how shift decimal separator into operands for a displayed
+ division. The value \verb+both+ indicates that shifting are made on
+ both divisor and dividend in order to make integer numbers. The
+ value \verb+divisor+ indicates that the shifting must give an
+ integer divisor. The value \verb+none+ indicates that there is no
+ shifting. \\\hline
+ \verb+maxdivstep+ &
+ \verb+10+ &
+ Maximal number of steps in division. \\\hline
+ \verb+safedivstep+ &
+ \verb+50+ &
+ Maximal number of steps in division when there is a period to
+ reach. \\\hline
+ \verb+period+ &
+ \verb+false+ &
+ Indicates if division must be stoped when a whole period is
+ reached. \\\hline
+ \verb+deletezero+ &
+ \verb+true+ &
+ Indicates that non-significant zeros are displayed (\verb+false+) or
+ deleted (\verb+true+). \\\hline
+ \verb+carryadd+ &
+ \verb+true+ &
+ Indicates that carries are displayed (\verb+true+) for displayed
+ additions. \\\hline
+ \verb+carrysub+ &
+ \verb+false+ &
+ Indicates that carries are displayed (\verb+true+) for displayed
+ substractions. \\\hline
+ \verb+offsetcarry+ &
+ \verb+-0.35+ &
+ Horizontal offset for carries into displayed substractions. \\\hline
+ \verb+style+ &
+ \verb+display+ &
+ Indicates tha operation are inline (\verb+text+) or displayed
+ (\verb+display+). \\\hline
+ \verb+displayintermediary+ &
+ \verb+nonzero+ &
+ Indicates that all intermediary results are displayed (\verb+all+),
+ only non null ones are displayed (\verb+nonzero+), or any
+ intermediary result isn't displayed into displayed multiplications
+ and divisions. \\\hline
+ \verb+lastcarry+ &
+ \verb+false+ &
+ Indicates that carry with no figure just below it must be displayed
+ (\verb+true+), or not (\verb+false+). \\\hline
+ \verb+parenthesisnegative+ &
+ \verb+none+ &
+ Behavior to display negative numbers in inline operations. The value
+ \verb+none+ displays them without parenthesis. The value \verb+all+
+ displays them always with parenthesis. The value \verb+last+ display
+ parenthesis except for first operand of an expression. \\\hline
+ \verb+columnwidth+ &
+ \verb+2ex+ &
+ With of box for one figure. \\\hline
+ \verb+lineheight+ &
+ \verb+\baselineskip+ &
+ Height of box for one figure. \\\hline
+ \verb+decimalsepwidth+ &
+ \verb+0pt+ &
+ Width of box that hold the decimal separator. \\\hline
+ \verb+decimalsepoffset+ &
+ \verb+0pt+ &
+ Horizontal offset for decimal separator. \\\hline
+ \verb+hrulewidth+ &
+ \verb+0.4pt+ &
+ Thickness of horizontal rules. \\\hline
+ \verb+vrulewidth+ &
+ \verb+0.4pt+ &
+ Thickness of vertical rules. \\\hline
+ \verb+behaviorsub+ &
+ \verb+silent+ &
+ \package{xlop} behavior for an ``impossible'' substraction, that is,
+ a substraction with two positive operands, the second greater
+ than the first one. The value \verb+silent+ does operation swapping
+ the two operands in a slient way. With the value \verb+warning+,
+ there are also a swapping but \package{xlop} gives a warning. The
+ value \verb+error+ display an error message and operation isn't
+ processed. \\\hline
+ \verb+country+ &
+ \verb+french+ &
+ Indicates the displayed operation behavior depending of
+ contry. Package \package{xlop} put forward only \verb+french+,
+ \verb+american+, and \verb+russian+ but these different ways to
+ display operations aren't encoded in version 0.23. \\\hline
+ \verb+operandstyle+ &
+ &
+ Style for operands. \\\hline
+ \verb+resultstyle+ &
+ &
+ Style for results. \\\hline
+ \verb+remainderstyle+ &
+ &
+ Style for remainders. \\\hline
+ \verb+intermediarystyle+ &
+ &
+ Style for intermediary results (intermediary numbers in
+ multiplication and number to substract in division when successive
+ substractions are displayed). \\\hline
+ \verb+carrystyle+ &
+ \verb+\scriptsize+ &
+ Style for carries. The default value when compilation are made
+ without \LaTeX{} is \verb+\sevenrm+. \\\hline
+\end{longtable}\index{parameter@parameter!table of|)}
+\endgroup
+
+\chapter{Tricks}
+\label{chap:Trucs et astuces}
+\section{\package{xlop} vs. \package{calc} and \package{fp}}
+You could believe that \package{xlop} can replace package such
+\package{calc}\index{package!calc}\index{calc} and
+\package{fp}\index{package!fp}\index{fp}. In fact, that is not so
+simple. Obviously \package{xlop} can do complex calculations, on arbitrary
+long numbers but, unlike \package{calc}, it don't allow to process
+directly dimensions. Comparison with \package{fp} is somewhere more
+realistic but remember that \package{xlop} can make memory usage too
+high.
+
+If you want to process calculations on length\index{length}, you can use
+that a dimen register allocation to a counter gives a number which
+correspond to this length with unit \texttt{sp}.
+\begin{CenterExample}[xrightmargin=0pt]
+ \newcommand\getsize[2]{%
+ \dimen0=#1\relax
+ \count255=\dimen0
+ \opcopy{\the\count255}{#2}}
+ \getsize{1pt}{r}$1\,\mathrm{pt}=\opprint{r}\,\mathrm{sp}$\quad
+ \getsize{1pc}{r}$1\,\mathrm{pc}=\opprint{r}\,\mathrm{sp}$\quad
+ \getsize{1in}{r}$1\,\mathrm{in}=\opprint{r}\,\mathrm{sp}$\quad
+ \getsize{1bp}{r}$1\,\mathrm{bp}=\opprint{r}\,\mathrm{sp}$\quad
+ \getsize{1cm}{r}$1\,\mathrm{cm}=\opprint{r}\,\mathrm{sp}$\quad
+ \getsize{1mm}{r}$1\,\mathrm{mm}=\opprint{r}\,\mathrm{sp}$\quad
+ \getsize{1dd}{r}$1\,\mathrm{dd}=\opprint{r}\,\mathrm{sp}$\quad
+ \getsize{1cc}{r}$1\,\mathrm{cc}=\opprint{r}\,\mathrm{sp}$\quad
+ \getsize{1sp}{r}$1\,\mathrm{sp}=\opprint{r}\,\mathrm{sp}$\quad
+\end{CenterExample}
+However, don't forget that the \package{xlop} main goal is to
+\emph{display} operations.
+
+With this \macro{getsize} macro, it is possible to realise
+calculations on length.
+\begin{SideBySideExample}
+ \newcommand\getsize[2]{%
+ \dimen0=#1\relax
+ \count255=\dimen0
+ \opcopy{\the\count255}{#2}}
+ \getsize{1cm}{u}%
+ \getsize{\textwidth}{w}%
+ \getsize{\textheight}{h}%
+ \opexpr{w*h/u^2}{S}%
+ \opround{S}{2}{S}%
+ Surface of spread is
+ \opprint{S}\,$\mathrm{cm}^2$
+\end{SideBySideExample}
+
+\section{Complex Operations}
+\label{sec:Creation d'operations complexes}
+Use of \package{xlop} macros with loop of \TeX{} allow to create
+operations as you want. Here, we give only two examples. The first one
+can express a number as a product of prime factors, the second one is
+a general calculation for continued
+fraction.\index{number!prime}\index{loop|(}%
+\index{product of prime factors}
+\begin{Verbatim}[xrightmargin=0pt]
+ \newcount\primeindex
+ \newcount\tryindex
+ \newif\ifprime
+ \newif\ifagain
+ \newcommand\getprime[1]{%
+ \opcopy{2}{P0}%
+ \opcopy{3}{P1}%
+ \opcopy{5}{try}
+ \primeindex=2
+ \loop
+ \ifnum\primeindex<#1\relax
+ \testprimality
+ \ifprime
+ \opcopy{try}{P\the\primeindex}%
+ \advance\primeindex by1
+ \fi
+ \opadd*{try}{2}{try}%
+ \ifnum\primeindex<#1\relax
+ \testprimality
+ \ifprime
+ \opcopy{try}{P\the\primeindex}%
+ \advance\primeindex by1
+ \fi
+ \opadd*{try}{4}{try}%
+ \fi
+ \repeat
+ }
+ \newcommand\testprimality{%
+ \begingroup
+ \againtrue
+ \global\primetrue
+ \tryindex=0
+ \loop
+ \opidiv*{try}{P\the\tryindex}{q}{r}%
+ \opcmp{r}{0}%
+ \ifopeq \global\primefalse \againfalse \fi
+ \opcmp{q}{P\the\tryindex}%
+ \ifoplt \againfalse \fi
+ \advance\tryindex by1
+ \ifagain
+ \repeat
+ \endgroup
+ }
+\end{Verbatim}
+\newcount\primeindex
+\newcount\tryindex
+\newif\ifprime
+\newif\ifagain
+\newcommand\getprime[1]{%
+ \opcopy{2}{P0}%
+ \opcopy{3}{P1}%
+ \opcopy{5}{try}
+ \primeindex=2
+ \loop
+ \ifnum\primeindex<#1\relax
+ \testprimality
+ \ifprime
+ \opcopy{try}{P\the\primeindex}%
+ \advance\primeindex by1
+ \fi
+ \opadd*{try}{2}{try}%
+ \ifnum\primeindex<#1\relax
+ \testprimality
+ \ifprime
+ \opcopy{try}{P\the\primeindex}%
+ \advance\primeindex by1
+ \fi
+ \opadd*{try}{4}{try}%
+ \fi
+ \repeat
+}
+\newcommand\testprimality{%
+ \begingroup
+ \againtrue
+ \global\primetrue
+ \tryindex=0
+ \loop
+ \opidiv*{try}{P\the\tryindex}{q}{r}%
+ \opcmp{r}{0}%
+ \ifopeq \global\primefalse \againfalse \fi
+ \opcmp{q}{P\the\tryindex}%
+ \ifoplt \againfalse \fi
+ \advance\tryindex by1
+ \ifagain
+ \repeat
+ \endgroup
+}
+
+With this code, we can create a prime numbers list (here the 20~first
+ones).
+\begin{SideBySideExample}
+ \getprime{20}%
+ \opprint{P0}, \opprint{P1}, \ldots,
+ \opprint{P9}, \ldots \opprint{P19}.
+\end{SideBySideExample}
+
+Note that this code is very bad: it is very slow and don't give
+anything against native \TeX{} operations. It is only a educational
+example. Note also that the tricks to put loop into loop with macro
+\verb+\testprimality+ inside a group. \package{xlop} operations give
+global results.\index{global allocation}
+
+Once you have your prime numbers ``table'', you can use it to
+write a number as product of prime number.
+\begin{CenterExample}[xrightmargin=0pt]
+ \newcommand\primedecomp[2][nil]{%
+ \begingroup
+ \opset{#1}%
+ \opcopy{#2}{NbtoDecompose}%
+ \opabs{NbtoDecompose}{NbtoDecompose}%
+ \opinteger{NbtoDecompose}{NbtoDecompose}%
+ \opcmp{NbtoDecompose}{0}%
+ \ifopeq
+ I refuse to factorize zero.
+ \else
+ \setbox1=\hbox{\opdisplay{operandstyle.1}%
+ {NbtoDecompose}}%
+ {\setbox2=\box2{}}%
+ \count255=1
+ \primeindex=0
+ \loop
+ \opcmp{NbtoDecompose}{1}\ifopneq
+ \opidiv*{NbtoDecompose}{P\the\primeindex}{q}{r}%
+ \opcmp{0}{r}\ifopeq
+ \ifvoid2
+ \setbox2=\hbox{%
+ \opdisplay{intermediarystyle.\the\count255}%
+ {P\the\primeindex}}%
+ \else
+ \setbox2=\vtop{%
+ \hbox{\box2}
+ \hbox{%
+ \opdisplay{intermediarystyle.\the\count255}%
+ {P\the\primeindex}}}
+ \fi
+ \opcopy{q}{NbtoDecompose}%
+ \advance\count255 by1
+ \setbox1=\vtop{%
+ \hbox{\box1}
+ \hbox{%
+ \opdisplay{operandstyle.\the\count255}%
+ {NbtoDecompose}}
+ }%
+ \else
+ \advance\primeindex by1
+ \fi
+ \repeat
+ \hbox{\box1
+ \kern0.5\opcolumnwidth
+ \opvline(0,0.75){\the\count255.25}
+ \kern0.5\opcolumnwidth
+ \box2}%
+ \fi
+ \endgroup
+ }
+
+ \getprime{20}%
+ \primedecomp[operandstyle.2=\red,
+ intermediarystyle.2=\red]{252}
+\end{CenterExample}
+Note the use of group for the whole macro in order to protect
+\package{xlop} parameter modifications.%
+\index{parameter!local modification} Note also that void parameter
+aren't allowed. It's not a bug, it's a feature. Author thinks that a
+user who write brackets without anything between these brackets is
+going to make a mistake. To obviate this
+prohibition\index{parameter!void}, there is the particular
+parameter \parameter{nil} which has exactly this rôle.
+\index{loop|)}
+
+Finally, note the trick \verb+{\setbox2=\box2}+ to obtain a void box
+register, and final manipulations to show the vertical rule in a
+easy-to-read way.
+
+The second example allow to calculates a continued fraction like:
+\def\dfrac#1#2{\frac{\displaystyle #1}{\displaystyle #2}}
+\[a_0+\dfrac{1}{a_1+\dfrac{1}{a_2+\dfrac{1}{a_3+\cdots}}}\]
+giving the sequence $a_0,a_1,a_2,a_3,\ldots$ to the macro. This
+example gives fractions corresponding to gold number, and square root
+for~2 and~3.
+\makeatletter
+\begin{CenterExample}[xrightmargin=0pt]
+ \begingroup
+ \long\gdef\continuedfraction#1#2{%
+ \let\@mirror\relax
+ \@for\op@Nb:=#1\do
+ {%
+ \ifx\@mirror\relax
+ \edef\@mirror{\op@Nb}%
+ \else
+ \edef\@mirror{\op@Nb,\@mirror}%
+ \fi
+ }%
+ \let\Op@result\relax
+ \@for\op@Nb:=\@mirror\do
+ {%
+ \ifx\Op@result\relax
+ \opcopy{\op@Nb}{result}%
+ \else
+ \opexpr{\op@Nb+1/result}{result}%
+ \fi
+ }%
+ \opcopy{result}{#2}%
+ }
+ \endgroup
+ \continuedfraction{1,1,1,1,1,1,1,1,1,1,1,1}{r}\opprint{r}\quad
+ \continuedfraction{1,2,2,2,2,2,2,2,2,2,2,2}{r}\opprint{r}\quad
+ \continuedfraction{1,1,2,1,2,1,2,1,2,1,2,1}{r}\opprint{r}
+\end{CenterExample}
+\makeatother
+It does no harm just this once, we use \LaTeX{} commands for the
+loop.
+
+\section{Direct Access to Number}
+\label{sec:Acces direct aux nombres}
+When a number is saved in a \package{xlop} variable, it is possible to
+process with it in many different ways. However, in certain
+situations, you would creat you own macro or use external macro giving
+such numbers as parameter.
+
+Giving directly \verb+\opprint{var}+ is ineffective since this macro
+is a complex a gives side effect. It is necessary to access directly
+to this number. When a variable hold a number, \package{xlop} creates
+a macro
+\texttt{$\backslash$Op@var}\index{Opvar@\texttt{\boi {Op\at var}}}
+which contain this number. Note the uppercase ``O'' and the lowercase
+``p''. The at sign is here to do this definition a private one, that
+is, you have to enclose it with \macro{makeatletter} and
+\macro{makeatother} to access it (or \macro{catcode @=11} in \TeX).
+\begin{SideBySideExample}
+ \opcopy{1234}{a}\opcopy{56}{b}%
+ \opmul*{a}{b}{r}%
+ \makeatletter
+ \newcolumntype{.}{D{.}{.}{-1}}
+ \begin{tabular}{l.}
+ & \Op@a \\
+ $\times$ & \Op@b \\
+ $=$ & \Op@r
+ \end{tabular}
+ \makeatother
+\end{SideBySideExample}
+
+Note that this way of doing don't work when decimal separator is
+between braces since macro \verb+\opprint{var}+ contain such
+braces. In this case, the simplest is to use \macro{opexport} macro
+(see page~\pageref{macro-opexport}).
+
+\chapter{Future Versions}
+\label{chap:Versions futures}
+Version of \package{xlop} package is~0.23 which is only a debuging
+version of version~0.2, which is itself a correcting version of
+version~0.1 (first public release). The next release will be
+version~0.3 and its ``stable'' version will be version~0.4.
+
+The features of version~0.3 aren't definitively fixed but there are
+some points planned:
+\begin{itemize}
+\item international version for posées;
+\item opérations from 2 to 36~basis;
+\item additional high level functions with roots (\macro{oproot} for
+ any roots and \macro{opsqrt} for square root), exponential function,
+ logarithm, trigonometric functions (direct, inverse, hyperbolic);
+\item macro to have a formated writing, that is, write a number where
+ length of decimal part and integer part are given (if these widths
+ are not the ones of the number, there will be overflow or filling);
+ this macro was present in version~0.1 and allow to display numbers
+ decimal aligned, right aligned, or left aligned;
+\item macro for addition with more than two operands;
+\item parameter for scientific or engineer notation;
+\item macro to allow to write a multi-line number and/or with thousand
+ separator;
+\item carries for multiplications;
+\item make public the successive remainders of a division;
+\item negative values of \parameter{maxdivstep} and
+ \parameter{safedivstep} parameters will take acount of decimal digit
+ of quotient.
+\end{itemize}
+
+For all requests or bug report, the author will be grateful to you to
+contact him at:
+\begin{verbatim}
+ Jean-Come.Charpentier@wanadoo.fr
+\end{verbatim}
+placing the word ``xlop'' in the subject in order to help my spam killer.
+
+It would be nice to have a hacker manual which explain in details the
+source. This tool could be usefull in order to improve
+\package{xlop}. Unfortunately, the current code has more
+than~4000~lines and the work to do that may well be too long.
+
+%\printindex
+\chapter{Index}
+\label{chap:index}
+\begin{multicols}{2}
+\makeatletter
+\parindent \z@\relax
+\parskip \z@ \@plus.3\p@\relax
+\let\item\@idxitem
+\makeatother
+\renewenvironment{theindex}{}{}%
+\input\jobname.ind
+\end{multicols}
+\end{document}