diff options
Diffstat (limited to 'Master/texmf-dist/doc/generic')
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-eucl/Changes | 9 | ||||
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-eucl/pst-eucl-doc.pdf | bin | 1688997 -> 1708406 bytes | |||
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-eucl/pst-eucl-doc.tex | 97 |
3 files changed, 94 insertions, 12 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-eucl/Changes b/Master/texmf-dist/doc/generic/pst-eucl/Changes index eb8fab448ec..31cbe6c090a 100644 --- a/Master/texmf-dist/doc/generic/pst-eucl/Changes +++ b/Master/texmf-dist/doc/generic/pst-eucl/Changes @@ -1,10 +1,19 @@ pst-eucl.pro -------- +1.03 2020/01/09 - some new functions for 1.69 1.02 2019/11/21 - add DeterminantTwo,DeterminantThree,DeterminantFour,DeterminantFive. 1.01 2012/09/21 - fix for introduced bug 1.00 2011/08/05 - fix bug in /InterLines pst-eucl.tex -------- +1.69 2020/01/09 - add macro to get the chord with specified length, \pstCircleChordNode. + - add macro to draw the center of the triangle's escribed circle, \pstTriangleEC. + - add macro to draw the orthocenter of triangle, \pstTriangleHC. + - add macro to draw the gravity center of triangle, \pstTriangleGC. + - update macro \pstTriangleIC and \pstTriangleOC how to control the output points. + - update macro \pstMediatorAB to work with option PointSymbolA and PointSymbolB. + - update macro \pstLineAB to group the parameters as local to avoid affected the other macros. + - update macro \pstTriangle to group the parameters as local to avoid affected the other macros. 1.68 2019/11/21 - add macros to construct a triangle by SSS, SAS, ASA, AAS, \pstTriangleSSS, \pstTriangleSAS, etc. - add macro to get the bisector node of angle AOB, \pstBisectorAOB, refer to pstBissectBAC, pstOutBissectBAC. - add macro to get the Golden Mean node of a given segment, \pstGoldenMean. diff --git a/Master/texmf-dist/doc/generic/pst-eucl/pst-eucl-doc.pdf b/Master/texmf-dist/doc/generic/pst-eucl/pst-eucl-doc.pdf Binary files differindex 703c91b79ee..5a40bbc7af1 100644 --- a/Master/texmf-dist/doc/generic/pst-eucl/pst-eucl-doc.pdf +++ b/Master/texmf-dist/doc/generic/pst-eucl/pst-eucl-doc.pdf diff --git a/Master/texmf-dist/doc/generic/pst-eucl/pst-eucl-doc.tex b/Master/texmf-dist/doc/generic/pst-eucl/pst-eucl-doc.tex index b9000b9750e..f719f56f39b 100644 --- a/Master/texmf-dist/doc/generic/pst-eucl/pst-eucl-doc.tex +++ b/Master/texmf-dist/doc/generic/pst-eucl/pst-eucl-doc.tex @@ -1,6 +1,5 @@ \documentclass[11pt,english,BCOR10mm,DIV12,bibliography=totoc,parskip=false,smallheadings, headexclude,footexclude,oneside,english]{pst-doc} -\usepackage[utf8]{inputenc} \usepackage{pst-eucl} \let\pstEuclideFV\fileversion \usepackage{multicol} @@ -8,8 +7,8 @@ \newtheorem{theorem}{Theorem} \usepackage{pst-func,pst-plot,paralist} \usepackage[mathscr]{eucal} -\lstset{pos=l,wide=false,language=PSTricks, - morekeywords={multidipole,parallel},basicstyle=\footnotesize\ttfamily} + +\lstset{pos=l,wide=false,basicstyle=\footnotesize\ttfamily,explpreset={language=[PSTricks]{TeX}}} % \def\Argsans#1{$\langle$#1$\rangle$} \def\DefaultVal#1{(by default #1)} @@ -463,7 +462,7 @@ and outer circle of triangle $ABC$. \pstTriangle[PointSymbol=square,PointSymbolC=o, linecolor=blue,linewidth=1.5\pslinewidth] (1.5,-1){A}(0,1){B}(-1,-.5){C} -\pstTriangleIC[linecolor=red]{A}{B}{C} +\pstTriangleIC[linecolor=cyan]{A}{B}{C} \pstTriangleOC[linecolor=red]{A}{B}{C} \end{pspicture} \end{LTXexample} @@ -479,9 +478,41 @@ For example: \begin{lstlisting} \pstTriangleIC[PosAngle={-90,160},PointName={I,none},PointSymbol={*,none}]{A}{B}{C}[I][D] +\pstTriangleIC[PosAngle=-90,PointName=I,PointSymbol=*]{A}{B}{C}[I] \pstTriangleOC[PosAngle=90,PointSymbol=*,PointName=X]{A}{B}{C}[X] \end{lstlisting} +The macros \Lcs{pstTriangleGC}, \Lcs{pstTriangleHC} and \Lcs{pstTriangleEC} are used to draw the barycenter $G$, the orthocentre $H$ and the escenter $E$ of the triangle $ABC$. + +\begin{BDef} +\Lcs{pstTriangleGC}\OptArgs\Largb{A}\Largb{B}\Largb{C}\Largb{G}\OptArg{$M_1$}\OptArg{$M_2$}\\ +\Lcs{pstTriangleHC}\OptArgs\Largb{A}\Largb{B}\Largb{C}\Largb{H}\OptArg{$H_1$}\OptArg{$H_2$}\\ +\Lcs{pstTriangleEC}\OptArgs\Largb{A}\Largb{B}\Largb{C}\Largb{E}\OptArg{$T_1$} +\end{BDef} + +You can use the options of node like as \verb|PointName=...|, \verb|PosAngle=...|, \verb|PointSymbol=...| to control the output nodes $G,H,E$. But if you give the optional output parameters $M_1,M_2$, or $H_1,H_2$ or $T_1$, then you should pass the option value in list like as \verb|PointName={...}|, \verb|PosAngle={...}|, \verb|PointSymbol={...}|. +For example, + +\begin{LTXexample}[width=6cm,pos=l] +\begin{pspicture}[showgrid=true](-3,-3)(3,2) +\psset{dotscale=0.5}\psset{PointSymbol=*}\footnotesize +\pstGeonode[PosAngle=90](0,1){A} +\pstGeonode[PosAngle=-90](-1,-0.6){B} +\pstGeonode[PosAngle=-90](1.5,-0.6){C} +\pstTriangleGC[PointSymbol={*,none,*},PosAngle={150,-80,30}]{A}{B}{C}{G}[M_1][M_2] +\pstTriangleHC[PointSymbol={*,*,none},PosAngle={-30,-100,30}]{A}{B}{C}{H}[H_1][H_2] +\pstTriangleEC[PointSymbol={*,none},PosAngle={90,30}]{A}{B}{C}{E_1}[T_1] +\pstTriangleEC[PointSymbol=*,PosAngle=0]{B}{C}{A}{E_2} +\pstTriangleEC[PointSymbol=*,PosAngle=180]{C}{A}{B}{E_3} +\pstLineAB{A}{B}\pstLineAB{B}{C}\pstLineAB{C}{A} +\pstCircleOA[linestyle=dashed,linecolor=gray!40]{E_1}{T_1}[30][150] +\pstLineAB[linestyle=dashed,linecolor=blue!40]{A}{M_1} +\pstLineAB[linestyle=dashed,linecolor=blue!40]{B}{M_2} +\pstLineAB[linestyle=dashed,linecolor=red!40]{A}{H_1} +\pstLineAB[linestyle=dashed,linecolor=red!40]{B}{H_2} +\end{pspicture} +\end{LTXexample} + \subsection{Angles} Each angle is defined with three points. The vertex is the second @@ -808,7 +839,7 @@ It create a new node $X$ on the same line, but when $A,B,C$ are not collinear, w If you want to draw a node like \textsf{'Given $EF$, please find node $C$ on $AB$ such that $AC=EF$'}, you can use the macro \Lcs{pstLocateAB} to do this, it can seek the node $C$ from $A$ to $B$ with the -specified length, which can be got from \Lcs{pstDist}, \Lcs{pstDistConst}, \Lcs{pstDistAdd}, \Lcs{pstDistSub}, +specified length $L$, which can be got from \Lcs{pstDist}, \Lcs{pstDistConst}, \Lcs{pstDistAdd}, \Lcs{pstDistSub}, etc. \begin{BDef} @@ -845,7 +876,7 @@ Note that seek from $B$ will get the node $C$ in the reverse order, for example, If you want to draw a node like \textsf{'Given $EF$, please extend $AB$ to $C$ such that $BC=EF$'}, you can use the macro \Lcs{pstExtendAB} to do this, it can extend $AB$ from $B$ to one node with the -specified length, which can be got from \Lcs{pstDist}, \Lcs{pstDistConst}, \Lcs{pstDistAdd}, \Lcs{pstDistSub}, +specified length $L$, which can be got from \Lcs{pstDist}, \Lcs{pstDistConst}, \Lcs{pstDistAdd}, \Lcs{pstDistSub}, etc. \begin{BDef} @@ -942,11 +973,18 @@ In fact, we use the macro \Lcs{pstLocateAB} to implement this macro by passing the value $\dfrac{\sqrt{5}-1}{2}|AB|$ to parameter length. \begin{LTXexample}[width=6cm,pos=l] -\begin{pspicture}[showgrid=true](0,0)(4,3) +\begin{pspicture}[showgrid=true](0,1)(4,4) \psset{dotscale=0.5}\psset{PointSymbol=*}\footnotesize -\pstGeonode[PosAngle=90](0,1){A}(4,2){B} -\pstGoldenMean[PosAngle=90,PointSymbol=o]{A}{B}{C} -\pstLineAB{A}{B} +\pstGeonode[PosAngle=-90,CurveType=polyline](0,1){A}(4,2){B} +\pstGoldenMean[PosAngle=-90,PointSymbol=o]{A}{B}{C} +% geometrical method to draw the golden point +\pstMiddleAB[PosAngle=-90]{A}{B}{M} +\pstRotation[RotAngle=-90,PosAngle=90]{B}{M}[N] +\pstLineAB[linestyle=dashed,linecolor=gray!60]{A}{N} +\pstLineAB[linestyle=dashed,linecolor=gray!60]{B}{N} +\pstInterLC[PointNameA=,PosAngleB=90]{N}{A}{N}{B}{B0}{E} +\pstCircleOA[linecolor=green!60,linestyle=dashed]{N}{B}[190][300] +\pstCircleOA[linecolor=purple!60,linestyle=dashed]{A}{E}[0][60] \end{pspicture} \end{LTXexample} @@ -1225,7 +1263,7 @@ and the parameter to fill the circle. \pstCircleOA[linecolor=red,Radius=\pstDistAddVal{A}{B}{1.0}{\pstDistConst{0.5}}]{A}{} % R=|AB|+0.5 \pstCircleOA[linecolor=blue,Radius=\pstDistAddCoef{A}{B}{0.5}{A'}{B'}{1.5}]{A}{} % R=0.5|AB|+1.5|A'B'| \pstCircleOA[linecolor=green,Radius=\pstDistSub{A}{B}{A'}{B'}]{B'}{} % R=|AB|-|A'B'| -\pstCircleOA[linecolor=brown,Radius=\pstDistSubCoef{A}{B}{1.8}{A'}{B'}{0.5}]{A}{} R=1.8|AB|-0.5|A'B'| +\pstCircleOA[linecolor=brown,Radius=\pstDistSubCoef{A}{B}{1.8}{A'}{B'}{0.5}]{A}{} % R=1.8|AB|-0.5|A'B'| \pnode(-1.5,-2){D} \pstCircleOA[linecolor=pink,fillstyle=solid,fillcolor=pink!40,Radius=\pstDistMul{A}{B}{0.8}]{D}{} % R=0.8|AB| \psdot(D)\uput{0.2}[-45](D){$D$} @@ -1297,6 +1335,41 @@ The circle is defined by center $O$ and point $A$ on the circle or \Lkeyword{Rad \end{pspicture} \end{LTXexample} +Sometimes we need to draw a chord with the given length from the start node, +it is not possible to get the end node via the already defined macros, +so we provide the macro \Lcs{pstCircleChordNode} to do this work. +This macro find the node $X$ on the circle such that the length of chord $AX$ is the given value $L$, +which can be got from \Lcs{pstDist}, \Lcs{pstDistConst}, \Lcs{pstDistAdd}, \Lcs{pstDistSub}, etc. + +\begin{BDef} +\Lcs{pstCircleChordNode}\OptArgs\Largb{O}\Largb{A}\Largb{$L$}\Largb{X} +\end{BDef} + +The circle is just defined by center $O$ and point $A$ in this macro, +so you can't omit the parameter $A$. + +The direction to find node $X$ is anti-clockwise by default. +The parameter \Lkeyword{CurvAbsNeg}\DefaultVal{false} can change this behavior. + +At last, the chord length $L$ chouldn't large than the diameter of the circle, +else we will put the node $X$ at origin. + +\begin{LTXexample}[width=6cm,pos=l] +\begin{pspicture}[showgrid=true](-1,-1)(3,3) +\psset{dotscale=0.5}\psset{PointSymbol=*}\footnotesize +\pstGeonode[PosAngle={180,0}](1,1){O}(2.5,1){A} +\pstCircleOA[linecolor=red]{O}{A} +\pstCircleChordNode[PosAngle=60]{O}{A}{\pstDistConst{1}}{B} +\pstCircleChordNode[PosAngle=90]{O}{A}{\pstDistConst{2}}{C} +\pstCircleChordNode[PosAngle=-30,CurvAbsNeg=true]{O}{A}{\pstDistConst{1}}{B'} +\pstCircleChordNode[PosAngle=-90,CurvAbsNeg=true]{O}{A}{\pstDistConst{2}}{C'} +\pstLineAB{O}{A}\pstLineAB{O}{B}\pstLineAB{O}{C} +\pstLineAB{O}{B'}\pstLineAB{O}{C'} +\pstLineAB{A}{B}\pstLineAB{A}{C} +\pstLineAB{A}{B'}\pstLineAB{A}{C'} +\end{pspicture} +\end{LTXexample} + \vspace{10pt} A point can be positioned on a circle using its absolute abscissa or ordinate too. @@ -1937,7 +2010,7 @@ are same with \Lcs{pstGeneralEllipseFle}. They are set to zero if the coeffients \pstGeneralEllipseCoef[PosAngle=-100,CodeFigColor=red!50]{2,-2,3,6,5,8}{O_1}{R_1}{MajorRotAngle1} \pstGeneralEllipse[linecolor=red!60](O_1)(R_1)[MajorRotAngle1] %3x^2-2xy+2y^2-3x+6y+3=0 -\pstGeneralEllipseCoef[PosAngle=-80,CodeFigColor=purple!50]{3,-2,2,-3,5,2}{O_2}{R_2}{MajorRotAngle2} +\pstGeneralEllipseCoef[PosAngle=-80,CodeFigColor=purple!50]{3,-2,2,-3,6,3}{O_2}{R_2}{MajorRotAngle2} \pstGeneralEllipse[linecolor=purple!60](O_2)(R_2)[MajorRotAngle2] %x^2-xy+y^2+x-3y+1=0 \pstGeneralEllipseCoef[PosAngle=-90,CodeFigColor=green!50]{1,-1,1,1,-3,1}{O_3}{R_3}{MajorRotAngle3} |