summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/generic
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/generic')
-rw-r--r--Master/texmf-dist/doc/generic/pst-func/Changes2
-rw-r--r--Master/texmf-dist/doc/generic/pst-func/pst-func-doc.pdfbin2335134 -> 2304023 bytes
-rw-r--r--Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex15
3 files changed, 10 insertions, 7 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-func/Changes b/Master/texmf-dist/doc/generic/pst-func/Changes
index 2b1979de2d7..16f14b6cfe7 100644
--- a/Master/texmf-dist/doc/generic/pst-func/Changes
+++ b/Master/texmf-dist/doc/generic/pst-func/Changes
@@ -1,4 +1,6 @@
..... pst-func.tex
+0.51 2008-02-27 - enable filling support for \psIntegral and \psCumIntegral
+ (suggested by Rafal Bartczuk)
0.50 2007-08-30 - modified \psPoisson{m,N}{Lambda} (Gerry Coombes)
- modified \psPolynomial{m,n,N}{Lambda} (Gerry Coombes)
- fixed bug in \psPoisson with markZeros
diff --git a/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.pdf b/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.pdf
index 4f55989f8ed..0682ff6291d 100644
--- a/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.pdf
+++ b/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.pdf
Binary files differ
diff --git a/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex b/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex
index 30846a8a4ba..fb9e4d2a250 100644
--- a/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex
+++ b/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex
@@ -208,7 +208,7 @@ options can be set in the usual way with \verb+\psset+.
linestyle=dotted,Derivation=3]{-2}{4}
\rput[lb](1.8,4){\textcolor{blue}{$f(x)=x^3$}}
\rput[lb](0.2,8){\textcolor{red}{$f^{\prime\prime}(x)=6x$}}
- \rput[lb](-2,5.5){\textcolor{magenta}{$f^{\prime\prime\prime}(x)=6$}}
+ \rput[lb](-2,5){\textcolor{cyan}{$f^{\prime\prime\prime}(x)=6$}}
\end{pspicture*}
\end{LTXexample}
%$
@@ -442,9 +442,9 @@ the integral is performed over one of them. The second one is the cumulative
integral of a function (similar to \verb+\psGaussI+ but valid for all functions). The third
one is the result of a convolution. They are defined as:
\begin{align}
-\text{psIntegral}(x) &= \int_a^b f(x,t)dt \\
-\text{psCumIntegral}(x) &= \int_{\text{xStart}}^{x} f(t)dt \\
-\text{psConv}(x) & = \int_a^b f(t)g(x-t)dt
+\text{psIntegral}(x) &= \int_a^b f(x,t)\mathrm{d}t \\
+\text{psCumIntegral}(x) &= \int_{\text{xStart}}^{x} f(t)\mathrm{d}t \\
+\text{psConv}(x) & = \int_a^b f(t)g(x-t)\mathrm{d}t
\end{align}
In the first one, the integral is performed from $a$ to $b$ and the function $f$ depends
on two parameters. In the second one, the function $f$ depends on only one parameter, and the
@@ -476,8 +476,9 @@ step). The precision and the smoothness of the plot depend strongly on these two
\begin{pspicture}[linewidth=1pt](-10,-.5)(10,1.5)
\psaxes[dx=1cm,Dx=2]{->}(0,0)(-10,0)(10,1.5)
\psCumIntegral[plotpoints=200,Simpson=10]{-10}{10}{0 1 GAUSS}
- \psIntegral[plotpoints=200,Simpson=10,linecolor=red]{-10}{10}(-4,6){1 GAUSS}
\psIntegral[plotpoints=200,Simpson=100,linecolor=green]{.1}{10}(-3,3){0 exch GAUSS}
+ \psIntegral[plotpoints=200,Simpson=10,linecolor=red,
+ fillcolor=red!40,fillstyle=solid,opacity=0.5]{-10}{10}(-4,6){1 GAUSS}
\end{pspicture}
\end{LTXexample}
@@ -875,7 +876,7 @@ D_r(\chi^2) &= int_0^{\chi^2}\frac{t^{r/2-1}e^{-t/2}\mathrm{d}t}{\Gamma(1/2r)2^{
A statistical distribution published by William Gosset in 1908 under his %. His employer, Guinness Breweries,
%required him to publish under a
pseudonym %, so he chosed
-"`Student"'.
+,,Student``.
%Given N independent measurements x_i, let
%t=(x^_-mu)/(s/sqrt(N)),
The $t$-distribution with parameter $\nu$ has the density function
@@ -1333,7 +1334,7 @@ valuewidth & <number> & 10 & the width of the string for the converted
\section{Credits}
-Gerry Coombes | Denis Girou | Christophe Jorssen | Manuel Luque | Timothy Van Zandt
+Rafal Bartczuk | Gerry Coombes | Denis Girou | Christophe Jorssen | Manuel Luque | Timothy Van Zandt
\bgroup
\raggedright