diff options
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-solides3d/doc-src/par-projectiondroite-en.tex')
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-solides3d/doc-src/par-projectiondroite-en.tex | 106 |
1 files changed, 106 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-solides3d/doc-src/par-projectiondroite-en.tex b/Master/texmf-dist/doc/generic/pst-solides3d/doc-src/par-projectiondroite-en.tex new file mode 100644 index 00000000000..b4259d89b2f --- /dev/null +++ b/Master/texmf-dist/doc/generic/pst-solides3d/doc-src/par-projectiondroite-en.tex @@ -0,0 +1,106 @@ +\section{Lines} + +\subsection{Direct definition} + +The object \texttt{droite} allows us to define and draw a \Index{line}. In +the \texttt{pst-solides3d} package, a line in 2D is defined by its +two end-points. + +We use the option \Lkeyword{args} to specify the end-points of the +chosen line. We can use coordinates or named points. + +As with points and vectors, we can save the coordinates of the +line with the option \Lkeyword{name}. + +\begin{LTXexample}[width=7.5cm] +\begin{pspicture}(-3,-3)(4,3.5)% +\psframe*[linecolor=blue!50](-3,-3)(4,3.5) +\psset{viewpoint=50 30 15,Decran=60} +\psset{solidmemory} +%% definition du plan de projection +\psSolid[object=plan, + definition=equation, + args={[1 0 0 0] 90}, + planmarks,name=monplan] +\psset{plan=monplan} +%% definition du point A +\psProjection[object=point, + name=A,text=A, + pos=ur](-2,1.25) +\psProjection[object=point, + name=B,text=B, + pos=ur](1,.75) +\psProjection[object=droite, + linecolor=blue, + args=0 0 1 .5] +\psProjection[object=droite, + linecolor=orange, + args=A B] +\composeSolid +\end{pspicture} +\end{LTXexample} + + +\subsection{Some other definitions} + +There are other methods to define a line in 2D. The options +\Lkeyword{definition} and \Lkeyword{args} are used in these variants: + + + +\begin{itemize} + +\item \texttt{\Lkeyword{definition}=\Lkeyval{horizontale}}; +\texttt{\Lkeyword{args}=$b$}. + +The line with equation $y=b$. + +\item \texttt{\Lkeyword{definition}=\Lkeyval{verticale}}; +\texttt{\Lkeyword{args}=$a$}. + +The line with equation $x=a$. + +\item \texttt{\Lkeyword{definition}=\Lkeyval{paral}}; +\texttt{\Lkeyword{args}=$d$ $A$}. + +A line parallel to $d$ passing through +$A$. + +\item \texttt{\Lkeyword{definition}=\Lkeyword{perp}}; +\texttt{\Lkeyword{args}=$d$ $A$}. + +A line perpendicular to $d$ passing +through $A$. + +\item \texttt{\Lkeyword{definition}=\Lkeyval{mediatrice}}; +\texttt{\Lkeyword{args}=$A$ $B$}. + +The perpendicular bisector of the line +segment $[AB]$. + +\item \texttt{\Lkeyword{definition}=\Lkeyword{bissectrice}}; +\texttt{\Lkeyword{args}=$A$ $B$ $C$}. + +The bisector of the angle $\widehat +{ABC}$. + +\item \texttt{\Lkeyword{definition}=\Lkeyword{axesymdroite}}; +\texttt{\Lkeyword{args}=$d$ $D$}. + +The reflection of the line $d$ in the +line $D$. + +\item \texttt{\Lkeyword{definition}=\Lkeyword{rotatedroite}}; +\texttt{\Lkeyword{args}=$d$ $I$ $r$}. + +The image of the line $d$ after a +rotation with centre $I$ through an angle $r$ (in degrees) + +\item \texttt{\Lkeyword{definition}=\Lkeyword{translatedroite}}; +\texttt{\Lkeyword{args}=$d$ $u$}. + +The image of the line $d$ shifted by the vector $\vec u$. + +\end{itemize} + +\endinput |