summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/generic/pst-solides3d/doc-en/source/par-projectionvecteur-en.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-solides3d/doc-en/source/par-projectionvecteur-en.tex')
-rw-r--r--Master/texmf-dist/doc/generic/pst-solides3d/doc-en/source/par-projectionvecteur-en.tex85
1 files changed, 0 insertions, 85 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-solides3d/doc-en/source/par-projectionvecteur-en.tex b/Master/texmf-dist/doc/generic/pst-solides3d/doc-en/source/par-projectionvecteur-en.tex
deleted file mode 100644
index ec850c1abba..00000000000
--- a/Master/texmf-dist/doc/generic/pst-solides3d/doc-en/source/par-projectionvecteur-en.tex
+++ /dev/null
@@ -1,85 +0,0 @@
-\section{Vectors}
-
-\subsection{Direct definition}
-
-The object \Lkeyword{vecteur} allows us to define and draw a \Index{vector}.
-To do so in a simple way, we use the option \Lkeyword{args} to define
-its components $(x,y)$ and we specify the point from where the
-vector starts with the macro \Lcs{psProjection} (or we may use a
-named point).
-
-As with points, we can save the components of a vector using the
-option \Lkeyword{name}.
-
-\begin{LTXexample}[width=7.5cm]
-\begin{pspicture}(-3,-3)(4,3.5)%
-\psframe*[linecolor=blue!50](-3,-3)(4,3.5)
-\psset{viewpoint=50 30 15,Decran=60}
-\psset{solidmemory}
-%% definition du plan de projection
-\psSolid[object=plan,
- definition=equation,
- args={[1 0 0 0] 90},
- planmarks,
- name=monplan]
-\psset{plan=monplan}
-%% definition du point A
-\psProjection[object=point,
- args=-2 0.75,
- name=A,text=A,
- pos=dl]
-\psProjection[object=vecteur,
- linecolor=red,
- args=1 1,
- name=U](1,0)
-\psProjection[object=vecteur,
- args=U,
- linecolor=blue](A)
-\composeSolid
-\axesIIID(4,2,2)(5,4,3)
-\end{pspicture}
-\end{LTXexample}
-
-
-\subsection{Some more definitions}
-
-There are other methods to define a vector in 2D. The options
-\Lkeyword{definition} and \Lkeyword{args} allow us a variety of supported
-methods:
-
-\begin{itemize}
-
-\item \texttt{\Lkeyword{definition}=\Lkeyval{vecteur}};
-\texttt{\Lkeyword{args}=$A$ $B$}.
-
-The vector $\overrightarrow {AB}$
-
-\item \texttt{\Lkeyword{definition}=\Lkeyval{orthovecteur}};
-\texttt{\Lkeyword{args}=$u$}.
-
-A vector perpendicular to $\vec u$ with the same length.
-
-\item \texttt{\Lkeyword{definition}=\Lkeyval{normalize}};
-\texttt{\Lkeyword{args}=$u$}.
-
-The vector $\Vert \vec u \Vert ^{-1} \vec u$
-if $\vec u \neq \vec 0$, and $\vec 0$ otherwise.
-
-\item \texttt{\Lkeyword{definition}=\Lkeyval{addv}};
-\texttt{\Lkeyword{args}=$u$ $v$}.
-
-The vector $\vec u + \vec v$
-
-\item \texttt{\Lkeyword{definition}=\Lkeyval{subv}};
-\texttt{\Lkeyword{args}=$u$ $v$}.
-
-The vector $\vec u - \vec v$
-
-\item \texttt{\Lkeyword{definition}=\Lkeyval{mulv}};
-\texttt{\Lkeyword{args}=$u$ $\alpha $}.
-
-The vector $\alpha \vec u$
-
-\end{itemize}
-
-\endinput