diff options
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-solides3d/doc-en/source/par-cylindres-cones-en.tex')
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-solides3d/doc-en/source/par-cylindres-cones-en.tex | 276 |
1 files changed, 0 insertions, 276 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-solides3d/doc-en/source/par-cylindres-cones-en.tex b/Master/texmf-dist/doc/generic/pst-solides3d/doc-en/source/par-cylindres-cones-en.tex deleted file mode 100644 index 2f5c695d14e..00000000000 --- a/Master/texmf-dist/doc/generic/pst-solides3d/doc-en/source/par-cylindres-cones-en.tex +++ /dev/null @@ -1,276 +0,0 @@ -\section{Generalization of the notion of a cylinder and a cone} - -\subsection{Cylinder or \Index{cylindric area}} - -This paragraph generalizes the notion of a cylinder, or a cylindric -area\footnote{This was written by -Maxime \textsc{Chupin}, as a result of a question on the list -\url{http://melusine.eu.org/cgi-bin/mailman/listinfo/syracuse}}. -A \textit{routing} curve has to be defined by a function and the -direction of the \textit{cylinder} axis needs to be arranged. In -the example below the routing curve is sinusoidal, situated in the plane $z=-2$: -\begin{verbatim} -\defFunction[algebraic]{G1}(t){t}{2*sin(t)}{-2} -\end{verbatim} -The direction of the cylinder is defined by the components of a vector -\texttt{\Lkeyword{axe}=0 1 1}. The drawing calls \Lkeyword{object}=\Lkeyval{cylindre} which -in addition to the usual parameters---which is the height \texttt{\Lkeyword{h}=4}--- -is about the \textbf{length of the generator} and not of the distance -between the two base planes, and needs to define the routing curve -\texttt{\Lkeyword{function}=G1} and the interval of the variable $t$ \texttt{\Lkeyword{range}=-3 3}. - -\begin{verbatim} -\psSolid[object=cylindre, - h=4,function=G1, - range=-3 3, - ngrid=3 16, - axe=0 1 1, - incolor=green!50, - fillcolor=yellow!50] -\end{verbatim} - - -\begin{center} -\psset{unit=0.75} -\begin{pspicture}(-5,-4)(5,4) -\psset{lightsrc=viewpoint,viewpoint=100 10 20 rtp2xyz,Decran=100} -\psSolid[object=grille,base=-4 4 -6 6,linecolor={[rgb]{0.72 0.72 0.5}},action=draw](0,0,-2) -\defFunction[algebraic]{G1}(t){t}{2*sin(t)}{-2} -\defFunction[algebraic]{G2}(t){t}{2*sin(t)+4}{2} -\psSolid[object=courbe,function=G1, - range=-3 3,r=0, - linecolor=blue, - linewidth=2pt] -\psSolid[object=cylindre, - h=5.65685,function=G1, - range=-3 3, - ngrid=3 16, - axe=0 1 1, - incolor=green!50, - fillcolor=yellow!50] -\psSolid[object=courbe,function=G2, - range=-3 3,r=0, - linecolor=blue, - linewidth=2pt] -\psSolid[object=parallelepiped, - a=8,b=12,c=4,action=draw](0,0,0) -\psSolid[object=plan,action=draw, - definition=equation, - args={[0 0 1 -2] 90}, - base=-6 6 -4 4,planmarks,showBase] -\psSolid[object=plan,action=draw, - definition=equation, - args={[0 1 0 -6] 180}, - base=-4 4 -2 2,planmarks,showBase] -\psSolid[object=plan,action=draw, - definition=equation, - args={[1 0 0 -4] 90}, - base=-6 6 -2 2,planmarks,showBase] -\psSolid[object=vecteur, - linecolor=red, - args=0 3 3] -\end{pspicture} -\end{center} - -In the following example, before drawing the horizontal planes, we calculate the -distance between these two planes. - - \begin{verbatim} -\pstVerb{/ladistance 2 sqrt 2 mul def} - \end{verbatim} - -{\psset{unit=0.75,lightsrc=viewpoint,viewpoint=100 -10 20 rtp2xyz,Decran=100} -\begin{LTXexample}[pos=t] -\begin{pspicture}(-1.5,-3)(6.5,6) -\psSolid[object=grille,base=-3 3 -1 8,action=draw] -\pstVerb{/ladistance 2 sqrt 2 mul def} -\defFunction[algebraic]{G3}(t){6*(cos(t))^3*sin(t)}{4*(cos(t))^2}{0} -\defFunction[algebraic]{G4}(t){6*(cos(t))^3*sin(t)}{4*(cos(t))^2+ladistance}{ladistance} -\psSolid[object=courbe,function=G3,range=0 6.28,r=0,linecolor=blue,linewidth=2pt] -\psSolid[object=cylindre,range=0 -6.28,h=4,function=G3,axe=0 1 1,ngrid=3 36, - fillcolor=green!50,incolor=yellow!50] -\psSolid[object=courbe,function=G4,range=0 6.28,r=0,linecolor=blue,linewidth=2pt] -\psSolid[object=vecteur,linecolor=red,args=0 ladistance dup] -\psSolid[object=plan,action=draw,definition=equation,args={[0 0 1 ladistance neg] 90}, - base=-1 8 -3 3,planmarks,showBase] -\axesIIID(0,4.5,0)(4,8,5) -\rput(0,-3){\texttt{axe=0 1 1}} -\end{pspicture} -\end{LTXexample}} - - -\begin{LTXexample}[width=8cm] -\psset{unit=0.75,lightsrc=viewpoint, - viewpoint=100 -10 20 rtp2xyz,Decran=100} -\begin{pspicture}(-1.5,-3)(6.5,6) -\psSolid[object=grille,base=-3 3 -1 6,action=draw] -\defFunction[algebraic]{G5}(t) - {t}{0.5*t^2}{0} -\defFunction[algebraic]{G6}(t) - {t}{0.5*t^2}{4} -\psSolid[object=courbe,function=G5, - range=-3 2,r=0,linecolor=blue, - linewidth=2pt] -\psSolid[object=cylindre, - range=-3 2,h=4, - function=G5, - axe=0 0 1, %% valeur par d\'{e}faut - incolor=green!50, - fillcolor=yellow!50, - ngrid=3 8] -\psSolid[object=courbe,function=G6, - range=-3 2,r=0,linecolor=blue, - linewidth=2pt] -\axesIIID(0,4.5,0)(4,6,5) -\psSolid[object=vecteur, - linecolor=red,args=0 0 4] -\psSolid[object=plan,action=draw, - definition=equation, - args={[0 0 1 -4] 90}, - base=-1 6 -3 3,planmarks,showBase] -\end{pspicture} -\end{LTXexample} - -\begin{LTXexample}[width=8cm] -\psset{unit=0.75,lightsrc=viewpoint, - viewpoint=100 -10 20 rtp2xyz,Decran=100} -\begin{pspicture}(-3.5,-3)(6.5,6) -\psset{lightsrc=viewpoint,viewpoint=100 45 45,Decran=100} -\psSolid[object=grille,base=-3 3 -2 7,fillcolor=gray!30] -\defFunction[algebraic]{G7}(t) - {2*cos(t)}{2*sin(t)}{0} -\defFunction[algebraic]{G8}(t) - {2*cos(t)}{2*sin(t)+4}{4} -\psSolid[object=courbe,function=G7, - range=0 6.28,r=0, - linecolor=blue,linewidth=2pt] -\psSolid[object=cylindre, - range=0 6.28,h=5.65685, - function=G7,axe=0 1 1, - incolor=green!20, - fillcolor=yellow!50, - ngrid=3 36] -\psSolid[object=courbe,function=G8, - range=0 6.28,r=0,linecolor=blue, - linewidth=2pt] -\axesIIID(2,4.5,2)(4,8,5) -\psSolid[object=vecteur, - linecolor=red,args=0 1 1](0,4,4) -\psSolid[object=plan,action=draw, - definition=equation, - args={[0 0 1 -4] 90}, - base=-2 7 -3 3,planmarks,showBase] -\end{pspicture} -\end{LTXexample} - - -\encadre{The routing curve can be any curve and need not necessarily be a plane horizontal.} - -\begin{LTXexample}[width=8cm] -\begin{pspicture}(-3.5,-2)(4,5) -\psset{unit=0.75,lightsrc=viewpoint,viewpoint=100 -5 10 rtp2xyz,Decran=100} -\psSolid[object=grille,base=-4 4 -4 4,ngrid=8. 8.](0,0,-1) -\defFunction[algebraic]{G9}(t) - {3*cos(t)}{3*sin(t)}{1*cos(5*t)} -\psSolid[object=cylindre, - range=0 6.28,h=5,function=G9, - axe=0 0 1,incolor=green!50, - fillcolor=yellow!50, - ngrid=4 72,grid] -\end{pspicture} -\end{LTXexample} - -\subsection{Cone or \Index{conic area}} -This paragraph generalizes the notion of a cone, or a conic -area\footnote{This was written by -Maxime \textsc{Chupin}, as the result of a question on the list -\url{http://melusine.eu.org/cgi-bin/mailman/listinfo/syracuse}}. -A \textit{routing} curve needs to be defined by a function which -defines the base of the cone, and the vertex of the \textit{cone} -which is by default \texttt{\Lkeyword{origine}=0 0 0}. The parts above and -below the cone are symmetric concerning the vertice. In the example -below, the routing curve is a parabolic arc, situated in the plane $z=-2$. - -\begin{LTXexample}[width=7.5cm] -\begin{pspicture}(-3,-4)(4.5,6) -\psset{unit=0.75,lightsrc=viewpoint,viewpoint=100 10 10 rtp2xyz,Decran=100} -\psSolid[object=grille,base=-4 4 -3 3,action=draw](0,0,-2) -\defFunction[algebraic]{G1}(t){t}{0.25*t^2}{-2} -\defFunction[algebraic]{G2}(t){-t}{-0.25*t^2}{2} -\psSolid[object=courbe,function=G1, - range=-3.46 3,r=0, - linecolor=blue,linewidth=2pt] -\psSolid[object=cone,function=G1, - range=-3.46 3,ngrid=3 16, - incolor=green!50, - fillcolor=yellow!50, - origine=0 0 0] -\psSolid[object=courbe, - function=G2,range=-3.46 3, - r=0,linecolor=blue, - linewidth=2pt] -\psPoint(0,0,0){I} -\uput[l](I){\red$(0,0,0)$} -\psdot[linecolor=red](I) -\gridIIID[Zmin=-2,Zmax=2,spotX=r](-4,4)(-3,3) -\end{pspicture} -\end{LTXexample} - -\begin{LTXexample}[width=7.5cm] -\begin{pspicture}(-3,-4)(4.5,6) -\psset{unit=0.7,lightsrc=viewpoint,viewpoint=100 -10 20 rtp2xyz,Decran=100} -\psSolid[object=grille,base=-4 4 -3 3, - linecolor={[rgb]{0.72 0.72 0.5}},action=draw](0,0,-2) -\defFunction[algebraic]{G1}(t){t}{2*sin(t)}{-2} -\defFunction[algebraic]{G2}(t){-t}{-2*sin(t)}{2} -\psSolid[object=courbe,function=G1, - range=-3.14 3.14,r=0, - linecolor=blue, - linewidth=2pt] -\psSolid[object=cone,function=G1, - range=-3.14 3.14,ngrid=3 16, - incolor=green!50, - fillcolor=yellow!50, - origine=0 0 0] -\psSolid[object=courbe, - function=G2,range=-3.14 3.14, - r=0,linecolor=blue, - linewidth=2pt] -\psPoint(0,0,0){I} \uput[l](I){\red$(0,0,0)$} -\psdot[linecolor=red](I) -\gridIIID[Zmin=-2,Zmax=2,spotX=r](-4,4)(-3,3) -\end{pspicture} -\end{LTXexample} - -\begin{LTXexample}[width=7.5cm] -\begin{pspicture}(-3,-4)(4.5,6) -\psset{unit=0.7,lightsrc=viewpoint,viewpoint=100 -10 20 rtp2xyz,Decran=100} -\psSolid[object=grille,base=-4 4 -4 4,linecolor={[rgb]{0.72 0.72 0.5}},action=draw](0,0,-2) -\defFunction[algebraic]{G1}(t){t}{2*sin(t)}{-2} -\defFunction[algebraic]{G2}(t){-t}{-2*sin(t)-2}{2} -\psSolid[object=courbe,function=G1, - range=-3.14 3.14,r=0, - linecolor=blue, - linewidth=2pt] -\psSolid[object=cone, - function=G1,range=-3.14 3.14, - ngrid=3 16,incolor=green!50, - fillcolor=yellow!50, - origine=0 -1 0] -\psSolid[object=courbe, - function=G2,range=-3.14 3.14, - r=0,linecolor=blue, - linewidth=2pt] -\psPoint(0,-1,0){I}\uput[l](I){\red$(0,-1,0)$} -\psdot[linecolor=red](I) -\gridIIID[Zmin=-2,Zmax=2,spotX=r](-4,4)(-4,4) -\end{pspicture} -\end{LTXexample} - -\encadre{For the cones as well, the routing curve can be any curve and need not necessarily -be a plane horizontal curve, as the following example, written by Maxime -\textsc{Chupin}, will show.} - -\centerline{\url{http://melusine.eu.org/lab/bpst/pst-solides3d/cone/cone-dir_02.pst}} - -\endinput |