diff options
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-magneticfield')
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-magneticfield/Changes | 6 | ||||
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docDE.bib | 79 | ||||
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docDE.pdf | bin | 0 -> 6928568 bytes | |||
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docDE.tex | 279 | ||||
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.bib | 11 | ||||
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.pdf | bin | 8014720 -> 6760355 bytes | |||
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.tex | 52 | ||||
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.bib | 11 | ||||
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.pdf | bin | 8017590 -> 6762897 bytes | |||
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.tex | 14 |
10 files changed, 417 insertions, 35 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/Changes b/Master/texmf-dist/doc/generic/pst-magneticfield/Changes index 1238b04d333..2bf408e520e 100644 --- a/Master/texmf-dist/doc/generic/pst-magneticfield/Changes +++ b/Master/texmf-dist/doc/generic/pst-magneticfield/Changes @@ -1,2 +1,8 @@ +pst-magneticfield.sty -------- +2010-05-16 - first CTAN version + + pst-magneticfield.tex -------- +1.11 2010-05-20 - change order for the different lines + in the 3d view (dashed lines first) (hv) 1.10 2010-05-16 - first CTAN version diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docDE.bib b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docDE.bib new file mode 100644 index 00000000000..b96d8703ff5 --- /dev/null +++ b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docDE.bib @@ -0,0 +1,79 @@ +%% -*-bibtex-*- +@STRING{tugboat = {TUGboat} } +@STRING{dtk = {{D}ie {\TeX}nische {K}om{\"o}die} } + +@Book{companion, + author = {Michel Goosens and Frank Mittelbach and Sebastian Rahtz and Dennis Roegel and Herbert Vo\ss}, + title = {The {\LaTeX} {G}raphics {C}ompanion}, + publisher = {{Addison-Wesley Publishing Company}}, + edition = {second}, + year = {2007}, + address = {Reading, Mass.} +} + +@Article{girou:01:, + author = {Denis Girou}, + title = {Pr\'esentation de {PST}ricks}, + journal = {Cahier {GUT}enberg}, + year = 1994, + volume = {16}, + month = apr, + pages = {21-70} +} + +@Article{girou:02:, + author = {{Timothy Van} Zandt and Denis Girou}, + title = {Inside {PST}ricks}, + journal = TUGboat, + year = 1994, + volume = {15}, + month = sep, + pages = {239-246} +} + +@Book{PostScript, + Author = {Kollock, Nikolai G.}, + Title = {Post{S}cript richtig eingesetzt: vom {K}onzept zum + praktischen {E}insatz}, + Publisher = {IWT}, + Address = {Vaterstetten}, + year = 1989, +} + +@Manual{multido, + Title = {\texttt{multido.tex} - a loop macro, that supports fixed-point addition}, + Author = {{Timothy Van} Zandt}, + Organization = {}, + Address = {\url{CTAN:/graphics/pstricks/generic/multido.tex}}, + Note = {}, + year = 1997 +} + +@Book{PSTricks2, + author = {Herbert Vo\ss{}}, + title = {\texttt{PSTricks} -- {G}rafik f\"ur \TeX{} und \LaTeX}, + edition = {fifth}, + publisher = {DANTE -- Lehmanns}, + year = {2008}, + address = {Heidelberg/Hamburg} +} + +@Book{abramowitz, + author = {M. Abramowitz and I. A. Stegun }, + year = 1964, + title = {Handbook of {M}athematical {F}unctions with {F}ormulas, {G}raphs, and + {M}athematical {T}ables}, + publisher = {National Bureau of Standards Applied Mathematics Series, + U.S. Government Printing Office}, + address = {Washington, D.C., USA}, + Note = {Corrections appeared in later printings up to the 10th Printing}, +} + +@Book{dolan, +author = {Thomas~J. Dolan}, +title = {Fusion {R}esearch, {V}olume {III} ``{T}echnology''}, +publisher= {Pergamon Press}, +year=1982, +Note= {Chapter 20 ``Water-cooled magnets'' , + pages 600 ff ``circular loops'' -- Integrating the Biot-Savart Law (in cylindrical geometry)}, +} diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docDE.pdf b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docDE.pdf Binary files differnew file mode 100644 index 00000000000..ffd5e4ffefd --- /dev/null +++ b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docDE.pdf diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docDE.tex b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docDE.tex new file mode 100644 index 00000000000..3f5c6492df4 --- /dev/null +++ b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docDE.tex @@ -0,0 +1,279 @@ +%% $Id: pst-magneticfield-docEN.tex 322 2010-05-16 08:07:26Z herbert $ +\documentclass[11pt,english,BCOR10mm,DIV12,bibliography=totoc,parskip=false,smallheadings + headexclude,footexclude,oneside]{pst-doc} +\usepackage[latin1]{inputenc} +\usepackage{pst-magneticfield} +\let\pstMFfv\fileversion +\lstset{pos=t,language=PSTricks, + morekeywords={psmagneticfield,psmagneticfieldThreeD},basicstyle=\footnotesize\ttfamily} +\newcommand\Cadre[1]{\psframebox[fillstyle=solid,fillcolor=black,linestyle=none,framesep=0]{#1}} +\def\bgImage{% +\psset{unit=0.5cm} +\begin{pspicture}(-7,-6)(7,6) +\psmagneticfieldThreeD[N=2,R=2,L=2,linecolor=blue](-7,-8)(7,8) +\ThreeDput{\rput(0,-7){\textbf{HELMHOLTZ-Spule}}} +\end{pspicture} +} +% +\begin{document} + +\title{\texttt{pst-magneticfield}} +\subtitle{Magnetische Feldlinien einer langgestreckten Spule; v.\pstMFfv} +\author{J\"{u}rgen Gilg\\ Manuel Luque\\Herbert Vo\ss} +%\docauthor{J\"{u}rgen Gilg\\Manuel Luque\\Herbert Vo\ss} +\date{\today} +\maketitle + + +\clearpage% +\begin{abstract} +Das Paket \LPack{pst-magneticfield} zeichnet magnetische Feldlinien einer langgestreckten Spule. +Die physikalischen Gr\"{o}{\ss}en sind: Radius der Spule, ihre L\"{a}nge und die Anzahl ihrer +Windungen. Die voreingestellten Werte sind: + +\begin{enumerate} + \item Anzahl der Windungen: \LKeyset{N=6}; + \item Radius: \LKeyset{R=2}; + \item L\"{a}nge: \LKeyset{L=4}. +\end{enumerate} + +Die magnetischen Feldlinien wurden mit dem Runge-Kutta 2 Verfahren angen\"{a}hert, welches sich +nach einigen anderen Versuchen als der beste Kompromiss zwischen Re\-chen\-ge\-schwin\-dig\-keit und +Zeichengenauigkeit der Linien erwies. Die Berechnung der notwendigen elliptischen Integrale +wurden mit einer polynomialen N\"{a}herung aus dem "Handbook of Mathematical Functions +With Formulas, Graph, And Mathematical Tables" von Milton Abramowitz und Irene.\,A. Stegun +(\url{http://www.math.sfu.ca/~cbm/aands/})~\cite{abramowitz} realisiert. +\end{abstract} + +\clearpage +\tableofcontents + +\clearpage +\section{Einleitung} + +Im Folgenden stellen wir die Optionen mit ihren voreingestellten Werten vor: +\begin{enumerate} + \item Die Maximalzahl von Berechnungspunkten einer jeden Feldlinie um die gesamte Spule: \LKeyset{pointsB=500}; + \item die Maximalzahl von Berechnungspunkten einer jeden Feldlinie um die Windungen: \LKeyset{pointsS=1000}; + \item die Anzahl der Feldlinien um die gesamte Spule: \LKeyset{nL=8}; + \item Schrittweite f\"{u}r die Feldlinien um die gesamte Spule: \LKeyset{PasB=0.02}; + \item Schrittweite f\"{u}r die Feldlinien um die Windungen: \LKeyset{PasS=0.00275}; + \item nur Feldlinien um individuell ausgew\"{a}hlte Windungen: \LKeyset{numSpires=\{\}}, nach dem Gleichheitsszeichen "=" schreiben wir die Nummer(n) der Windung(en) \textsf{1 2 3 etc.} ausgehend von der obersten Windung. Voreingestellt ist, dass bei allen Windungen die Feldlinien gezeichnet werden. + \item Die Anzahl der Feldlinien um die gew\"{a}hlten Windungen: \LKeyset{nS=1}. + \item Falls wir die Spule selbst nicht zeichnen m\"{o}chten, erledigt dies die Option \LKeyset{drawSelf=false} (hilfreich bei 3D-Ansichten). + \item Die Optionen der Spule (Farbe, Linienst\"{a}rke, Pfeile) sind: + \begin{enumerate} + \item Die Farbe und Linienst\"{a}rke der Spule: \Lkeyset{styleSpire=styleSpire}; + \item die Stromst\"{a}rkepfeile: \Lkeyset{styleCourant=sensCourant}. + \end{enumerate} +\begin{verbatim} +\newpsstyle{styleSpire}{linecap=1,linecolor=red,linewidth=2\pslinewidth} +\newpsstyle{sensCourant}{linecolor=red,linewidth=2\pslinewidth,arrowinset=0.1} +\end{verbatim} + + \item Die Farbe und Linienst\"{a}rke der Feldlinien can mit den g\"{a}ngigen Parametern von \LPack{pstricks} eingestellt werden: \Lkeyword{linecolor} und \Lkeyword{linewidth} +\end{enumerate} + +Der Befehl \Lcs{psmagneticfieldThreeD} erlaubt eine 3D-Ansicht der Spule und der magnetischen Feldlinien. + +\clearpage +\section{Einfluss der physikalischen Gr\"{o}{\ss}en auf das Erscheinungsbild der Feldlinien} +\subsection{Die L\"{a}nge der Spule} + +\begin{LTXexample}[pos=t] +\psset{unit=0.5cm} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{006633}},N=3,R=2,nS=1] +\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{L=4}},N=3,R=2,nS=1]} +\end{pspicture*} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{006633}},L=8,N=3,R=2,nS=1,PasB=0.0025,pointsB=5500] +\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{L=8}},N=3,R=2,nS=1]} +\end{pspicture*} +\end{LTXexample} + +\textbf{Anmerkung:} Um das Erscheinungsbild der zweiten Spule zu verbessern, mussten wir die Anzahl der Berechungspunkte erh\"{o}hen und die Schrittweite verkleinern, + \Cadre{\textcolor{white}{pointsB=5500,PasB=0.0025}}, was jedoch eine Erh\"{o}hung der Rechenzeit mit sich brachte. + + +\clearpage + +\subsection{Die Anzahl der Windungen} +\begin{LTXexample}[pos=t] +\psset{unit=0.5} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{006633}},N=1,R=2,nS=0] +\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{N=1}},R=2,nS=0]} +\end{pspicture*} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{006633}},N=2,R=2,L=2,PasS=0.003,nS=2] +\psframe*[linecolor={[HTML]{99FF66}}](-7,7)(7,8) +\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}} +\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{N=2}},R=2,L=2,PasS=0.003,nS=2]} +\end{pspicture*} +\end{LTXexample} + +\begin{LTXexample}[pos=t] +\psset{unit=0.5} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{006633}},N=4,R=2,numSpires=2 3] +\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{N=4}},R=2,L=4]} +\end{pspicture*} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{006633}},N=5,R=2,L=5,PasS=0.004,nS=2 3 4] +\psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{N=5}},R=2,L=5]} +\end{pspicture*} +\end{LTXexample} + +\clearpage +\section{Optionen f\"{u}r die Linien} +\subsection{Die Anzahl der Feldlinien} + +Auf Grund der Symmetrie des Problems ist die gew\"{a}hlte Anzahl der Feldlinien \Lkeyword{nL} nur die H\"{a}lfte der tats\"{a}chlich gezeichneten Feldlinien. Hinzu kommt noch eine Feldlinie, die in Richtung der Symmetrieachse der Spule zeigt. Die Anzahl der Feldlinien um die Windungen herum \Lkeyword{nS} kommen auch noch hinzu, diese k\"{o}nnen jedoch mit \Lkeyword{numSpires} individuell ausgew\"{a}hlt werden. + +\begin{LTXexample}[pos=t] +\psset{unit=0.5} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{000099}},N=1,R=2] +\psframe*[linecolor={[HTML]{3399FF}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{nL=8}},N=1,R=2]} +\end{pspicture*} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{000099}},N=1,R=2,nL=12] +\psframe*[linecolor={[HTML]{3399FF}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{nL=12}},N=1,R=2]} +\end{pspicture*} +\end{LTXexample} + +\clearpage +\subsection{Die Anzahl der Berechnungspunkte und die Schrittweite} + +Die Feldlinien wurden mit einem numerischen Verfahren (Runge-Kutta 2) berechnet und dementsprechend h\"{a}ngt die Genauigkeit der Linien entscheidend ab von der Schrittweite und der Anzahl der Berechnungspunkte, wie in den folgenden zwei Beispielen gezeigt wird: + +\begin{LTXexample}[pos=t] +\psset{unit=0.5} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{660066}},N=2,R=2,L=2,PasB=0.1,nS=0,nL=7,pointsB=100] +\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8) +\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}} +\psframe*[linecolor={[HTML]{996666}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{PasB=0.1,nL=4,pointsB=100}}]} +\end{pspicture*} +\begin{pspicture*}[showgrid](-7,-8)(7,8) +\psmagneticfield[linecolor={[HTML]{660066}},N=2,R=2,L=2,PasB=0.4,nS=0,nL=7,pointsB=100] +\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8) +\rput(0,7.5){\Cadre{\textcolor{white}{Bobines de Helmholtz}}} +\psframe*[linecolor={[HTML]{996666}}](-7,-8)(7,-7) +\rput(0,-7.5){[\Cadre{\textcolor{white}{PasS=0.4,pointsB=100}}]} +\end{pspicture*} +\end{LTXexample} + +Sollten die voreingestellten Werte f\"{u}r eine individuelle Gestaltung nicht passen, dann muss man mit den Werten \Lkeyword{pasB}, \Lkeyword{pointsB} (bzw. \Lkeyword{pasS}, \Lkeyword{pointsS}) spielen, bis es passt. + + +\clearpage + +\section{Der Parameter \nxLkeyword{numSpires}} +\begin{LTXexample}[pos=t,wide] +\psset{unit=0.5} +\begin{pspicture*}[showgrid](-8,-10)(8,10) +\psset{linecolor=blue} +\psmagneticfield[R=2,L=12,N=8,pointsS=500,nL=14,nS=1,numSpires=1 3 6 8,PasB=0.075] +\psframe*[linecolor={[HTML]{99FF66}}](-8,-10)(8,-9) +\rput(0,-9.5){[\Cadre{\textcolor{white}{numSpires=1 3 6 8}},R=2,L=14]} +\multido{\i=0+1}{8}{\rput[l](!6 6 12 7 div \i\space mul sub){\the\multidocount}} +\end{pspicture*}\quad +\begin{pspicture*}[showgrid](0,-10)(16,10) +\psset{linecolor=blue} +\psmagneticfield[R=2,L=12,N=8,pointsS=500,nL=14,numSpires=,nS=1,PasB=0.075] +\psframe*[linecolor={[HTML]{99FF66}}](0,-10)(16,-9) +\rput(8,-9.5){[\Cadre{\textcolor{white}{numSpires=all}},R=2,L=14]} +\multido{\i=0+1}{8}{\rput[l](!6 6 12 7 div \i\space mul sub){\the\multidocount}} +\end{pspicture*} +\end{LTXexample} + +\clearpage +\section{Der Parameter \nxLkeyword{AntiHelmholtz}} +\begin{LTXexample}[pos=t] +\psset{unit=0.75,AntiHelmholtz,N=2, + R=2,pointsB=500,pointsS=1000,PasB=0.02,PasS=0.00275,nS=10, + nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant} +\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} +\newpsstyle{cadre}{linecolor=yellow!50} +\begin{pspicture*}[showgrid](-7,-6)(7,6) +\psframe*[linecolor={[HTML]{996666}}](-7,7)(7,8) +\psmagneticfield[linecolor={[HTML]{660066}}] +\end{pspicture*} +\end{LTXexample} + + + +\clearpage +\section{3D-Ansichten} +3D-Ansichten sind mit den zwei folgenden Makros m\"{o}glich + +\begin{BDef} +\Lcs{psmagneticfield}\OptArgs\coord1\coord2\\ +\Lcs{psmagneticfieldThreeD}\OptArgs\coord1\coord2 +\end{BDef} + +in denen die in den vorigen Abschnitten besprochenen Parameter die Optionen von \Lcs{psmagneticfield} darstellen und mit \verb+(x1,y1)(x2,y2)+ werden die +Koordinaten der linken unteren und rechten oberen Ecke des Gitternetzes festgelegt, welches das Feldlinienbild einrahmt wie mit \Lcs{psframe}. Wir k\"{o}nnen die Option \Lkeyword{viewpoint} des Pakets \LPack{pst-3d} nutzen, um den Ansichtspunkt zu w\"{a}hlen/\"{a}ndern. + Die voreingestellten Parameter f\"{u}r das Gitternetz sind: + +\begin{verbatim} +\newpsstyle{grille}{subgriddiv=0,gridcolor=lightgray,griddots=10} +\newpsstyle{cadre}{linecolor=green!20} +\end{verbatim} + +M\"{o}glichkeiten zur Gestaltung des Gitternetzes zeigen die folgenden zwei Beispiele: + +\begin{LTXexample}[pos=t] +\psset{unit=0.7cm} +\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} +\newpsstyle{cadre}{linecolor=yellow!50} +\begin{pspicture}(-7,-6)(7,6) +\psmagneticfieldThreeD[N=8,R=2,L=8,pointsB=1200,linecolor=blue,pointsS=1000](-7,-8)(7,8) +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[pos=t] +\psset{unit=0.7cm} +\begin{pspicture}(-7,-6)(7,6) +\psmagneticfieldThreeD[N=2,R=2,L=2,linecolor=blue](-7,-8)(7,8) +\ThreeDput{\rput(0,-7){\textbf{HELMHOLTZ-Spule}}} +\end{pspicture} +\end{LTXexample} + +\begin{LTXexample}[pos=t] +\psset{unit=0.75cm,AntiHelmholtz,N=2, + R=2,pointsB=500,pointsS=1000,PasB=0.02,PasS=0.00275,nS=10, + nL=2,drawSelf,styleSpire=styleSpire,styleCourant=sensCourant} +\newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} +\newpsstyle{cadre}{linecolor=yellow!50} +\begin{pspicture}(-7,-6)(7,6) +\psmagneticfieldThreeD[linecolor={[HTML]{660066}}](-7,-6)(7,6) +\end{pspicture} +\end{LTXexample} + + +\clearpage +\section{Liste aller optionalen Parameter von \texttt{pst-magneticfield}} + +\xkvview{family=pst-magneticfield,columns={key,type,default}} + +\nocite{*} +\bgroup +\raggedright +\bibliographystyle{plain} +\bibliography{\jobname} +\egroup + +\printindex +\end{document}
\ No newline at end of file diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.bib b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.bib index d02a96688b8..b96d8703ff5 100644 --- a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.bib +++ b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.bib @@ -66,5 +66,14 @@ publisher = {National Bureau of Standards Applied Mathematics Series, U.S. Government Printing Office}, address = {Washington, D.C., USA}, - Note = { Corrections appeared in later printings up to the 10th Printing}, + Note = {Corrections appeared in later printings up to the 10th Printing}, +} + +@Book{dolan, +author = {Thomas~J. Dolan}, +title = {Fusion {R}esearch, {V}olume {III} ``{T}echnology''}, +publisher= {Pergamon Press}, +year=1982, +Note= {Chapter 20 ``Water-cooled magnets'' , + pages 600 ff ``circular loops'' -- Integrating the Biot-Savart Law (in cylindrical geometry)}, } diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.pdf b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.pdf Binary files differindex 8918afea004..5cb39a83b04 100644 --- a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.pdf +++ b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.pdf diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.tex b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.tex index 56d872d40af..9425f93f6c5 100644 --- a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.tex +++ b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docEN.tex @@ -1,4 +1,4 @@ -%% $Id: pst-magneticfield-docEN.tex 322 2010-05-16 08:07:26Z herbert $ +%% $Id: pst-magneticfield-docEN.tex 323 2010-05-16 11:39:35Z herbert $ \documentclass[11pt,english,BCOR10mm,DIV12,bibliography=totoc,parskip=false,smallheadings headexclude,footexclude,oneside]{pst-doc} \usepackage[latin1]{inputenc} @@ -28,8 +28,8 @@ \clearpage% \begin{abstract} The package \LPack{pst-magneticfield} aims to trace the shape of field lines -af a solenoid. The physical parameters are the radius of the solenoid, the number of -turns and the length, the default values are given below: +of a solenoid. The physical parameters are the radius of the solenoid, the number of +turns and its length, the default values are given below: \begin{enumerate} \item the number of turns: \LKeyset{N=6} ; @@ -37,12 +37,12 @@ turns and the length, the default values are given below: \item the length : \LKeyset{L=4}. \end{enumerate} -The line was calculated with the Runge-Kutta 2 algorithm, which, after several tries, -seems to be the best compromise between speed and accuracy of calculations of the path. -The calculation of elliptic integrals for the evaluation of magnetic field +The field lines were calculated with the Runge-Kutta 2 algorithm, which, after several tries, +seemed to be the best compromise between speed and accuracy of calculations for the path. +The calculation of elliptic integrals for the evaluation of the magnetic field was achieved by polynomial approximations from the "Handbook of Mathematical Functions With Formulas, Graph, And Mathematical Tables" by Milton Abramowitz and -Irene.A. Stegun (\url{http://www.math.sfu.ca/~cbm/aands/}).~\cite{abramowitz} +Irene.\,A. Stegun (\url{http://www.math.sfu.ca/~cbm/aands/}).~\cite{abramowitz} \end{abstract} \clearpage @@ -58,15 +58,15 @@ The route options, with the default values are as follows: \item The maximum number of points on each line of the entire coil: \LKeyset{pointsB=500}; \item the maximum number of points on lines around turns selected: \LKeyset{pointsS=1000}; \item the number of lines of the entire coil: \LKeyset{nL=8}; - \item not the route for the lines of the entire coil: \LKeyset{PasB=0.02}; - \item not the route for the lines around turns selected: \LKeyset{PasS=0.00275}; - \item the choice of individual coils to improve the rendering of + \item differential steps for the lines of the entire coil: \LKeyset{PasB=0.02}; + \item differential steps for the lines around turns selected: \LKeyset{PasS=0.00275}; + \item the choice of individual coils to improve the rendering of its layout: \LKeyset{numSpires=\{\}}, we place following the sign "=" the numbers of turns \textsf{1 2 3 etc.} - starting from the top of the spire. By default, all the turns are targeted. + starting from the top spire. By default, all the turns are targeted. \item The number of field lines around the turns selected: \LKeyset{nS=1}. \item We may decide not to represent the solenoid with the option \LKeyset{drawSelf=false} is useful for 3D representation. - \item the route options of the turns (color, thickness, arrows) are: + \item The route options for the turns (color, thickness, arrows) are: \begin{enumerate} \item The color and thickness of the coils: \Lkeyset{styleSpire=styleSpire}; \item the current direction signs: \Lkeyset{styleCourant=sensCourant}. @@ -76,8 +76,8 @@ The route options, with the default values are as follows: \newpsstyle{sensCourant}{linecolor=red,linewidth=2\pslinewidth,arrowinset=0.1} \end{verbatim} - \item The color and thickness of the field lines can be adjusted with the parameters - usual \LPack{pstricks}: \Lkeyword{linecolor} and \Lkeyword{linewidth} + \item The color and thickness of the field lines can be adjusted with the + usual \LPack{pstricks} parameters: \Lkeyword{linecolor} and \Lkeyword{linewidth} \end{enumerate} A command \Lcs{psmagneticfieldThreeD} allows 3D visualization of the solenoid and @@ -103,7 +103,7 @@ field lines. \textbf{Note:} To refine the layout of the second solenoid, we had to increase the points and lower the pitch of the route: \Cadre{\textcolor{white}{pointsB=5500,PasB=0.0025}}, which -lengthens the calculations. +takes more time for the calculations. @@ -134,7 +134,7 @@ lengthens the calculations. \rput(0,-7.5){[\Cadre{\textcolor{white}{N=4}},R=2,L=4]} \end{pspicture*} \begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},N=5,R=2,L=5,PasS=0.004,nS=2 3 4] +\psmagneticfield[linecolor={[HTML]{006633}},N=5,R=2,L=5,PasS=0.004,numSpires=2 3 4] \psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) \rput(0,-7.5){[\Cadre{\textcolor{white}{N=5}},R=2,L=5]} \end{pspicture*} @@ -146,8 +146,8 @@ lengthens the calculations. \subsection{The number of field lines} Due to the symmetry of the problem the number of field lines given -\Lkeyword{nL} option is half the number actually represented with an added line -confused with the axis of revolution. We must also add the lines around the turns \Lkeyword{nS}, +(\Lkeyword{nL}) option is half the number actually represented with an added line +identic to the the axis of revolution. We must also add the lines around the turns \Lkeyword{nS}, these turns can be selected individually \Lkeyword{numSpires}. @@ -221,8 +221,8 @@ values that give a correct path. \clearpage \section{The parameter \nxLkeyword{AntiHelmholtz}} \begin{LTXexample}[pos=t] -\psset{unit=0.75,AntiHelmholtz, - R=2,pointsB=500,pointsS=2000,PasB=0.02,PasS=0.00275,nS=10, +\psset{unit=0.75,AntiHelmholtz,N=2, + R=2,pointsB=500,pointsS=1000,PasB=0.02,PasS=0.00275,nS=10, nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant} \newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} \newpsstyle{cadre}{linecolor=yellow!50} @@ -246,21 +246,21 @@ values that give a correct path. in which options are settings \Lcs{psmagneticfield} and \verb+(x1,y1)(x2,y2)+ coordinates of bottom left corner and upper right framework is encapsulated as the field map for \Lcs{psframe}. We can use the option -\Lkeyword{viewpoint} of \LPack{pst-3d} package to change the view. +\Lkeyword{viewpoint} of the \LPack{pst-3d} package to change the view. The options framework are by default, the following: \begin{verbatim} \newpsstyle{grille}{subgriddiv=0,gridcolor=lightgray,griddots=10} \newpsstyle{cadre}{linecolor=green!20} \end{verbatim} - So it is that they must change if we want change, as in -Example below. +In the following example we can see the handling of these two psstyles. + \begin{LTXexample}[pos=t] \psset{unit=0.7cm} \newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} \newpsstyle{cadre}{linecolor=yellow!50} \begin{pspicture}(-7,-6)(7,6) -\psmagneticfieldThreeD[N=8,R=2,L=8,pointsB=1200,linecolor=blue,pointsS=2000](-7,-8)(7,8) +\psmagneticfieldThreeD[N=8,R=2,L=8,pointsB=1200,linecolor=blue,pointsS=1000](-7,-8)(7,8) \end{pspicture} \end{LTXexample} @@ -273,8 +273,8 @@ Example below. \end{LTXexample} \begin{LTXexample}[pos=t] -\psset{unit=0.75cm,AntiHelmholtz, - R=2,pointsB=500,pointsS=2000,PasB=0.02,PasS=0.00275,nS=10, +\psset{unit=0.75cm,AntiHelmholtz,N=2, + R=2,pointsB=500,pointsS=1000,PasB=0.02,PasS=0.00275,nS=10, nL=2,drawSelf,styleSpire=styleSpire,styleCourant=sensCourant} \newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} \newpsstyle{cadre}{linecolor=yellow!50} diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.bib b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.bib index d02a96688b8..14a8466e948 100644 --- a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.bib +++ b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.bib @@ -66,5 +66,14 @@ publisher = {National Bureau of Standards Applied Mathematics Series, U.S. Government Printing Office}, address = {Washington, D.C., USA}, - Note = { Corrections appeared in later printings up to the 10th Printing}, + Note = {Corrections appeared in later printings up to the 10th Printing}, +} + +@Book{dolan, +author = {Thomas~J. ,Dolan}, +title = {Fusion {R}esearch, {V}olume {III} ``{T}echnology''}, +publisher= {Pergamon Press}, +year=1982, +Note= {Chapter 20 ``Water-cooled magnets'' , + pages 600 ff ``circular loops'' -- Integrating the Biot-Savart Law (in cylindrical geometry)}, } diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.pdf b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.pdf Binary files differindex e97e584cf38..3eff5d5d839 100644 --- a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.pdf +++ b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.pdf diff --git a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.tex b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.tex index 1ba114629d4..6a13361b7f4 100644 --- a/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.tex +++ b/Master/texmf-dist/doc/generic/pst-magneticfield/pst-magneticfield-docFR.tex @@ -1,4 +1,4 @@ -%% $Id: pst-magneticfield-docFR.tex 322 2010-05-16 08:07:26Z herbert $ +%% $Id: pst-magneticfield-docFR.tex 323 2010-05-16 11:39:35Z herbert $ \documentclass[11pt,english,french,BCOR10mm,DIV12,bibliography=totoc,parskip=false,smallheadings headexclude,footexclude,oneside]{pst-doc} \usepackage[latin1]{inputenc} @@ -132,7 +132,7 @@ ce qui rallonge la durée des calculs. \rput(0,-7.5){[\Cadre{\textcolor{white}{N=4}},R=2,L=4]} \end{pspicture*} \begin{pspicture*}[showgrid](-7,-8)(7,8) -\psmagneticfield[linecolor={[HTML]{006633}},N=5,R=2,L=5,PasS=0.004,nS=2 3 4] +\psmagneticfield[linecolor={[HTML]{006633}},N=5,R=2,L=5,PasS=0.004,numSpires=2 3 4] \psframe*[linecolor={[HTML]{99FF66}}](-7,-8)(7,-7) \rput(0,-7.5){[\Cadre{\textcolor{white}{N=5}},R=2,L=5]} \end{pspicture*} @@ -217,8 +217,8 @@ essais les valeurs qui donnent un tracé correct. \clearpage \section{The parameter \nxLkeyword{AntiHelmholtz}} \begin{LTXexample}[pos=t] -\psset{unit=0.75,AntiHelmholtz, - R=2,pointsB=500,pointsS=2000,PasB=0.02,PasS=0.00275,nS=10, +\psset{unit=0.75,AntiHelmholtz,N=2, + R=2,pointsB=500,pointsS=1000,PasB=0.02,PasS=0.00275,nS=10, nL=2,drawSelf=true,styleSpire=styleSpire,styleCourant=sensCourant} \newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} \newpsstyle{cadre}{linecolor=yellow!50} @@ -256,7 +256,7 @@ Ce sont donc celles-ci qu'il faudra modifier si on souhaite en changer, comme da \newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} \newpsstyle{cadre}{linecolor=yellow!50} \begin{pspicture}(-7,-6)(7,6) -\psmagneticfieldThreeD[N=8,R=2,L=8,pointsB=1200,linecolor=blue,pointsS=2000](-7,-8)(7,8) +\psmagneticfieldThreeD[N=8,R=2,L=8,pointsB=1200,linecolor=blue,pointsS=1000](-7,-8)(7,8) \end{pspicture} \end{LTXexample} @@ -269,8 +269,8 @@ Ce sont donc celles-ci qu'il faudra modifier si on souhaite en changer, comme da \end{LTXexample} \begin{LTXexample}[pos=t] -\psset{unit=0.75cm,AntiHelmholtz, - R=2,pointsB=500,pointsS=2000,PasB=0.02,PasS=0.00275,nS=10, +\psset{unit=0.75cm,AntiHelmholtz,N=2, + R=2,pointsB=500,pointsS=1000,PasB=0.02,PasS=0.00275,nS=10, nL=2,drawSelf,styleSpire=styleSpire,styleCourant=sensCourant} \newpsstyle{grille}{subgriddiv=0,gridcolor=blue!50,griddots=10} \newpsstyle{cadre}{linecolor=yellow!50} |