diff options
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-func')
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-func/Changes | 16 | ||||
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-func/README | 14 | ||||
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-func/pst-func-doc.pdf | bin | 0 -> 225912 bytes | |||
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex | 367 | ||||
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-func/pstricks.bib | 132 |
5 files changed, 529 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-func/Changes b/Master/texmf-dist/doc/generic/pst-func/Changes new file mode 100644 index 00000000000..d74ea98c5e8 --- /dev/null +++ b/Master/texmf-dist/doc/generic/pst-func/Changes @@ -0,0 +1,16 @@ +..... pst-func.tex +0.38 2004-11-08 change the option Abbreviation to the right one + Derivation +0.37 2004-11-08 changes pstricks object type from closed to open +0.36 2004-11-07 some more options for the polynomial macro +0.35 2004-10-26 added the zero points for the function +0.34 2004-10-22 modification to the Abbreviation key +0.33 2004-10-19 added options firstAbbrColor|Style and secondAbbrColor/Style + + +..... pst-func.sty + 2004-10-18 first version + +..... pst-func.pro +0.02 2004-11-08 change Abbreviation to the right name Derivation +0.01 2004-11-04 first version diff --git a/Master/texmf-dist/doc/generic/pst-func/README b/Master/texmf-dist/doc/generic/pst-func/README new file mode 100644 index 00000000000..9d4d289a60f --- /dev/null +++ b/Master/texmf-dist/doc/generic/pst-func/README @@ -0,0 +1,14 @@ +Save the files pst-func.sty|pro|tex in a directory, which is part of your +local TeX tree. The pro file should go into $TEXMF/dvips/pstricks/ +Then do not forget to run texhash to update this tree. +For more information see the documentation of your LATEX distribution +on installing packages into your LATEX distribution or the +TeX Frequently Asked Questions: +(http://www.tex.ac.uk/cgi-bin/texfaq2html?label=instpackages). + +pst-func needs pst-plot and pstricks, which should be part of your +local TeX installation, otherwise get it from a CTAN server, f.ex. +ftp://ftp.ctan.org + +The documentation also needs pstricks-add, which is also available from +CTAN or any mirror. diff --git a/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.pdf b/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.pdf Binary files differnew file mode 100644 index 00000000000..3e66c6bbad3 --- /dev/null +++ b/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.pdf diff --git a/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex b/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex new file mode 100644 index 00000000000..70fd42cc000 --- /dev/null +++ b/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex @@ -0,0 +1,367 @@ +\documentclass[a4paper,12pt]{article} +\usepackage[T1]{fontenc} +\usepackage[latin1]{inputenc} +\usepackage{geometry} +\usepackage{url} +\usepackage{amsmath} +\usepackage{tabularx} +\usepackage{longtable} +\usepackage{pstricks} +\usepackage{pst-func} +\let\pstFuncFV\fileversion +\usepackage{pstricks-add} +\usepackage{pst-example} +% +\usepackage{xspace} +\def\PS{PostScript\xspace} +% +\psset{xyLabel=\footnotesize} +\usepackage[colorlinks,linktocpage]{hyperref} +% +\begin{document} +\title{\texttt{pst-func}\\plotting special mathematical functions\thanks{% + This document was written with \texttt{Kile: 1.6a (Qt: 3.1.1; KDE: 3.1.1;} + \protect\url{http://sourceforge.net/projects/kile/}) and the PDF output + was build with VTeX/Free (\protect\url{http://www.micropress-inc.com/linux})}\\ + \small v.\pstFuncFV} +\author{Herbert Voß\thanks{% +%%JF +%Thanks to: Attila Gati and to John Frampton. +Thanks to: Attila Gati, John Frampton and Lars Kotthoff. +}} +\date{\today} + +\maketitle + +\tableofcontents + +\clearpage + +\section{\texttt{psPolynomial}} +The polynomial function is defined as +\begin{align} +f(x) &= a_0 + a_1x + a_2x^2 + a_3x^3 + \ldots +a_{n-1}x^{n-1} + a_nx^n\\ +f^{\prime}(x) &= a_1 + 2a_2x + 3a_3x^2 + \ldots +(n-1)a_{n-1}x^{n-2} + na_nx^{n-1}\\ +f^{\prime\prime}(x) &= 2a_2 + 6a_3x + \ldots +(n-1)(n-2)a_{n-1}x^{n-3} + n(n-1)a_nx^{n-2} +\end{align} + +\noindent so \verb+pst-func+ needs only the coefficients of the +polynomial to calculate the function. The syntax is +\begin{verbatim} +\psPolynomial[<options>]{xStart}{xEnd} +\end{verbatim} + +There are the following new options: + +\noindent\medskip +\begin{tabularx}{\linewidth}{>{\ttfamily}l|>{\ttfamily}l>{\ttfamily}lX@{}} +\textrm{Name} & \textrm{Value} & \textrm{Default}\\\hline +coeff & a0 a1 a2 ... & 0 0 1 & The coefficients must have the order $a_0\ a_1\ a_2 \ldots$ and +be separated by \textbf{spaces}. The number of coefficients +is limited only by the memory of the computer ... The default +value of the parameter \verb+coeff+ is \verb+0 0 1+, which gives +the parabola $y=a_0+a_1x+a_2x^2=x^2$.\\ +Derivation & <number> & 0 & the default is the function itself\\ +markZeros & false|true & false & dotstyle can be changed\\ +epsZero & <value> & 0.1 & The distance between two zeros, important for + the iteration function to test, if the zero value still + exists\\ +dZero & <value> & 0.1 & When searching for all zero values, the function is scanned + with this step\\ +zeroLineTo & <number> & false & plots a line from the zero point to the value of the + zeroLineTo's Derivation of the polynomial function\\ +zeroLineStyle & <line style> & dashed & the style is one of the for PSTricks valid styles.\\ +zeroLineColor & <color> & black & any valid xolor is possible\\ +zeroLineWidth & <width> & 0.5\textbackslash pslinewidth & \\ +\end{tabularx} + + + + +\bigskip +The above parameter are only +valid for the \verb+\psPolynomial+ +macro, but can also be set in the usual way with \verb+\psset+. + + + + +\begin{Beispiel} +{\psset{yunit=0.5cm,xunit=1cm} +\begin{pspicture*}(-3,-5)(5,10) + \psaxes[Dy=2]{->}(0,0)(-3,-5)(5,10) + \psset{linewidth=1.5pt} + \psPolynomial[coeff=6 3 -1,linecolor=red]{-3}{5} + \psPolynomial[coeff=2 -1 -1 .5 -.1 .025,linecolor=blue]{-2}{4} + \psPolynomial[coeff=-2 1 -1 .5 .1 .025 .2 ,linecolor=magenta]{-2}{4} + \rput[lb](4,4){\textcolor{red}{$f(x)$}} + \rput[lb](4,8){\textcolor{blue}{$g(x)$}} + \rput[lb](2,4){\textcolor{magenta}{$h(x)$}} +\end{pspicture*} +} +\end{Beispiel} + +The plot is easily clipped using the star version of the +\verb+pspicture+ environment, so that points whose coordinates +are outside of the desired range are not plotted. +The plotted polynomials are: +\begin{align} +f(x) & = 6 + 3x -x^2 \\ +g(x) & = 2 -x -x^2 +0.5x^3 -0.1x^4 +0.025x^5\\ +h(x) & = -2 +x -x^2 +0.5x^3 +0.1x^4 +0.025x^5+0.2x^6 +\end{align} + + + +\bigskip +\begin{Beispiel} +\psset{yunit=0.5cm,xunit=2cm} +\begin{pspicture*}(-3,-5)(3,10) + \psaxes[Dy=2]{->}(0,0)(-3,-5)(3,10) + \psset{linewidth=1.5pt} + \psPolynomial[coeff=-2 1 -1 .5 .1 .025 .2 ,linecolor=magenta]{-2}{4} + \psPolynomial[coeff=-2 1 -1 .5 .1 .025 .2 ,linecolor=red,% + linestyle=dashed,Derivation=1]{-2}{4} + \psPolynomial[coeff=-2 1 -1 .5 .1 .025 .2 ,linecolor=blue,% + linestyle=dotted,Derivation=2]{-2}{4} + \rput[lb](2,4){\textcolor{magenta}{$h(x)$}} + \rput[lb](1,1){\textcolor{red}{$h^{\prime}(x)$}} + \rput[lb](-1,6){\textcolor{blue}{$h^{\prime\prime}(x)$}} +\end{pspicture*} +\end{Beispiel} + + +\begin{Beispiel} +\psset{yunit=0.5cm,xunit=2cm} +\begin{pspicture*}(-3,-5)(3,10) + \psaxes[Dy=2]{->}(0,0)(-3,-5)(3,10) + \psset{linewidth=1.5pt} + \psPolynomial[coeff=0 0 0 1,linecolor=blue]{-2}{4} + \psPolynomial[coeff=0 0 0 1,linecolor=red,% + linestyle=dashed,Derivation=2]{-2}{4} + \psPolynomial[coeff=0 0 0 1,linecolor=cyan,% + linestyle=dotted,Derivation=3]{-2}{4} + \rput[lb](1.8,4){\textcolor{blue}{$f(x)=x^3$}} + \rput[lb](0.2,8){\textcolor{red}{$f^{\prime}(x)=6x$}} + \rput[lb](-2,5.5){\textcolor{magenta}{$f^{\prime\prime}(x)=6$}} +\end{pspicture*} +\end{Beispiel} + + +\begin{Beispiel} +\begin{pspicture*}(-5,-5)(5,5) + \psaxes{->}(0,0)(-5,-5)(5,5)% + \psset{dotscale=2} + \psPolynomial[markZeros,linecolor=red,linewidth=2pt,coeff=-1 1 -1 0 0.15]{-4}{3}% + \psPolynomial[markZeros,linecolor=blue,linewidth=1pt,linestyle=dashed,% + coeff=-1 1 -1 0 0.15,Derivation=1,zeroLineTo=0]{-4}{3}% + \psPolynomial[markZeros,linecolor=magenta,linewidth=1pt,linestyle=dotted,% + coeff=-1 1 -1 0 0.15,Derivation=2,zeroLineTo=0]{-4}{3}% + \psPolynomial[markZeros,linecolor=magenta,linewidth=1pt,linestyle=dotted,% + coeff=-1 1 -1 0 0.15,Derivation=2,zeroLineTo=1]{-4}{3}% +\end{pspicture*} +\end{Beispiel} + +\begin{Beispiel} +\psset{xunit=1.5} +\begin{pspicture*}(-5,-5)(5,5) + \psaxes{->}(0,0)(-5,-5)(5,5)% + \psset{dotscale=2,dotstyle=x,zeroLineStyle=dotted,zeroLineWidth=1pt} + \psPolynomial[markZeros,linecolor=red,linewidth=2pt,coeff=-1 1 -1 0 0.15]{-4}{3}% + \psPolynomial[markZeros,linecolor=blue,linewidth=1pt,linestyle=dashed,% + coeff=-1 1 -1 0 0.15,Derivation=1,zeroLineTo=0]{-4}{3}% + \psPolynomial[markZeros,linecolor=magenta,linewidth=1pt,linestyle=dotted,% + coeff=-1 1 -1 0 0.15,Derivation=2,zeroLineTo=0]{-4}{3}% + \psPolynomial[markZeros,linecolor=magenta,linewidth=1pt,linestyle=dotted,% + coeff=-1 1 -1 0 0.15,Derivation=2,zeroLineTo=1]{-4}{3}% +\end{pspicture*} +\end{Beispiel} + + + +\section{\texttt{psFourier}} + +A Fourier sum has the form: +\begin{align} +s(x) = \frac{a_0}{2} & + a_1\cos{\omega x} + a_2\cos{2\omega x} + + a_3\cos{3\omega x} + + \ldots + a_n\cos{n\omega x}\\ + & + b_1\sin{\omega x} + b_2\sin{2\omega x} + b_3\sin{3\omega x} + + \ldots + b_m\sin{m\omega x} +\end{align} + +\noindent The macro \verb+psFourier+ plots Fourier sums. The +syntax is similiar to \verb+psPolynomial+, except that there are +two kinds of coefficients: +\begin{verbatim} +\psPolynomial[cosCoeff=a0 a1 a2 ..., sinCoeff=b1 b2 ...]{xStart}{xEnd} +\end{verbatim} +The coefficients must have the orders $a_0\ a_1\ a_2\ \ldots$ +and $b_1\ b_2\ b_3\ \ldots$ and be separated by +\textbf{spaces}. The default is \verb+cosCoeff=0,sinCoeff=1+, +which gives the standard \verb+sin+ function. Note that +%%JF, I think it is better without the angle brackets, but +%%you know the conventions used better than I do, so you +%%may disagree. +%the constant value can only be set with \verb+cosCoeff=<a0>+. +the constant value can only be set with \verb+cosCoeff=a0+. + +\begin{Beispiel} +\begin{pspicture}(-5,-3)(5,5.5) +\psaxes{->}(0,0)(-5,-2)(5,4.5) +\psset{plotpoints=500,linewidth=1pt} +\psFourier[cosCoeff=2, linecolor=green]{-4.5}{4.5} +\psFourier[cosCoeff=0 0 2, linecolor=magenta]{-4.5}{4.5} +\psFourier[cosCoeff=2 0 2, linecolor=red]{-4.5}{4.5} +\end{pspicture} +\end{Beispiel} + +\begin{Beispiel} +\psset{yunit=0.75} +\begin{pspicture}(-5,-6)(5,7) +\psaxes{->}(0,0)(-5,-6)(5,7) +\psset{plotpoints=500} +\psFourier[linecolor=red,linewidth=1pt]{-4.5}{4.5} +\psFourier[sinCoeff= -1 1 -1 1 -1 1 -1 1,% + linecolor=blue,linewidth=1.5pt]{-4.5}{4.5} +\end{pspicture} +\end{Beispiel} + +\begin{Beispiel} +\begin{pspicture}(-5,-5)(5,5.5) +\psaxes{->}(0,0)(-5,-5)(5,5) +\psset{plotpoints=500,linewidth=1.5pt} +\psFourier[sinCoeff=-.5 1 1 1 1 ,sinCoeff=-.5 1 1 1 1 1,% + linecolor=blue]{-4.5}{4.5} +\end{pspicture} +\end{Beispiel} + +\section{\texttt{psBessel}} +The Bessel function of order $n$ is defined as
+\begin{align} +J_n(x) &=\frac{1}{\pi}\int_0^\pi\cos(x\sin t-nt)\mathrm{d}t\\ + &=\sum_{k=0}^{\infty}\frac{(-1)^k \left(\frac{x}{2}\right)^{n+2k}}{k!\Gamma(n+k+1)} +\end{align} + +\noindent The syntax of the macro is +\begin{verbatim} +\psBessel[options]{order}{xStart}{xEnd}
+\end{verbatim} + +There are two special parameters for the Bessel function, and also the +settings of many \verb+pst-plot+ or \verb+pstricks+ parameters +affect the plot. + +\begin{verbatim} +\def\psset@constI#1{\edef\psk@constI{#1}} +\def\psset@constII#1{\edef\psk@constII{#1}} +\psset{constI=1,constII=0} +\end{verbatim} + +These two "'constants"` have the following meaning: +\[ +f(t) = constI \cdot J_n + constII +\] + +\noindent +where $constI$ and $constII$ must be real PostScript expressions, e.g.: +\begin{verbatim} +\psset{constI=2.3,constII=t k sin 1.2 mul 0.37 add} +\end{verbatim} + +The Bessel function is plotted with the parametricplot macro, this is the +reason why the variable is named \verb+t+. The internal procedure \verb+k+ +converts the value t from radian into degrees. The above setting is +the same as +\[ +f(t) = 2.3 \cdot J_n + 1.2\cdot \sin t + 0.37 +\] + + +In particular, note that the default for +\verb+plotpoints+ is $500$. If the plotting computations are too +time consuming at this setting, it can be decreased in the usual +way, at the cost of some reduction in graphics resolution. + +\begin{Beispiel} +{ +\psset{xunit=0.25,yunit=5} +\begin{pspicture}(-13,-.85)(13,1.25) +\rput(13,0.8){% + $\displaystyle J_n(x)=\frac{1}{\pi}\int_0^\pi\cos(x\sin t-nt)\mathrm{d}t$% +} +\psaxes[Dy=0.2,Dx=4,xyLabel=\footnotesize]{->}(0,0)(-30,-.8)(30,1.2) +\psset{linewidth=1pt} +\psBessel[linecolor=red]{0}{-28}{28}% +\psBessel[linecolor=blue]{1}{-28}{28}% +\psBessel[linecolor=green]{2}{-28}{28}% +\psBessel[linecolor=magenta]{3}{-28}{28}% +\end{pspicture} +} +\end{Beispiel} + + +\begin{Beispiel} +{ +\psset{xunit=0.25,yunit=2.5} +\begin{pspicture}(-13,-.85)(13,2) +\rput(13,0.8){% + $\displaystyle f(t) = 2.3 \cdot J_0 + 1.2\cdot \sin t + 0.37$% +} +\psaxes[Dy=0.2,Dx=4,xyLabel=\footnotesize]{->}(0,0)(-30,-.8)(30,1.2) +\psset{linewidth=1pt} +\psBessel[linecolor=red,constI=2.3,constII={t k sin 1.2 mul 0.37 add}]{0}{-28}{28}% +\end{pspicture} +} +\end{Beispiel} + + +\section{\texttt{psGauss}} +The Gauss function is defined as +\begin{align} +f(x) &= \dfrac{1}{\sigma\sqrt{2\pi}}\,e^{-\dfrac{x^2}{2\sigma{}^2}} +\end{align} + +\noindent The syntax of the macro is +\begin{verbatim} +\psGauss[options]{xStart}{xEnd} +\end{verbatim} + +%%JF +%% comment, the angle brackets below, around "value", make sense +%% as a convention, so I left them in +% +%\noindent where the only new parameter is \verb+sigma=<value>+, with +%the default of \verb+0.5+ and can also be set in the usual way with +%\verb+\psset+. It is only valid for the \verb+psGauss+-macro. +\noindent where the only new parameter is \verb+sigma=<value>+, +which can also be set in the usual way with \verb+\psset+. It is +significant only for the \verb+psGauss+-macro. The default is +\verb+0.5+. + +\begin{Beispiel} +\psset{yunit=4cm,xunit=3} +\begin{pspicture}(-2,0)(2,1) +% \psgrid[griddots=10,gridlabels=0pt, subgriddiv=0] + \psaxes[xyLabel=\footnotesize,Dy=0.25]{->}(0,0)(-2,0)(2,1) + \uput[-90](6,0){x}\uput[0](0,1){y} + \rput[lb](1,0.75){\textcolor{red}{$\sigma =0.5$}} + \rput[lb](1,0.5){\textcolor{blue}{$\sigma =1$}} + \rput[lb](-2,0.5){$f(x)=\dfrac{1}{\sigma\sqrt{2\pi}}\,e^{-\dfrac{x^2}{2\sigma{}^2}}$} + \psGauss[linecolor=red, linewidth=2pt]{-1.75}{1.75}% + \psGauss[sigma=1, linecolor=blue, linewidth=2pt]{-1.75}{1.75} +\end{pspicture} +\end{Beispiel} + + +\section{Credits} +Denis Girou | Manuel Luque | Timothy Van Zandt + + +\nocite{*} +\bibliographystyle{plain} +\bibliography{pstricks} + +\end{document} + + diff --git a/Master/texmf-dist/doc/generic/pst-func/pstricks.bib b/Master/texmf-dist/doc/generic/pst-func/pstricks.bib new file mode 100644 index 00000000000..820a2401c7e --- /dev/null +++ b/Master/texmf-dist/doc/generic/pst-func/pstricks.bib @@ -0,0 +1,132 @@ +%% -*-bibtex-*- +@STRING{tugboat = {TUGboat} } +@STRING{beiprogramm = {{\TeX}-Beiprogramm} } +@STRING{bretter = {Bretter, die die Welt bedeuten} } +@STRING{dtk = {{D}ie {\TeX}nische {K}om{\"o}die} } +@STRING{editorial = {Editorial} } +@STRING{fremdebuehne = {Von fremden B{\"u}hnen} } +@STRING{fundus = {Aus dem Fundus} } +@STRING{hinterbuehne = {Hinter der B{\"u}hne} } +@STRING{leserbrief = {Leserbrief(e)} } +@STRING{magazin = {Magazin} } +@STRING{rezension = {Rezensionen} } +@STRING{schonimmer = {Was Sie schon immer {\"u}ber {\TeX} wissen wollten \dots} } +@STRING{theaterkasse = {Von der Theaterkasse} } +@STRING{theatertage = {{\TeX}-Theatertage} } + +@Article{ dtk02.2:jackson.voss:plot-funktionen, + author = {Laura E. Jackson and Herbert Vo{\ss}}, + title = {Die {P}lot-{F}unktionen von {\texttt{pst-plot}}}, + journal = dtk, + year = 2002, + volume = {2/02}, + altvolume = 2, + altnumber = 14, + month = jun, + pages = {27--34}, + annote = bretter, + keywords = {}, + abstract = { Im letzten Heft wurden die mathematischen Funktionen von + \PS~im Zusammenhang mit dem {\LaTeX}-Paket + \texttt{pst-plot} zum Zeichnen von Funktionen beschrieben + und durch Beispiele erl{\"a}utert. In diesem Teil werden + die bislang nur erw{\"a}hnten Plot-Funktionen f{\"u}r + externe Daten behandelt. } +} + +@Article{ dtk02.1:voss:mathematischen, + author = {Herbert Vo{\ss}}, + title = {Die mathematischen {F}unktionen von {P}ost{S}cript}, + journal = dtk, + year = 2002, + volume = {1/02}, + altvolume = 1, + altnumber = 14, + month = mar, + pages = {}, + annote = bretter, + keywords = {}, + abstract = { \PS, faktisch genauso alt wie {\TeX}, ist im + Verh{\"a}ltnis dazu allgemein noch weniger bekannt, wenn es + darum geht zu beurteilen, was es denn nun im eigentlichen + Sinne ist. Au{\ss}erdem wird h{\"a}ufig vergessen, dass + sich mit den \PS-Funktionen viele Dinge erledigen lassen, + bei denen sonst auf externe Programme zur{\"u}ckgegriffen + wird. Dies wird im Folgenden f{\"u}r die mathematischen + Funktionen im Zusammenhang mit dem Paket \texttt{pst-plot} + gezeigt. } +} + +@Book{companion, + author = {Michel Goosens and Frank Mittelbach and Alexander + Samarin}, + title = {The {\LaTeX} {G}raphics {C}ompanion}, + publisher = {{Addison-Wesley Publishing Company}}, + year = {1997}, + address = {Reading, Mass.} +} + +@Book{voss:chaos, + author = {Herbert Vo{\ss}}, + title = {Chaos und {F}raktale selbst programmieren: von {M}andelbrotmengen {\"u}ber {F}arbmanipulationen zur perfekten Darstellung}, + publisher = {{Franzis Verlag}}, + year = {1994}, + address = {Poing} +} + +@Article{girou:01:, + author = {Denis Girou}, + title = {Pr\'esentation de {PST}ricks}, + journal = {Cahier {GUT}enberg}, + year = 1994, + volume = {16}, + month = apr, + pages = {21-70} +} + +@Article{girou:02:, + author = {{Timothy van} Zandt and Denis Girou}, + title = {Inside {PST}ricks}, + journal = TUGboat, + year = 1994, + volume = {15}, + month = sep, + pages = {239-246} +} + +@Book{PostScript, + Author = {Kollock, Nikolai G.}, + Title = {Post{S}cript richtig eingesetzt: vom {K}onzept zum + praktischen {E}insatz}, + Publisher = {IWT}, + Address = {Vaterstetten}, + year = 1989, +} + +@Manual{pstricks, + Title = {PSTricks - {\PS} macros for generic {\TeX}}, + Author = {{Timothy van} Zandt}, + Organization = {}, + Address = {\url{http://www.tug.org/application/PSTricks}}, + Note = {}, + year = 1993 +} + +@Manual{pst-plot, + Title = {\texttt{pst-plot}: Plotting two dimensional functions and data}, + Author = {{Timothy van} Zandt}, + Organization = {}, + Address = {\url{CTAN:graphics/pstricks/generic/pst-plot.tex}}, + Note = {}, + year = 1999 +} + +@Manual{multido, + Title = {\texttt{multido.tex} - a loop macro, that supports fixed-point addition}, + Author = {{Timothy van} Zandt}, + Organization = {}, + Address = {\url{CTAN:/graphics/pstricks/generic/multido.tex}}, + Note = {}, + year = 1997 +} + |