diff options
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex')
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex | 15 |
1 files changed, 8 insertions, 7 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex b/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex index 30846a8a4ba..fb9e4d2a250 100644 --- a/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex +++ b/Master/texmf-dist/doc/generic/pst-func/pst-func-doc.tex @@ -208,7 +208,7 @@ options can be set in the usual way with \verb+\psset+. linestyle=dotted,Derivation=3]{-2}{4} \rput[lb](1.8,4){\textcolor{blue}{$f(x)=x^3$}} \rput[lb](0.2,8){\textcolor{red}{$f^{\prime\prime}(x)=6x$}} - \rput[lb](-2,5.5){\textcolor{magenta}{$f^{\prime\prime\prime}(x)=6$}} + \rput[lb](-2,5){\textcolor{cyan}{$f^{\prime\prime\prime}(x)=6$}} \end{pspicture*} \end{LTXexample} %$ @@ -442,9 +442,9 @@ the integral is performed over one of them. The second one is the cumulative integral of a function (similar to \verb+\psGaussI+ but valid for all functions). The third one is the result of a convolution. They are defined as: \begin{align} -\text{psIntegral}(x) &= \int_a^b f(x,t)dt \\ -\text{psCumIntegral}(x) &= \int_{\text{xStart}}^{x} f(t)dt \\ -\text{psConv}(x) & = \int_a^b f(t)g(x-t)dt +\text{psIntegral}(x) &= \int_a^b f(x,t)\mathrm{d}t \\ +\text{psCumIntegral}(x) &= \int_{\text{xStart}}^{x} f(t)\mathrm{d}t \\ +\text{psConv}(x) & = \int_a^b f(t)g(x-t)\mathrm{d}t \end{align} In the first one, the integral is performed from $a$ to $b$ and the function $f$ depends on two parameters. In the second one, the function $f$ depends on only one parameter, and the @@ -476,8 +476,9 @@ step). The precision and the smoothness of the plot depend strongly on these two \begin{pspicture}[linewidth=1pt](-10,-.5)(10,1.5) \psaxes[dx=1cm,Dx=2]{->}(0,0)(-10,0)(10,1.5) \psCumIntegral[plotpoints=200,Simpson=10]{-10}{10}{0 1 GAUSS} - \psIntegral[plotpoints=200,Simpson=10,linecolor=red]{-10}{10}(-4,6){1 GAUSS} \psIntegral[plotpoints=200,Simpson=100,linecolor=green]{.1}{10}(-3,3){0 exch GAUSS} + \psIntegral[plotpoints=200,Simpson=10,linecolor=red, + fillcolor=red!40,fillstyle=solid,opacity=0.5]{-10}{10}(-4,6){1 GAUSS} \end{pspicture} \end{LTXexample} @@ -875,7 +876,7 @@ D_r(\chi^2) &= int_0^{\chi^2}\frac{t^{r/2-1}e^{-t/2}\mathrm{d}t}{\Gamma(1/2r)2^{ A statistical distribution published by William Gosset in 1908 under his %. His employer, Guinness Breweries, %required him to publish under a pseudonym %, so he chosed -"`Student"'. +,,Student``. %Given N independent measurements x_i, let %t=(x^_-mu)/(s/sqrt(N)), The $t$-distribution with parameter $\nu$ has the density function @@ -1333,7 +1334,7 @@ valuewidth & <number> & 10 & the width of the string for the converted \section{Credits} -Gerry Coombes | Denis Girou | Christophe Jorssen | Manuel Luque | Timothy Van Zandt +Rafal Bartczuk | Gerry Coombes | Denis Girou | Christophe Jorssen | Manuel Luque | Timothy Van Zandt \bgroup \raggedright |