diff options
Diffstat (limited to 'Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.tex')
-rw-r--r-- | Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.tex | 312 |
1 files changed, 248 insertions, 64 deletions
diff --git a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.tex b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.tex index f7203cd4c19..0f59dfe1556 100644 --- a/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.tex +++ b/Master/texmf-dist/doc/generic/pst-diffraction/pst-diffraction-docFR.tex @@ -1,4 +1,4 @@ -\documentclass[dvips,a4paper]{article} +\documentclass[frenchb,dvips,a4paper]{article} \usepackage[latin9]{inputenc}% \usepackage[T1]{fontenc} \usepackage[bmargin=2cm,tmargin=2cm]{geometry} @@ -11,13 +11,26 @@ \usepackage{ccfonts} \usepackage[euler-digits]{eulervm} \usepackage[scaled=0.85]{luximono} +\usepackage{xspace} +\newcommand*\psp{\texttt{pspicture}\xspace} \def\UrlFont{\small\ttfamily} \makeatletter \def\verbatim@font{\small\normalfont\ttfamily} \makeatother -\usepackage{prettyref} +\usepackage{prettyref,multicol} \usepackage{fancyhdr} +\usepackage{showexpl} +\lstdefinestyle{syntax}{backgroundcolor=\color{blue!20},numbers=none,xleftmargin=0pt,xrightmargin=0pt, + frame=single} +\lstdefinestyle{example}{backgroundcolor=\color{red!20},numbers=none,xleftmargin=0pt,xrightmargin=0pt, + frame=single} +\lstset{wide=true,language=PSTricks, + morekeywords={psdiffractionCircular,psdiffractionRectangle,psdiffractionTriangle}} + +\usepackage{babel} +\usepackage[colorlinks,linktocpage]{hyperref} + \pagestyle{fancy} \def\Lcs#1{{\ttfamily\textbackslash #1}} \lfoot{\small\ttfamily\jobname.tex} @@ -118,17 +131,18 @@ divers paramètres du montage. Il y a trois commandes, l'une pour les ouvertures rectangulaires, l'autre pour les ouvertures circulaires et la dernière pour une ouverture triangulaire. -\begin{verbatim} +\begin{lstlisting}[style=syntax] \psdiffractionRectangle[<liste de paramètres>] \psdiffractionCircular[<liste de paramètres>] \psdiffractionTriangle[<liste de paramètres>] -\end{verbatim} +\end{lstlisting} + Nous allons passer en revue ces différentes commandes et leurs paramètres. \section{La couleur de la radiation} La longueur d'onde est définie par le paramètres \texttt{[lambda=632]} (si l'on veut du rouge de longueur d'onde~:~ $\lambda=632$~nm), cette valeur est donc en~nm. La conversion de la longueur d'onde dans le système \texttt{rgb} est une adaptation en -postscript de celle qu'on trouve sur~: +postscript de celle qu'on trouve sur~:\\ \url{http://www.physics.sfasu.edu/astro/color.html}. @@ -154,97 +168,230 @@ negativ avec \texttt{[colorMode=1]} ou cmyk couleur avec \texttt{[colorMode=2]} rgb avec \texttt{[colorMode=3]}. Par défaut les paramètres ont les valeurs suivantes : -\begin{itemize} - \item \texttt{[a=0.2e-3]} en m ; - \item \texttt{[k=1]} ; - \item \texttt{[f=5]} en m ; - \item \texttt{[lambda=650]} en nm ; - \item \texttt{[pixel=0.5]} ; - \item \texttt{[contrast=38]}, valeur maximale ; - \item \texttt{[colorMode=3]}. -\end{itemize} -\begin{center} -\begin{pspicture}(-4,-4)(4,4) +\begin{tabular}{@{}lll@{}} +\texttt{[a=0.2e-3]} en m; & \texttt{[k=1]}; & \texttt{[f=5]} en m;\\ +\texttt{[lambda=650]} en nm; & \texttt{[pixel=0.5]}; & \texttt{[contrast=38]}, valeur maximale;\\ +\texttt{[colorMode=3]}; & \texttt{[IIID=false]}. +\end{tabular} + +\bigskip +\noindent +\begin{pspicture}(-3.5,-3.5)(3.5,3.5) \psdiffractionRectangle[f=2.5] -\uput[270](0,-3.5){$\backslash$\texttt{psdiffractionRectangle[f=2.5]}} \end{pspicture} -\end{center} -\begin{center} -\begin{pspicture}(-2,-4.5)(2,4.5) +\hfill +\begin{pspicture}(-1.5,-2.5)(3.5,3.5) +\psdiffractionRectangle[IIID,Alpha=30,f=2.5] +\end{pspicture} + +\begin{lstlisting}[style=example] +\begin{pspicture}(-3.5,-3.5)(3.5,3.5) +\psdiffractionRectangle[f=2.5] +\end{pspicture} +\hfill +\begin{pspicture}(-1.5,-2.5)(3.5,3.5) +\psdiffractionRectangle[IIID,Alpha=30,f=2.5] +\end{pspicture} +\end{lstlisting} + + + +\noindent\begin{pspicture}(-2,-4)(2,4) \psdiffractionRectangle[a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0] -\uput[270](0,-4.5){$\backslash$\texttt{psdiffractionRectangle[a=0.5e-3,k=0.5,f=4,colorMode=0]}} \end{pspicture} -\end{center} -\begin{center} -\begin{pspicture}(-4,-2.5)(4,3) +\hfill +\begin{pspicture}(0,-3)(4,4) +\psdiffractionRectangle[IIID,a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0] +\end{pspicture} + + +\begin{lstlisting}[style=example] +\begin{pspicture}(-2,-4)(2,4) +\psdiffractionRectangle[a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0] +\end{pspicture} +\hfill +\begin{pspicture}(0,-3)(4,4) +\psdiffractionRectangle[IIID,a=0.5e-3,k=0.5,f=4,pixel=0.5,colorMode=0] +\end{pspicture} +\end{lstlisting} + + + +\noindent +\begin{pspicture}(-2.5,-2.5)(3.5,3) \psdiffractionRectangle[a=0.5e-3,k=2,f=10,lambda=515,colorMode=1] -\uput[270](0,-2){$\backslash$\texttt{psdiffractionRectangle[a=0.5e-3,k=2,f=10,lambda=515,colorMode=1]}} \end{pspicture} -\end{center} -\begin{center} -\begin{pspicture}(-4,-1)(4,1) +\hfill +\begin{pspicture}(-1.5,-2)(3.5,3) +\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=2,f=10,lambda=515,colorMode=1] +\end{pspicture} + + +\begin{lstlisting}[style=example] +\begin{pspicture}(-2.5,-2.5)(3.5,3) +\psdiffractionRectangle[a=0.5e-3,k=2,f=10,lambda=515,colorMode=1] +\end{pspicture} +\hfill +\begin{pspicture}(-1.5,-2)(3.5,3) +\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=2,f=10,lambda=515,colorMode=1] +\end{pspicture} +\end{lstlisting} + + +\noindent +\begin{pspicture}(-3.5,-1)(3.5,1) \psdiffractionRectangle[a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450] -\uput[270](0,-0.5){$\backslash$\texttt{psdiffractionRectangle[a=0.5e-3,k=20,f=10,lambda=450]}} \end{pspicture} -\end{center} +\hfill +\begin{pspicture}(-3.5,-1)(3.5,4) +\psdiffractionRectangle[IIID,Alpha=10,a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450] +\end{pspicture} +\begin{lstlisting}[style=example] +\begin{pspicture}(-3.5,-1)(3.5,1) +\psdiffractionRectangle[a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450] +\end{pspicture} +\hfill +\begin{pspicture}(-3.5,-1)(3.5,4) +\psdiffractionRectangle[IIID,Alpha=10,a=0.5e-3,k=20,f=10,pixel=0.5,lambda=450] +\end{pspicture} +\end{lstlisting} \section{Diffraction par deux ouverture rectangulaire} -%\begin{shaded} -%This simulation was provided by Julien -%\textsc{Cubizolles}. -%\end{shaded} +\begin{shaded} +This simulation was provided by Julien \textsc{Cubizolles}. +\end{shaded} + \begin{center} +\noindent \begin{pspicture}(-4,-1)(4,1) \psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3] -\uput[270](0,-0.5){$\backslash -$\texttt{psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3]}} \end{pspicture} \end{center} +\begin{lstlisting}[style=example] +\begin{pspicture}(-4,-1)(4,1) +\psdiffractionRectangle[a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3] +\end{pspicture} +\end{lstlisting} + +\begin{center} +\begin{pspicture}(-2,-1)(4,4) +\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3] +\end{pspicture} +\end{center} + +\begin{lstlisting}[pos=t,style=example,wide=false] +\begin{pspicture}(-2,-1)(4,4) +\psdiffractionRectangle[IIID,Alpha=20,a=0.5e-3,k=10,f=10,pixel=0.5,lambda=650,twoSlit,s=2e-3] +\end{pspicture} +\end{lstlisting} + \section{Diffraction par une ouverture circulaire} On donnera le rayon du trou : \texttt{[r=1e-3]}, $r=1$ mm par défaut. Les variations de l'intensité sont superposées à la figure de diffraction dans le premier quadrant (le maximum au centre a été écrêté). + + \begin{center} -\begin{pspicture}(-5,-5)(5,5) +\begin{pspicture}(-3.5,-3.5)(3.5,3.5) \psdiffractionCircular[r=0.5e-3,f=10,pixel=0.5,lambda=520] -\uput[270](0,-5){$\backslash$\texttt{psdiffractionCircular[r=0.5e-3,f=10,lambda=520]}} +\end{pspicture} +% +\begin{pspicture}(-3.5,-1.5)(3.5,3.5) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,pixel=0.5,lambda=520] \end{pspicture} \end{center} + +\begin{lstlisting}[style=example] +\begin{pspicture}(-3.5,-3.5)(3.5,3.5) +\psdiffractionCircular[r=0.5e-3,f=10,pixel=0.5,lambda=520] +\end{pspicture} +% +\begin{pspicture}(-3.5,-1.5)(3.5,3.5) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,pixel=0.5,lambda=520] +\end{pspicture} +\end{lstlisting} + + + \section{Diffraction par deux trous circulaires} Les deux trous sont identiques, outre le rayon commun des trous on fixera la demi-distance entre les centres des deux trous avec : \texttt{[d]} et pour ce cas de figure on activera l'option \texttt{[twoHole]}. On notera que les temps de calculs d'allongent\ldots -\begin{center} -\begin{pspicture}(-5,-5)(5,4) + + +\begin{pspicture}(-3,-3.5)(3.5,3.5) \psdiffractionCircular[r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole] -\uput[270](0,-4){$\backslash$\texttt{psdiffractionCircular[r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole]}} \end{pspicture} -\end{center} -\begin{center} -\begin{pspicture}(-6,-6)(6,6) +% +\begin{pspicture}(-3.5,-1.5)(3.5,3.5) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole] +\end{pspicture} + + +\begin{lstlisting}[style=example] +\begin{pspicture}(-3,-3.5)(3.5,3.5) +\psdiffractionCircular[r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole] +\end{pspicture} +% +\begin{pspicture}(-3.5,-1.5)(3.5,3.5) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=3e-3,lambda=515,twoHole] +\end{pspicture} +\end{lstlisting} + + +\hspace*{-1cm}% +\begin{pspicture}(-3,-3)(3.5,4) \psdiffractionCircular[r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0] -\uput[270](0,-5){$\backslash$\texttt{psdiffractionCircular[r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0]}} \end{pspicture} -\end{center} +% +\begin{pspicture}(-3.5,-2)(3.5,3.5) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0] +\end{pspicture} + +\begin{lstlisting}[style=example] +\begin{pspicture}(-3.5,-3)(3.5,4) +\psdiffractionCircular[r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0] +\end{pspicture} +% +\begin{pspicture}(-3.5,-2)(3.5,3.5) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=2e-3,lambda=700,twoHole,colorMode=0] +\end{pspicture} +\end{lstlisting} + Le cas limite d'obtention de franges se vérifie avec $\displaystyle d -=\frac{a}{1.22}$. Voir~: +=\frac{a}{1.22}$. Voir~:\\ +\url{http://www.unice.fr/DeptPhys/optique/diff/trouscirc/diffrac.html}). -\url{http://www.unice.fr\DeptPhys\optique\optique.html}. -\begin{center} -\begin{pspicture}(-5,-6)(5,5) +\hspace*{-1cm}% +\begin{pspicture}(-3,-3.5)(3,3.5) \psdiffractionCircular[r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole] -\uput[270](0,-5){$\backslash$\texttt{psdiffractionCircular[r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole]}} \end{pspicture} -\end{center} +% +\begin{pspicture}(-3.5,-1.5)(3.5,3) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole] +\end{pspicture} + + +\begin{lstlisting}[style=example] +\begin{pspicture}(-3,-3.5)(3,3.5) +\psdiffractionCircular[r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole] +\end{pspicture} +% +\begin{pspicture}(-3.5,-1.5)(3.5,3) +\psdiffractionCircular[IIID,r=0.5e-3,f=10,d=4.1e-4,lambda=632,twoHole] +\end{pspicture} +\end{lstlisting} + + \section{Diffraction par un trou triangulaire équilatéral} Le triangle équilatéral est défini par sa hauteur \texttt{[h]} en m. Pour le @@ -253,33 +400,70 @@ triangle, on peut obtenir la figure en niveaux de gris avec l'option \textsc{Airy}, on la trouve dans le livre d'Henri \textsc{Bouasse} sur la diffraction, pages 114 et 115. + \begin{center} \begin{pspicture}(-1,-1)(1,1) \pspolygon*(0,0)(1;150)(1;210) \pcline{|-|}(-0.732,-1)(0,-1) \Aput{$h$} \end{pspicture} - -\vspace{1cm} -$\backslash$\texttt{psdiffractionTriangle[f=10,h=1e-3,contrast=38,colorMode=]} +\end{center} \makebox[\linewidth]{% -\begin{pspicture}(-3,-3)(3,3) +\begin{pspicture}(-3,-3)(3,2.5) \psdiffractionTriangle[f=10,h=1e-3,lambda=515,contrast=38] -\uput[270](0,-2.5){default color mode (>1)} \end{pspicture} -% -\begin{pspicture}(-3,-3)(3,3) +\quad +\begin{pspicture}(-3,-3)(3,2.5) \psdiffractionTriangle[f=10,h=1e-3,colorMode=1,contrast=38,lambda=515] -\uput[270](0,-2.5){\texttt{colorMode=1}} \end{pspicture} -% -\begin{pspicture}(-3,-3)(3,3) +\quad +\begin{pspicture}(-3,-3)(3,2.5) \psdiffractionTriangle[f=10,h=1e-3,colorMode=0,contrast=38,lambda=515] -\uput[270](0,-2.5){\texttt{colorMode=0}} \end{pspicture}} -\end{center} + +\begin{lstlisting}[style=example] +\begin{pspicture}(-3,-3)(3,2.5) +\psdiffractionTriangle[f=10,h=1e-3,lambda=515,contrast=38] +\end{pspicture} +\quad +\begin{pspicture}(-3,-3)(3,2.5) +\psdiffractionTriangle[f=10,h=1e-3,colorMode=1,contrast=38,lambda=515] +\end{pspicture} +\quad +\begin{pspicture}(-3,-3)(3,2.5) +\psdiffractionTriangle[f=10,h=1e-3,colorMode=0,contrast=38,lambda=515] +\end{pspicture} +\end{lstlisting} + + +\makebox[\linewidth]{% +\begin{pspicture}(-3,-2)(3,3.5) +\psdiffractionTriangle[IIID,f=10,h=1e-3,lambda=515,contrast=38] +\end{pspicture} +\quad +\begin{pspicture}(-3,-2)(3,3.5) +\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=1,contrast=38,lambda=515] +\end{pspicture} +\quad +\begin{pspicture}(-3,-2)(3,3.5) +\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=0,contrast=38,lambda=515] +\end{pspicture}} + +\begin{lstlisting}[style=example] +\begin{pspicture}(-3,-2)(3,3.5) +\psdiffractionTriangle[IIID,f=10,h=1e-3,lambda=515,contrast=38] +\end{pspicture} +\quad +\begin{pspicture}(-3,-2)(3,3.5) +\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=1,contrast=38,lambda=515] +\end{pspicture} +\quad +\begin{pspicture}(-3,-2)(3,3.5) +\psdiffractionTriangle[IIID,f=10,h=1e-3,colorMode=0,contrast=38,lambda=515] +\end{pspicture} +\end{lstlisting} |