diff options
Diffstat (limited to 'Master/texmf-dist/doc/generic/pgf/text-en/pgfmanual-en-math-parsing.tex')
-rw-r--r-- | Master/texmf-dist/doc/generic/pgf/text-en/pgfmanual-en-math-parsing.tex | 343 |
1 files changed, 199 insertions, 144 deletions
diff --git a/Master/texmf-dist/doc/generic/pgf/text-en/pgfmanual-en-math-parsing.tex b/Master/texmf-dist/doc/generic/pgf/text-en/pgfmanual-en-math-parsing.tex index 0ff8c958520..7ec64df937c 100644 --- a/Master/texmf-dist/doc/generic/pgf/text-en/pgfmanual-en-math-parsing.tex +++ b/Master/texmf-dist/doc/generic/pgf/text-en/pgfmanual-en-math-parsing.tex @@ -20,7 +20,7 @@ units. It should be noted that all calculations must not exceed $\pm16383.99999$ at \emph{any} point, -because the underlying algorithms relie on \TeX{} dimensions. This +because the underlying algorithms rely on \TeX{} dimensions. This means that many of the underlying algorithms are necessarily approximate. It also means that some of the algorithms are not very fast. \TeX{} is, after all, a typesetting language and not ideally @@ -51,10 +51,7 @@ engine is the following: In the following, the special properties of this command are explained. The exact syntax of mathematical expressions is explained - in Section~\ref{pgfmath-syntax}. Note that unlike the rest of the - manual, the examples show the result of the calculation (that is, - the value of the macro |\pgfmathresult|), not what is displayed in - the document. + in Section~\ref{pgfmath-syntax}. \begin{itemize} \item @@ -62,12 +59,12 @@ engine is the following: \emph{without units}. This is true regardless of whether the \meta{expression} contains any unit specification. But, any units specified will be converted to points first. -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{2pt+3.4pt} +\begin{codeexample}[] +\pgfmathparse{2pt+3.4pt} \pgfmathresult \end{codeexample} -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{2cm+3.4cm} +\begin{codeexample}[] +\pgfmathparse{2cm+3.4cm} \pgfmathresult \end{codeexample} \item If no units are specified \emph{at any point} in the @@ -77,13 +74,13 @@ engine is the following: but can be changed with |\pgfmathsetresultunitscale|. Note that the result will still be a number \emph{without} units. -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{2pt+3.4pt} +\begin{codeexample}[] +\pgfmathparse{2pt+3.4pt} \pgfmathresult \end{codeexample} -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] +\begin{codeexample}[] \pgfmathsetresultunitscale{1cm} -\pgfmathparse{2+3.4} +\pgfmathparse{2+3.4} \pgfmathresult \end{codeexample} \pgfmathsetresultunitscale{1pt} @@ -96,8 +93,8 @@ engine is the following: \item The parser handles numbers with or without units regardless of the operation. -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{54pt/3cm*2.1} +\begin{codeexample}[] +\pgfmathparse{54pt/3cm*2.1} \pgfmathresult \end{codeexample} \item the parser can cope with \TeX{} registers, including those @@ -105,31 +102,31 @@ engine is the following: \makeatletter -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] +\begin{codeexample}[] \pgf@x=12.34pt \c@pgf@counta=5 -\pgfmathparse{\pgf@x+\c@pgf@counta*6} +\pgfmathparse{\pgf@x+\c@pgf@counta*6} \pgfmathresult \end{codeexample} -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] +\begin{codeexample}[] \pgf@x=56.78pt -\pgfmathparse{\pgf@x+\the\pgf@x} +\pgfmathparse{\pgf@x+\the\pgf@x} \pgfmathresult \end{codeexample} \item \TeX{} dimension registers can be multiplied without the |*| operator by preceding them with a number (\emph{not} a function), or a count register. -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] +\begin{codeexample}[] \c@pgf@counta=-4 \pgf@x=10pt -\pgfmathparse{.5\pgf@x-\c@pgf@counta\pgf@x}% +\pgfmathparse{.5\pgf@x-\c@pgf@counta\pgf@x} \pgfmathresult \end{codeexample} \item Parenthesis can be used to group operations. -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{(4pt+0.5)*3} +\begin{codeexample}[] +\pgfmathparse{(4pt+0.5)*3} \pgfmathresult \end{codeexample} \item functions are recognized, so it is possible to parse @@ -137,19 +134,19 @@ engine is the following: radians, multiplied by 60''. The argument of most functions can be any expression. -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{sin(pi/2 r)*60} +\begin{codeexample}[] +\pgfmathparse{sin(pi/2 r)*60} \pgfmathresult \end{codeexample} \item Scientific notation in the form |1.234e+4| is recognised (but the restriction on the range of values still applies). The exponent symbol can be upper or lower case (i.e., |E| or |e|). -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{1.234567891e-2} +\begin{codeexample}[] +\pgfmathparse{1.234567891e-2} \pgfmathresult \end{codeexample} -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{1.234567891e4} +\begin{codeexample}[] +\pgfmathparse{1.234567891e4} \pgfmathresult \end{codeexample} \end{itemize} \end{command} @@ -211,8 +208,8 @@ magnitude faster than calling the parser. \end{command} \begin{command}{\pgfmathsetcounter\marg{counter}\marg{expression}} - Sets the value of the \meta{counter}, to the \emph{truncated} value - specified by \meta{expression}. + Sets the value of the \LaTeX{} \meta{counter}, to the \emph{truncated} + value specified by \meta{expression}. \end{command} \begin{command}{\pgfmathaddtocounter\marg{counter}\marg{expression}} @@ -233,6 +230,15 @@ magnitude faster than calling the parser. is a decimal \emph{without} units. \end{command} +\begin{command}{\pgfmathsetlengthmacro\marg{macro}\marg{expression}} + Defines \meta{macro} as the value of \meta{expression} + \LaTeX{}\emph{in points}. +\end{command} + +\begin{command}{\pgfmathtruncatemacro\marg{macro}\marg{expression}} + Defines \meta{macro} as the truncated value of \meta{expression}. +\end{command} + \subsection{Syntax for mathematical expressions} @@ -240,53 +246,55 @@ magnitude faster than calling the parser. \label{pgfmath-syntax} The syntax for the expressions recognized by |\pgfmathparse| and -friends is based on the syntax recognized by \textsc{matlab}. The -following operations and functions are currently recognized: +friends is straightfoward, and the following operations and +functions are currently recognized: \begin{math-operator}{\mvar{x}\ +\ \mvar{y}} Adds \mvar{y} to \mvar{x}. -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{4+2pt} +\begin{codeexample}[] +\pgfmathparse{4+2pt} \pgfmathresult \end{codeexample} \end{math-operator} \begin{math-operator}{\mvar{x}\ -\ \mvar{y}} Subtracts \mvar{y} from \mvar{x}. -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{155.35-4cm} +\begin{codeexample}[] +\pgfmathparse{155.35-4cm} \pgfmathresult \end{codeexample} \end{math-operator} \begin{math-operator}{\mvar{x}\ *\ \mvar{y}} Multiplies \mvar{x} by \mvar{y}. -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{3.9pt*4.56} +\begin{codeexample}[] +\pgfmathparse{3.9pt*4.56} \pgfmathresult \end{codeexample} \end{math-operator} \begin{math-operator}{\mvar{x}\ /\ \mvar{y}} Divides \mvar{x} by \mvar{y}. -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{-31.6pt/17} +\begin{codeexample}[] +\pgfmathparse{-31.6pt/17} \pgfmathresult \end{codeexample} \end{math-operator} \begin{math-operator}{\mvar{x}\ {\char94}\ \mvar{y}} -Raises \mvar{x} to the power \mvar{y}. \mvar{y} should be an integer, but it can be negative. +Raises \mvar{x} to the power \mvar{y}. For greatest accuracy \mvar{y} +should be an integer. If \mvar{y} is not an integer the actual +calculation will be an approximation of $e^{y\ln(x)}$. { \catcode`\^=7 -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{2.3^4} +\begin{codeexample}[] +\pgfmathparse{2.3^4} \pgfmathresult \end{codeexample} -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{2^-4} +\begin{codeexample}[] +\pgfmathparse{2^-4} \pgfmathresult \end{codeexample} } \end{math-operator} @@ -302,8 +310,8 @@ Raises \mvar{x} to the power \mvar{y}. \mvar{y} should be an integer, but it can resulting in zero, and the second equality is therefore evaluating |0==9|. -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{3*5 == 15} +\begin{codeexample}[] +\pgfmathparse{3*5==15} \pgfmathresult \end{codeexample} \end{math-operator} @@ -314,8 +322,8 @@ Raises \mvar{x} to the power \mvar{y}. \mvar{y} should be an integer, but it can This evaluates to |1| if \mvar{x} is greater than \mvar{y}, or |0| if \mvar{x} is smaller or equal to \mvar{y}. -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{17 > 4.2*1.97+4} +\begin{codeexample}[] +\pgfmathparse{17>4.2*1.97+4} \pgfmathresult \end{codeexample} \end{math-operator} @@ -325,18 +333,19 @@ Raises \mvar{x} to the power \mvar{y}. \mvar{y} should be an integer, but it can This evaluates to |1| if \mvar{x} is smaller than \mvar{y}, or |0| if \mvar{x} is greater or equal to \mvar{y}. -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{2 < -5.2/-3.6-2} +\begin{codeexample}[] +\pgfmathparse{2<-5.2/-3.6-2} \pgfmathresult \end{codeexample} \end{math-operator} \begin{math-function}{mod(\mvar{x},\mvar{y})} - This evaluates \mvar{x} modulo \mvar{y}. This function cannot be - nested inside itself or the functions |max|, |min| or |veclen|. + This evaluates \mvar{x} modulo \mvar{y} (using truncated division). + This function cannot be nested inside itself or the functions |max|, + |min| or |pow|. -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{mod(20,6)} +\begin{codeexample}[] +\pgfmathparse{mod(20,6)} \pgfmathresult \end{codeexample} \end{math-function} @@ -344,10 +353,10 @@ Raises \mvar{x} to the power \mvar{y}. \mvar{y} should be an integer, but it can \begin{math-function}{max(\mvar{x},\mvar{y})} This evaluates to the maximum of \mvar{x} or \mvar{y}. This function cannot be nested inside itself or the functions |min|, |mod| or - |veclen|. + |pow|. -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{max(17,23)} +\begin{codeexample}[] +\pgfmathparse{max(17,23)} \pgfmathresult \end{codeexample} \end{math-function} @@ -355,24 +364,24 @@ Raises \mvar{x} to the power \mvar{y}. \mvar{y} should be an integer, but it can \begin{math-function}{min(\mvar{x},\mvar{y})} This evaluates to the minimum of \mvar{x} or \mvar{y}. This function cannot be nested inside itself or the functions |max|, |mod| or - |veclen|. + |pow|. -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{min(17,23)} +\begin{codeexample}[] +\pgfmathparse{min(17,23)} \pgfmathresult \end{codeexample} \end{math-function} -\begin{math-function}{abs(\mvar{x})} +\begin{math-function}{abs(\mvar{x})} Evaluates the absolute value of $x$. -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{abs(-5)} +\begin{codeexample}[] +\pgfmathparse{abs(-5)} \pgfmathresult \end{codeexample} -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{-abs(4*-3)} +\begin{codeexample}[] +\pgfmathparse{-abs(4*-3)} \pgfmathresult \end{codeexample} \end{math-function} @@ -383,12 +392,12 @@ Raises \mvar{x} to the power \mvar{y}. \mvar{y} should be an integer, but it can rounding. So |1.5| is rounded to |2|, but |-1.5| is rounded to |-2| (\emph{not} |0|). -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{round(32.5/17)} +\begin{codeexample}[] +\pgfmathparse{round(32.5/17)} \pgfmathresult \end{codeexample} -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{round(398/12)} +\begin{codeexample}[] +\pgfmathparse{round(398/12)} \pgfmathresult \end{codeexample} \end{math-function} @@ -397,12 +406,12 @@ Raises \mvar{x} to the power \mvar{y}. \mvar{y} should be an integer, but it can Rounds \mvar{x} down to the nearest integer. -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{floor(32.5/17)} +\begin{codeexample}[] +\pgfmathparse{floor(32.5/17)} \pgfmathresult \end{codeexample} -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{floor(398/12)} +\begin{codeexample}[] +\pgfmathparse{floor(398/12)} \pgfmathresult \end{codeexample} \end{math-function} @@ -411,12 +420,12 @@ Raises \mvar{x} to the power \mvar{y}. \mvar{y} should be an integer, but it can Rounds \mvar{x} up to the nearest integer. -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{ceil(32.5/17)} +\begin{codeexample}[] +\pgfmathparse{ceil(32.5/17)} \pgfmathresult \end{codeexample} -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{ceil(398/12)} +\begin{codeexample}[] +\pgfmathparse{ceil(398/12)} \pgfmathresult \end{codeexample} \end{math-function} @@ -425,24 +434,41 @@ Raises \mvar{x} to the power \mvar{y}. \mvar{y} should be an integer, but it can { \catcode`\^=7 - Maclaurin series for $e^\textrm{\mvar{x}}$. + Maclaurin series for $e^x$. } -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{exp(1)} +\begin{codeexample}[] +\pgfmathparse{exp(1)} \pgfmathresult \end{codeexample} -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{exp(2.34)} +\begin{codeexample}[] +\pgfmathparse{exp(2.34)} \pgfmathresult +\end{codeexample} + +\end{math-function} + + +\begin{math-function}{ln(\mvar{x})} +{ +\catcode`\^=7 + + An approximation for for $\ln(\textrm{\mvar{x}})$. +} +\begin{codeexample}[] +\pgfmathparse{ln(10)} \pgfmathresult +\end{codeexample} + +\begin{codeexample}[] +\pgfmathparse{ln(exp(5))} \pgfmathresult \end{codeexample} \end{math-function} \begin{math-function}{pow(\mvar{x},\mvar{y})} - Raises \mvar{x} to the power \mvar{y}. \mvar{y} should be an integer, but it can be negative. + Raises \mvar{x} to the power \mvar{y}. -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{pow(2,7)} +\begin{codeexample}[] +\pgfmathparse{pow(2,7)} \pgfmathresult \end{codeexample} \end{math-function} @@ -451,28 +477,22 @@ Raises \mvar{x} to the power \mvar{y}. \mvar{y} should be an integer, but it can Calculates $\sqrt{\textrm{\mvar{x}}}$. -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{sqrt(10)} +\begin{codeexample}[] +\pgfmathparse{sqrt(10)} \pgfmathresult \end{codeexample} -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{sqrt(8765.432)} +\begin{codeexample}[] +\pgfmathparse{sqrt(8765.432)} \pgfmathresult \end{codeexample} \end{math-function} \begin{math-function}{veclen(\mvar{x},\mvar{y})} - Evaluates the Euclidean distance from |(0,0)| to |(|\mvar{x}|,|\mvar{y}|)|. - This function cannot be nested inside itself, or the functions |max|, - |min| or |mod|. - -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{veclen(15,14)} -\end{codeexample} + Calculates $\sqrt{\left(\textrm{\mvar{x}}^2+\textrm{\mvar{y}}^2\right)}$. -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{veclen(3,4)} +\begin{codeexample}[] +\pgfmathparse{veclen(12,5)} \pgfmathresult \end{codeexample} \end{math-function} @@ -481,12 +501,12 @@ Raises \mvar{x} to the power \mvar{y}. \mvar{y} should be an integer, but it can The constant $\pi=3.14159$. -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{pi} +\begin{codeexample}[] +\pgfmathparse{pi} \pgfmathresult \end{codeexample} -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{pi r} +\begin{codeexample}[] +\pgfmathparse{pi r} \pgfmathresult \end{codeexample} \end{math-constant} @@ -499,16 +519,16 @@ Raises \mvar{x} to the power \mvar{y}. \mvar{y} should be an integer, but it can converts 2 radians to degrees, but |3-4+6r|, converts 6 radians to degrees and adds the result to |-1|. -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{2*pi r-pi r} +\begin{codeexample}[] +\pgfmathparse{2*pi r-pi r} \pgfmathresult \end{codeexample} -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{2*pi/8 r} +\begin{codeexample}[] +\pgfmathparse{2*pi/8 r} \pgfmathresult \end{codeexample} -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{sin(3*pi/2r)*60} +\begin{codeexample}[] +\pgfmathparse{sin(3*pi/2r)*60} \pgfmathresult \end{codeexample} \end{math-operator} @@ -517,8 +537,8 @@ Raises \mvar{x} to the power \mvar{y}. \mvar{y} should be an integer, but it can Convert \mvar{x} to radians. \mvar{x} is assumed to be in degrees. -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{rad(90)} +\begin{codeexample}[] +\pgfmathparse{rad(90)} \pgfmathresult \end{codeexample} \end{math-function} @@ -527,8 +547,8 @@ Raises \mvar{x} to the power \mvar{y}. \mvar{y} should be an integer, but it can Convert \mvar{x} to degrees. \mvar{x} is assumed to be in radians. -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{deg(3*pi/2)} +\begin{codeexample}[] +\pgfmathparse{deg(3*pi/2)} \pgfmathresult \end{codeexample} \end{math-function} @@ -538,11 +558,11 @@ Raises \mvar{x} to the power \mvar{y}. \mvar{y} should be an integer, but it can Sine of \mvar{x}. By employing the |r| operator, \mvar{x} can be in radians. -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{sin(60)} +\begin{codeexample}[] +\pgfmathparse{sin(60)} \pgfmathresult \end{codeexample} -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] +\begin{codeexample}[] \pgfmathparse{sin(pi/3 r)} \end{codeexample} @@ -553,12 +573,12 @@ Raises \mvar{x} to the power \mvar{y}. \mvar{y} should be an integer, but it can Cosine of \mvar{x}. By employing the |r| operator, \mvar{x} can be in radians. -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{cos(60)} +\begin{codeexample}[] +\pgfmathparse{cos(60)} \pgfmathresult \end{codeexample} -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{cos(pi/3 r)} +\begin{codeexample}[] +\pgfmathparse{cos(pi/3 r)} \pgfmathresult \end{codeexample} \end{math-function} @@ -568,32 +588,67 @@ Raises \mvar{x} to the power \mvar{y}. \mvar{y} should be an integer, but it can Tangent of \mvar{x}. By employing the |r| operator, \mvar{x} can be in radians. -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{tan(45)} +\begin{codeexample}[] +\pgfmathparse{tan(45)} \pgfmathresult \end{codeexample} -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{tan(2*pi/8 r)} +\begin{codeexample}[] +\pgfmathparse{tan(2*pi/8 r)} \pgfmathresult +\end{codeexample} + +\end{math-function} + + +\begin{math-function}{sec(\mvar{x})} + + Secant of \mvar{x}. By employing the |r| operator, \mvar{x} can be in + radians. + +\begin{codeexample}[] +\pgfmathparse{sec(45)} \pgfmathresult +\end{codeexample} + +\end{math-function} + +\begin{math-function}{cosec(\mvar{x})} + + Cosecant of \mvar{x}. By employing the |r| operator, \mvar{x} can be in + radians. + +\begin{codeexample}[] +\pgfmathparse{cosec(30)} \pgfmathresult +\end{codeexample} + +\end{math-function} + +\begin{math-function}{cot(\mvar{x})} + + Cotangent of \mvar{x}. By employing the |r| operator, \mvar{x} can be in + radians. + +\begin{codeexample}[] +\pgfmathparse{cot(15)} \pgfmathresult \end{codeexample} \end{math-function} \begin{math-function}{asin(\mvar{x})} - Arcsine of \mvar{x}. The result is in degrees. + Arcsine of \mvar{x}. The result is in degrees and in the range $\pm90^\circ$. -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{asin(0.7071)} +\begin{codeexample}[] +\pgfmathparse{asin(0.7071)} \pgfmathresult \end{codeexample} \end{math-function} \begin{math-function}{acos(\mvar{x})} - Arccosine of \mvar{x} in degrees. + Arccosine of \mvar{x} in degrees. The result is in the range $\pm90^\circ$. -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{acos(0.5)} + +\begin{codeexample}[] +\pgfmathparse{acos(0.5)} \pgfmathresult \end{codeexample} \end{math-function} @@ -602,8 +657,8 @@ Raises \mvar{x} to the power \mvar{y}. \mvar{y} should be an integer, but it can Arctangent of $x$ in degrees. -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{atan(1)} +\begin{codeexample}[] +\pgfmathparse{atan(1)} \pgfmathresult \end{codeexample} \end{math-function} @@ -612,16 +667,16 @@ Raises \mvar{x} to the power \mvar{y}. \mvar{y} should be an integer, but it can Generates a pseudo-random number between 0 and 1. -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{rnd} +\begin{codeexample}[] +\pgfmathparse{rnd} \pgfmathresult \end{codeexample} -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{2*rnd} +\begin{codeexample}[] +\pgfmathparse{2*rnd} \pgfmathresult \end{codeexample} -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{-rnd+5} +\begin{codeexample}[] +\pgfmathparse{-rnd+5} \pgfmathresult \end{codeexample} \end{math-function} @@ -630,12 +685,12 @@ Raises \mvar{x} to the power \mvar{y}. \mvar{y} should be an integer, but it can Generates a pseudo-random number between -1 and 1. -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{rand} +\begin{codeexample}[] +\pgfmathparse{rand} \pgfmathresult \end{codeexample} -\begin{codeexample}[post=\tt\footnotesize\pgfmathresult] -\pgfmathparse{rand*15} -\end{codeexample} +\begin{codeexample}[] +\pgfmathparse{rand*15} \pgfmathresult +\end{codeexample} \end{math-function} |