diff options
Diffstat (limited to 'Master/texmf-dist/doc/fonts/xits/xits-specimen.tex')
-rw-r--r-- | Master/texmf-dist/doc/fonts/xits/xits-specimen.tex | 85 |
1 files changed, 85 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/fonts/xits/xits-specimen.tex b/Master/texmf-dist/doc/fonts/xits/xits-specimen.tex index a2b84441761..1b9bb930a8e 100644 --- a/Master/texmf-dist/doc/fonts/xits/xits-specimen.tex +++ b/Master/texmf-dist/doc/fonts/xits/xits-specimen.tex @@ -3,6 +3,7 @@ \setupbodyfont[xits] \setuplayout[header=0pt,footer=0pt] +\setupformulas[spaceafter={2*big}] \starttext @@ -60,5 +61,89 @@ x = {-b \pm \sqrt{b^2 - 4ac} \over 2a} \sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+x}}}}}}} \stopformula +\startformula +{\bf S^{\rm -1} TS} = {\bf dg}(\omega_1,\ldots,\omega_n) = {\bf \Lambda} +\stopformula + +\startformula +\Pr(\,m=n\mid m+n=3\,) +\stopformula + +\startformula +\sin 18^\circ = {1\over 4} (\sqrt{5}-1) +\stopformula + +\startformula +k=1.38 \times 10^{-16}\,\rm erg/^\circ K +\stopformula + +\startformula +\bar\Phi \subset NL^*_1/N=\bar L^*_1\subseteq\cdots\subseteq NL^*_n/N=\bar L^*_n +\stopformula + +\startformula +\textstyle I(\lambda)=\iint_D g(x,y)e^{i\lambda h(x,y)}\,dx\, dy +\stopformula + +\startformula +\textstyle\int^1_0\cdots\int^1_0 f(x_1,\ldots,x_n)\, dx_1\ldots dx_n +\stopformula + +\startformula +x_{2m} \equiv \cases{Q(X^2_m - P_2W^2_m)-2S^2 & ($m$ odd)\cr + &\cr + P^2_2(X^2_m - P_2W^2_m)-2S^2 & ($m$ even)} \pmod N +\stopformula + +\startformula +(1+x_1z+x^2_1z^2+\cdots\,)\ldots(1+x_nz+x^2_nz^2+\cdots\,)={1\over(1-x_1z)\ldots(1-x_nz)} +\stopformula + +\startformula +\prod_{j\ge 0}\biggl(\sum_{k\ge0}a_{jk}z^k\biggr) = +\sum_{n\ge 0} z^n \Biggl(\sum_{k_0,k_1,\ldots\ge 0\atop k_0+k_1+\cdots=n} a_{0k_0}a_{1k_1}\ldots\,\Biggr) +\stopformula + +\startformula +\sum^\infty_{n=0} a_nz^n\qquad\hbox{converges if}\qquad|z|\lt\left(\limsup_{n\to\infty} \root n \of {|a-n|}\right) +\stopformula + +\startformula +{f(x+\Delta x)-f(x)\over\Delta x}\to f'(x)\qquad\hbox{as $\Delta x\to 0$} +\stopformula + +\startformula +\Vert u_i\Vert = 1, \qquad u_i\cdot u_j = 0 \quad\hbox{if $i\neq j$} +\stopformula + +\startformula +\prod_{k\ge0}{1\over(1-q^kz)}=\sum_{n\ge0}z^n\bigg/\!\!\prod_{1\le k\le n}(1-q^k).\eqno(16') +\stopformula + +\startformula +\eqalign{T(n)\le T(2^{\lceil\lg n\rceil})&\le c(3^{\lceil\lg n\rceil}-2^{\lceil\lg n\rceil})\cr + &< 3c\cdot3^{\lg n}\cr + &= 3cn^{\lg n}} +\stopformula + +\startformula +\eqalign{P(x)&=a_0+a_1x+a_2x^2+\cdots+a_nx^2,\cr + P(-x)&=a_0-a_1x+a_2x^2-\cdots+(-1)^na_nx^2.} +\eqno(30) +\stopformula + +\startformula +\leqalignno{\gcd(u,v)&=\gcd(v,u); &(9)\cr + \gcd(u,v)&=\gcd(-u,v).&(10)} +\stopformula + +\startformula +\reqalignno{ +\biggl(\int^\infty_{-\infty}e^{-x^2}dx\biggr)^2 & =\int^\infty_{-\infty}\int^\infty_{-\infty}e^{-(x^2+y^2)}\,dx\,dy\cr + & =\int^{2\pi}_0\int^\infty_0 e^{-r^2} r\,dr\,d\theta\cr + & =\int^{2\pi}_0\biggl(-{e^{-r^2}\over2}\bigg|^{r=\infty}_{r=0}\,\biggr)\,d\theta\cr + & =\pi.&(11) +} +\stopformula \stoptext |