diff options
Diffstat (limited to 'Master/texmf-dist/doc/fonts/qtx/01tst.tex')
-rw-r--r-- | Master/texmf-dist/doc/fonts/qtx/01tst.tex | 163 |
1 files changed, 163 insertions, 0 deletions
diff --git a/Master/texmf-dist/doc/fonts/qtx/01tst.tex b/Master/texmf-dist/doc/fonts/qtx/01tst.tex new file mode 100644 index 00000000000..ad274052f45 --- /dev/null +++ b/Master/texmf-dist/doc/fonts/qtx/01tst.tex @@ -0,0 +1,163 @@ +%&mex --translate-file=il2-pl +%% test of qtxmath.tex (09.03.2001, StaW) +\def\PT{dd} %% skład 10dd ;-) +\input qtxmath +\parindent0pt +%%====== +\def\TEST{Nieco zwykłego tekstu \bf półgrubo, \it a teraz kursyw±, +a~może nawet \sc Kapitalikiem. \rm OK, wystarczy. Teraz matematyka +w~tek¶cie $\sum_{\alpha\rightarrow\infty}{a+1\over a-b^4}$ +i~dalej ($f_m,f_n)=(f_{r_{k-1}}, f_{r_k})$. I~jeszcze $x^{4m}+y^{4m}=z^{4m}$, +gdzie $m\xgeq 1$. $\cal A + \cal G$. ${\mit\Gamma}+\Phi$. Cyfry nautyczne +$\oldstyle 1967$} + +\tenpoint 10pt. \TEST + +\smallskip\ninepoint 9pt. \TEST + +\smallskip\eightpoint 8pt. \TEST + +\medskip\tenpoint 10pt (albo czego¶tam) +$$A,\dots,Z\quad a,\dots,z\quad \Gamma, \dots,\Omega\quad + \varGamma, \dots, \varOmega\quad + \alpha,\dots,\omega\quad \varg\quad \varv\quad \varw\quad \vary$$ +\smallskip +$$\aleph_\alpha\times\aleph_\beta=\aleph_\beta\iff \alpha\le \beta$$ +\smallskip +$$\forall \varepsilon >\alpha, \Gamma_\alpha\hookrightarrow + \Gamma_\varepsilon$$ +$$|x-a| < \delta \Rightarrow |f(x)-l| < \varepsilon$$ +\smallskip +$$\underbrace {V \times \cdots \times V}_k \times + \underbrace {V \times \cdots \times V}_l \rightarrow + \underbrace {V \times \cdots \times V}_{k+l}$$ +\smallskip +$$\{x\mid x \ne x\} = \emptyset\qquad (A\cap B)^\circ\subset A^\circ + \cap B^\circ$$ +\medskip +$$\eqalign{\omega &= \nu+v(x,y)\,dx + w(x,y)\,dy+d\varPsi\cr + d\omega &=d\nu+ \left({\partial w\over \partial x}- + {\partial v\over \partial y}\right) dx\wedge dy\cr}$$ +\medskip +$$\hat x+\widehat X+\widehat{xy}+\widehat{xyz}+\vec A$$ +\smallskip +$$R_{ijkl}=-R_{jikl}=-R_{ijlk}=R_{klij}$$ +\smallskip +% $$(f\comp g)'(x)=f'(g(x))\cdot g'(x)$$ +\smallskip +$$f(x)=\cases{|x|&$x>a$\cr -|x|&$x\le a$\cr}$$ +\smallskip +$$\int_{-\infty}^\infty e^{-x\cdot\,x}\,dx=\sqrt\pi$$ +\smallskip +$$ X=\sum_i \xi^i {\partial\over\partial x^i}+\sum_j + x^j{\partial\over\partial \dot x^j}$$ +\smallskip +$$\prod_{j\ge0}\biggl(\sum_{k\ge0}a_{jk}z^k\biggr) + =\sum_{n\ge0}z^n\,\Biggl(\sum_ + {\scriptstyle k_0,k_1,\ldots\ge0\atop + \scriptstyle k_0+k_1+\cdots=n} + a_{0k_0}a_{1k_1}\ldots\,\Biggr)$$ +\smallskip +$$\def\\#1#2{(1-q^{#1_#2+n})} % to save typing +\Pi_R{a_1,a_2,\ldots,a_M\atopwithdelims[]b_1,b_2,\ldots,b_N} + =\prod_{n=0}^R{\\a1\\a2\ldots\\aM\over\\b1\\b2\ldots\\bN}$$ +\smallskip +$$\int_0^\infty{t-ib\over t^2+b^2}e^{iat}\,dt=e^{ab}E_1(ab),\qquad a,b>0$$ + +%% +\smallskip\ninepoint 9pt (albo czego¶tam) +$$A,\dots,Z\quad a,\dots,z\quad \Gamma, \dots,\Omega\quad + \varGamma, \dots, \varOmega\quad + \alpha,\dots,\omega\quad \varg\quad \varv\quad \varw\quad \vary$$ +\smallskip +$$\aleph_\alpha\times\aleph_\beta=\aleph_\beta\iff \alpha\le \beta$$ +\smallskip +$$\forall \varepsilon >\alpha, \Gamma_\alpha\hookrightarrow + \Gamma_\varepsilon$$ +$$|x-a| < \delta \Rightarrow |f(x)-l| < \varepsilon$$ +\smallskip +$$\underbrace {V \times \cdots \times V}_k \times + \underbrace {V \times \cdots \times V}_l \rightarrow + \underbrace {V \times \cdots \times V}_{k+l}$$ +\smallskip +$$\{x\mid x \ne x\} = \emptyset\qquad (A\cap B)^\circ\subset A^\circ + \cap B^\circ$$ +\medskip +$$\eqalign{\omega &= \nu+v(x,y)\,dx + w(x,y)\,dy+d\varPsi\cr + d\omega &=d\nu+ \left({\partial w\over \partial x}- + {\partial v\over \partial y}\right) dx\wedge dy\cr}$$ +\medskip +$$\hat x+\widehat X+\widehat{xy}+\widehat{xyz}+\vec A$$ +\smallskip +$$R_{ijkl}=-R_{jikl}=-R_{ijlk}=R_{klij}$$ +\smallskip +%%-- $$(f\comp g)'(x)=f'(g(x))\cdot g'(x)$$ +\smallskip +$$f(x)=\cases{|x|&$x>a$\cr -|x|&$x\le a$\cr}$$ +\smallskip +$$\int_{-\infty}^\infty e^{-x\cdot\,x}\,dx=\sqrt\pi$$ +\smallskip +$$ X=\sum_i \xi^i {\partial\over\partial x^i}+\sum_j + x^j{\partial\over\partial \dot x^j}$$ +\smallskip +$$\prod_{j\ge0}\biggl(\sum_{k\ge0}a_{jk}z^k\biggr) + =\sum_{n\ge0}z^n\,\Biggl(\sum_ + {\scriptstyle k_0,k_1,\ldots\ge0\atop + \scriptstyle k_0+k_1+\cdots=n} + a_{0k_0}a_{1k_1}\ldots\,\Biggr)$$ +\smallskip +$$\def\\#1#2{(1-q^{#1_#2+n})} % to save typing +\Pi_R{a_1,a_2,\ldots,a_M\atopwithdelims[]b_1,b_2,\ldots,b_N} + =\prod_{n=0}^R{\\a1\\a2\ldots\\aM\over\\b1\\b2\ldots\\bN}$$ +\smallskip +$$\int_0^\infty{t-ib\over t^2+b^2}e^{iat}\,dt=e^{ab}E_1(ab),\qquad a,b>0$$ + +%% +\smallskip \eightpoint 8pt (albo czego¶tam) +$$A,\dots,Z\quad a,\dots,z\quad \Gamma, \dots,\Omega\quad + \varGamma, \dots, \varOmega\quad + \alpha,\dots,\omega\quad \varg\quad \varv\quad \varw\quad \vary$$ +\smallskip +$$\aleph_\alpha\times\aleph_\beta=\aleph_\beta\iff \alpha\le \beta$$ +\smallskip +$$\forall \varepsilon >\alpha, \Gamma_\alpha\hookrightarrow + \Gamma_\varepsilon$$ +$$|x-a| < \delta \Rightarrow |f(x)-l| < \varepsilon$$ +\smallskip +$$\underbrace {V \times \cdots \times V}_k \times + \underbrace {V \times \cdots \times V}_l \rightarrow + \underbrace {V \times \cdots \times V}_{k+l}$$ +\smallskip +$$\{x\mid x \ne x\} = \emptyset\qquad (A\cap B)^\circ\subset A^\circ + \cap B^\circ$$ +\medskip +$$\eqalign{\omega &= \nu+v(x,y)\,dx + w(x,y)\,dy+d\varPsi\cr + d\omega &=d\nu+ \left({\partial w\over \partial x}- + {\partial v\over \partial y}\right) dx\wedge dy\cr}$$ +\medskip +$$\hat x+\widehat X+\widehat{xy}+\widehat{xyz}+\vec A$$ +\smallskip +$$R_{ijkl}=-R_{jikl}=-R_{ijlk}=R_{klij}$$ +\smallskip +%%-- $$(f\comp g)'(x)=f'(g(x))\cdot g'(x)$$ +\smallskip +$$f(x)=\cases{|x|&$x>a$\cr -|x|&$x\le a$\cr}$$ +\smallskip +$$\int_{-\infty}^\infty e^{-x\cdot\,x}\,dx=\sqrt\pi$$ +\smallskip +$$ X=\sum_i \xi^i {\partial\over\partial x^i}+\sum_j + x^j{\partial\over\partial \dot x^j}$$ +\smallskip +$$\prod_{j\ge0}\biggl(\sum_{k\ge0}a_{jk}z^k\biggr) + =\sum_{n\ge0}z^n\,\Biggl(\sum_ + {\scriptstyle k_0,k_1,\ldots\ge0\atop + \scriptstyle k_0+k_1+\cdots=n} + a_{0k_0}a_{1k_1}\ldots\,\Biggr)$$ +\smallskip +$$\def\\#1#2{(1-q^{#1_#2+n})} % to save typing +\Pi_R{a_1,a_2,\ldots,a_M\atopwithdelims[]b_1,b_2,\ldots,b_N} + =\prod_{n=0}^R{\\a1\\a2\ldots\\aM\over\\b1\\b2\ldots\\bN}$$ +\smallskip +$$\int_0^\infty{t-ib\over t^2+b^2}e^{iat}\,dt=e^{ab}E_1(ab),\qquad a,b>0$$ + +\bye |