diff options
Diffstat (limited to 'Master/texmf-dist/doc/fonts/firamath/firamath-demo.tex')
-rw-r--r-- | Master/texmf-dist/doc/fonts/firamath/firamath-demo.tex | 109 |
1 files changed, 0 insertions, 109 deletions
diff --git a/Master/texmf-dist/doc/fonts/firamath/firamath-demo.tex b/Master/texmf-dist/doc/fonts/firamath/firamath-demo.tex deleted file mode 100644 index c2515a65aab..00000000000 --- a/Master/texmf-dist/doc/fonts/firamath/firamath-demo.tex +++ /dev/null @@ -1,109 +0,0 @@ -\documentclass[aspectratio=169]{beamer} -\usepackage{amsmath,unicode-math,physics,tensor,xeCJK,bookmark} -\useoutertheme{metropolis} -\useinnertheme{metropolis} -\usecolortheme{metropolis} -\usefonttheme{professionalfonts} - -\setbeamerfont{title}{size=\Large, series=\bfseries} -\setbeamerfont{author}{size=\small} -\setbeamerfont{date}{size=\small} -\setbeamertemplate{footline}{\vspace*{0.3cm}} - -\makeatletter -% https://tex.stackexchange.com/q/66519 -\apptocmd{\beamer@@frametitle}{\only<1>{\bookmark[page=\the\c@page,level=3]{#1}}}{}{} -\makeatother - -\unimathsetup{math-style=ISO, bold-style=ISO, mathrm=sym} - -\setsansfont{FiraGO}[BoldFont=* SemiBold, Numbers=Monospaced] -\setmathfont{Fira Math Regular} - -\newCJKfontfamily\fontzhhans{Source Han Sans SC} -\newCJKfontfamily\fontzhhant{Source Han Sans TC} -\newCJKfontfamily\fontja{Source Han Sans} - -\def\ii{\symrm{i}} -\def\pp{\symrm{\pi}} - -\title{Fira Math} -\subtitle{Sans-serif font with Unicode math support} -\author{Xiangdong Zeng} -\date{2019/06/03\quad v0.3.2} - -\begin{document} - -\maketitle - -\begin{frame}{Basic examples (I)} -\begin{itemize} - \item Covariant derivative: - \[ - \nabla \symbf{X} = \tensor{X}{^\alpha_{;\beta}} \pdv{x^\alpha} \otimes \dd{x^\beta} - = \qty(\tensor{X}{^\alpha_{,\beta}} + \Gamma^{\alpha}_{\beta\gamma} \, X^\gamma) \, - \pdv{x^\alpha} \otimes \dd{x^\beta} - \] - \item Einstein's field equations: - \[ G_{\mu\nu} \equiv R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu} \] - \item Schwarzschild metric: - \[ - c^2 \dd{\tau}^2 = \qty(1-\frac{r_{\mathrm{s}}}{r}) \, c^2 \dd{t}^2 - - \qty(1-\frac{r_{\mathrm{s}}}{r})^{-1} \dd{r}^2 - - r^2 \underbrace{\qty(\dd{\theta}^2 + \sin^2 \theta \dd{\varphi}^2)}_{\dd{\Omega}^2} - \] - \item Einstein--Hilbert action: - \[ S = \frac{1}{2\kappa} \int R \sqrt{-g} \dd[4]{x} \] -\end{itemize} -\end{frame} - -\begin{frame}{Basic examples (II)} -\begin{itemize} - \item Case $n=1$ - \small - \[ - \int_0^{\frac{\pp}{2}} - \frac{\sqrt{\frac12 \sqrt{\frac{\ln^2\cos\theta}{\theta^2+\ln^2\cos\theta}} + \frac12}}% - {\fourthroot{\theta^2 + \ln^2\cos\theta}} \dd{\theta} - = \frac{\pp}{2\sqrt{\ln 2}} - \] - \item Generalization: - \small\vspace{1ex} - \[ - \begin{cases} - \smash[t]{\displaystyle - R_n^- = \frac{2}{\pp} \int_0^{\pp/2} \qty(\theta^2+\ln^2\cos\theta)^{-2^{-n-1}} - \sqrt{\frac12+\frac12\sqrt{\frac12+\cdots+\frac12\sqrt{ - \frac{\ln^2\cos\theta}{\theta^2+\ln^2\cos\theta}}}} \dd{\theta} - = (\ln 2)^{-2^{-n}}} \\[3ex] - \smash[b]{\displaystyle - R_n^+ = \frac{2}{\pp} \int_0^{\pp/2} \qty(\theta^2+\ln^2\cos\theta)^{2^{-n-1}} - \sqrt{\frac12+\frac12\sqrt{\frac12+\cdots+\frac12\sqrt{ - \frac{\ln^2\cos\theta}{\theta^2+\ln^2\cos\theta}}}} \dd{\theta} - = (\ln 2)^{2^{-n}}} - \end{cases} - \] -\end{itemize} -\end{frame} - -\begin{frame}{Using with CJK fonts} -\begin{itemize} - \item {\fontzhhans 【留数定理】全纯函数 $f$ 在若尔当曲线 $\gamma$ 上的积分为:} - \[ - \oint_\gamma f(z) \dd{z} - = 2\pp\ii \sum_{k=1}^n \Res_{z=a_k} f(z). - \] - \item {\fontzhhant 【留數定理】全純函數 $f$ 在若爾當曲線 $\gamma$ 上的積分為:} - \[ - \oint_\gamma f(z) \dd{z} - = 2\pp\ii \sum_{k=1}^n \Res_{z=a_k} f(z). - \] - \item {\fontja 【留数定理】ジョルダン曲線 $\gamma$ に沿う正則関数 $f$ の積分は、} - \[ - \oint_\gamma f(z) \dd{z} - = 2\pp\ii \sum_{k=1}^n \Res_{z=a_k} f(z). - \] -\end{itemize} -\end{frame} - -\end{document} |