summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/asymptote/plain_paths.asy
diff options
context:
space:
mode:
Diffstat (limited to 'Master/texmf-dist/asymptote/plain_paths.asy')
-rw-r--r--Master/texmf-dist/asymptote/plain_paths.asy386
1 files changed, 386 insertions, 0 deletions
diff --git a/Master/texmf-dist/asymptote/plain_paths.asy b/Master/texmf-dist/asymptote/plain_paths.asy
new file mode 100644
index 00000000000..c768922ffd1
--- /dev/null
+++ b/Master/texmf-dist/asymptote/plain_paths.asy
@@ -0,0 +1,386 @@
+path nullpath;
+
+typedef guide interpolate(... guide[]);
+
+// These numbers identify the side of a specifier in an operator spec or
+// operator curl expression:
+// a{out} .. {in}b
+restricted int JOIN_OUT=0;
+restricted int JOIN_IN=1;
+
+// Define a.. tension t ..b to be equivalent to
+// a.. tension t and t ..b
+// and likewise with controls.
+tensionSpecifier operator tension(real t, bool atLeast)
+{
+ return operator tension(t,t,atLeast);
+}
+
+guide operator controls(pair z)
+{
+ return operator controls(z,z);
+}
+
+guide[] operator cast(pair[] z)
+{
+ return sequence(new guide(int i) {return z[i];},z.length);
+}
+
+path[] operator cast(pair[] z)
+{
+ return sequence(new path(int i) {return z[i];},z.length);
+}
+
+path[] operator cast(guide[] g)
+{
+ return sequence(new path(int i) {return g[i];},g.length);
+}
+
+guide[] operator cast(path[] g)
+{
+ return sequence(new guide(int i) {return g[i];},g.length);
+}
+
+path[] operator cast(path p)
+{
+ return new path[] {p};
+}
+
+path[] operator cast(guide g)
+{
+ return new path[] {(path) g};
+}
+
+path[] operator ^^ (path p, path q)
+{
+ return new path[] {p,q};
+}
+
+path[] operator ^^ (path p, explicit path[] q)
+{
+ return concat(new path[] {p},q);
+}
+
+path[] operator ^^ (explicit path[] p, path q)
+{
+ return concat(p,new path[] {q});
+}
+
+path[] operator ^^ (explicit path[] p, explicit path[] q)
+{
+ return concat(p,q);
+}
+
+path[] operator * (transform t, explicit path[] p)
+{
+ return sequence(new path(int i) {return t*p[i];},p.length);
+}
+
+pair[] operator * (transform t, pair[] z)
+{
+ return sequence(new pair(int i) {return t*z[i];},z.length);
+}
+
+void write(file file, string s="", explicit path[] x, suffix suffix=none)
+{
+ write(file,s);
+ if(x.length > 0) write(file,x[0]);
+ for(int i=1; i < x.length; ++i) {
+ write(file,endl);
+ write(file," ^^");
+ write(file,x[i]);
+ }
+ write(file,suffix);
+}
+
+void write(string s="", explicit path[] x, suffix suffix=endl)
+{
+ write(stdout,s,x,suffix);
+}
+
+void write(file file, string s="", explicit guide[] x, suffix suffix=none)
+{
+ write(file,s);
+ if(x.length > 0) write(file,x[0]);
+ for(int i=1; i < x.length; ++i) {
+ write(file,endl);
+ write(file," ^^");
+ write(file,x[i]);
+ }
+ write(file,suffix);
+}
+
+void write(string s="", explicit guide[] x, suffix suffix=endl)
+{
+ write(stdout,s,x,suffix);
+}
+
+private string nopoints="nullpath has no points";
+
+pair min(explicit path[] p)
+{
+ if(p.length == 0) abort(nopoints);
+ pair minp=min(p[0]);
+ for(int i=1; i < p.length; ++i)
+ minp=minbound(minp,min(p[i]));
+ return minp;
+}
+
+pair max(explicit path[] p)
+{
+ if(p.length == 0) abort(nopoints);
+ pair maxp=max(p[0]);
+ for(int i=1; i < p.length; ++i)
+ maxp=maxbound(maxp,max(p[i]));
+ return maxp;
+}
+
+interpolate operator ..(tensionSpecifier t)
+{
+ return new guide(... guide[] a) {
+ if(a.length == 0) return nullpath;
+ guide g=a[0];
+ for(int i=1; i < a.length; ++i)
+ g=g..t..a[i];
+ return g;
+ };
+}
+
+interpolate operator ::=operator ..(operator tension(1,true));
+interpolate operator ---=operator ..(operator tension(infinity,true));
+
+// return an arbitrary intersection point of paths p and q
+pair intersectionpoint(path p, path q, real fuzz=-1)
+{
+ real[] t=intersect(p,q,fuzz);
+ if(t.length == 0) abort("paths do not intersect");
+ return point(p,t[0]);
+}
+
+// return an array containing all intersection points of the paths p and q
+pair[] intersectionpoints(path p, path q, real fuzz=-1)
+{
+ real[][] t=intersections(p,q,fuzz);
+ return sequence(new pair(int i) {return point(p,t[i][0]);},t.length);
+}
+
+pair[] intersectionpoints(explicit path[] p, explicit path[] q, real fuzz=-1)
+{
+ pair[] z;
+ for(int i=0; i < p.length; ++i)
+ for(int j=0; j < q.length; ++j)
+ z.append(intersectionpoints(p[i],q[j],fuzz));
+ return z;
+}
+
+struct slice {
+ path before,after;
+}
+
+slice cut(path p, path knife, int n)
+{
+ slice s;
+ real[][] T=intersections(p,knife);
+ if(T.length == 0) {s.before=p; s.after=nullpath; return s;}
+ T.cyclic=true;
+ real t=T[n][0];
+ s.before=subpath(p,0,t);
+ s.after=subpath(p,t,length(p));
+ return s;
+}
+
+slice firstcut(path p, path knife)
+{
+ return cut(p,knife,0);
+}
+
+slice lastcut(path p, path knife)
+{
+ return cut(p,knife,-1);
+}
+
+pair dir(path p)
+{
+ return dir(p,length(p));
+}
+
+pair dir(path p, path q)
+{
+ return unit(dir(p)+dir(q));
+}
+
+// return the point on path p at arclength L
+pair arcpoint(path p, real L)
+{
+ return point(p,arctime(p,L));
+}
+
+// return the direction on path p at arclength L
+pair arcdir(path p, real L)
+{
+ return dir(p,arctime(p,L));
+}
+
+// return the time on path p at the relative fraction l of its arclength
+real reltime(path p, real l)
+{
+ return arctime(p,l*arclength(p));
+}
+
+// return the point on path p at the relative fraction l of its arclength
+pair relpoint(path p, real l)
+{
+ return point(p,reltime(p,l));
+}
+
+// return the direction of path p at the relative fraction l of its arclength
+pair reldir(path p, real l)
+{
+ return dir(p,reltime(p,l));
+}
+
+// return the initial point of path p
+pair beginpoint(path p)
+{
+ return point(p,0);
+}
+
+// return the point on path p at half of its arclength
+pair midpoint(path p)
+{
+ return relpoint(p,0.5);
+}
+
+// return the final point of path p
+pair endpoint(path p)
+{
+ return point(p,length(p));
+}
+
+path operator &(path p, cycleToken tok)
+{
+ int n=length(p);
+ if(n < 0) return nullpath;
+ if(n == 0) return p--cycle;
+ if(cyclic(p)) return p;
+ return straight(p,n-1) ? subpath(p,0,n-1)--cycle :
+ subpath(p,0,n-1)..controls postcontrol(p,n-1) and precontrol(p,n)..cycle;
+}
+
+// return a cyclic path enclosing a region bounded by a list of two or more
+// consecutively intersecting paths
+path buildcycle(... path[] p)
+{
+ int n=p.length;
+ if(n < 2) return nullpath;
+ real[] ta=new real[n];
+ real[] tb=new real[n];
+ if(n == 2) {
+ real[][] t=intersections(p[0],p[1]);
+ if(t.length < 2)
+ return nullpath;
+ int k=t.length-1;
+ ta[0]=t[0][0]; tb[0]=t[k][0];
+ ta[1]=t[k][1]; tb[1]=t[0][1];
+ } else {
+ int j=n-1;
+ for(int i=0; i < n; ++i) {
+ real[][] t=intersections(p[i],p[j]);
+ if(t.length == 0)
+ return nullpath;
+ ta[i]=t[0][0]; tb[j]=t[0][1];
+ j=i;
+ }
+ }
+
+ pair c;
+ for(int i=0; i < n ; ++i)
+ c += point(p[i],ta[i]);
+ c /= n;
+
+ path G;
+ for(int i=0; i < n ; ++i) {
+ real Ta=ta[i];
+ real Tb=tb[i];
+ if(cyclic(p[i])) {
+ int L=length(p[i]);
+ real t=Tb-L;
+ if(abs(c-point(p[i],0.5(Ta+t))) <
+ abs(c-point(p[i],0.5(Ta+Tb)))) Tb=t;
+ while(Tb < Ta) Tb += L;
+ }
+ G=G&subpath(p[i],Ta,Tb);
+ }
+ return G&cycle;
+}
+
+// return 1 if p strictly contains q,
+// -1 if q strictly contains p,
+// 0 otherwise.
+int inside(path p, path q, pen fillrule=currentpen)
+{
+ if(intersect(p,q).length > 0) return 0;
+ if(cyclic(p) && inside(p,point(q,0),fillrule)) return 1;
+ if(cyclic(q) && inside(q,point(p,0),fillrule)) return -1;
+ return 0;
+}
+
+// Return an arbitrary point strictly inside a cyclic path p according to
+// the specified fill rule.
+pair inside(path p, pen fillrule=currentpen)
+{
+ if(!cyclic(p)) abort("path is not cyclic");
+ int n=length(p);
+ for(int i=0; i < n; ++i) {
+ pair z=point(p,i);
+ pair dir=dir(p,i);
+ if(dir == 0) continue;
+ real[] T=intersections(p,z,z+I*dir);
+ // Check midpoints of line segments formed between the
+ // corresponding intersection points and z.
+ for(int j=0; j < T.length; ++j) {
+ if(T[j] != i) {
+ pair w=point(p,T[j]);
+ pair m=0.5*(z+w);
+ if(interior(windingnumber(p,m),fillrule)) return m;
+ }
+ }
+ }
+ // cannot find an interior point: path is degenerate
+ return point(p,0);
+}
+
+// Return all intersection times of path g with the vertical line through (x,0).
+real[] times(path p, real x)
+{
+ return intersections(p,(x,0),(x,1));
+}
+
+// Return all intersection times of path g with the horizontal line through
+// (0,z.y).
+real[] times(path p, explicit pair z)
+{
+ return intersections(p,(0,z.y),(1,z.y));
+}
+
+path randompath(int n, bool cumulate=true, interpolate join=operator ..)
+{
+ guide g;
+ pair w;
+ for(int i=0; i <= n; ++i) {
+ pair z=(unitrand()-0.5,unitrand()-0.5);
+ if(cumulate) w += z;
+ else w=z;
+ g=join(g,w);
+ }
+ return g;
+}
+
+path[] strokepath(path g, pen p=currentpen)
+{
+ path[] G=_strokepath(g,p);
+ if(G.length == 0) return G;
+ pair center(path g) {return 0.5*(min(g)+max(g));}
+ pair center(path[] g) {return 0.5*(min(g)+max(g));}
+ return shift(center(g)-center(G))*G;
+}