diff options
Diffstat (limited to 'Master/texmf-dist/asymptote/contour3.asy')
-rw-r--r-- | Master/texmf-dist/asymptote/contour3.asy | 481 |
1 files changed, 481 insertions, 0 deletions
diff --git a/Master/texmf-dist/asymptote/contour3.asy b/Master/texmf-dist/asymptote/contour3.asy new file mode 100644 index 00000000000..3d925be684e --- /dev/null +++ b/Master/texmf-dist/asymptote/contour3.asy @@ -0,0 +1,481 @@ +import graph_settings; +import three; + +real eps=10000*realEpsilon; + +private struct weighted +{ + triple normal; + real ratio; + int kpa0,kpa1,kpa2; + int kpb0,kpb1,kpb2; + triple v; +} + +private struct bucket +{ + triple v; + triple val; + int count; +} + +struct vertex +{ + triple v; + triple normal; +} + +// A group of 3 or 4 points. +private struct object +{ + bool active; + weighted[] pts; +} + +// Return contour vertices for a 3D data array. +// z: three-dimensional array of nonoverlapping mesh points +// f: three-dimensional arrays of real data values +// midpoint: optional array containing estimate of f at midpoint values +vertex[][] contour3(triple[][][] v, real[][][] f, + real[][][] midpoint=new real[][][], + projection P=currentprojection) +{ + int nx=v.length-1; + if(nx == 0) + abort("array v must have length >= 2"); + int ny=v[0].length-1; + if(ny == 0) + abort("array v[0] must have length >= 2"); + int nz=v[0][0].length-1; + if(nz == 0) + abort("array v[0][0] must have length >= 2"); + + bool midpoints=midpoint.length > 0; + + bucket[][][][] kps=new bucket[2nx+1][2ny+1][2nz+1][]; + for(int i=0; i < 2nx+1; ++i) + for(int j=0; j < 2ny+1; ++j) + for(int k=0; k < 2nz+1; ++k) + kps[i][j][k]=new bucket[]; + + object[] objects; + + // go over region a rectangle at a time + for(int i=0; i < nx; ++i) { + triple[][] vi=v[i]; + triple[][] vp=v[i+1]; + real[][] fi=f[i]; + real[][] fp=f[i+1]; + int i2=2i; + int i2p1=i2+1; + int i2p2=i2+2; + for(int j=0; j < ny; ++j) { + triple[] vij=vi[j]; + triple[] vpj=vp[j]; + triple[] vip=vi[j+1]; + triple[] vpp=vp[j+1]; + real[] fij=fi[j]; + real[] fpj=fp[j]; + real[] fip=fi[j+1]; + real[] fpp=fp[j+1]; + int j2=2j; + int j2p1=j2+1; + int j2p2=j2+2; + + for(int k=0; k < nz; ++k) { + // vertex values + real vdat0=fij[k]; + real vdat1=fij[k+1]; + real vdat2=fip[k]; + real vdat3=fip[k+1]; + real vdat4=fpj[k]; + real vdat5=fpj[k+1]; + real vdat6=fpp[k]; + real vdat7=fpp[k+1]; + + // define points + triple p000=vij[k]; + triple p001=vij[k+1]; + triple p010=vip[k]; + triple p011=vip[k+1]; + triple p100=vpj[k]; + triple p101=vpj[k+1]; + triple p110=vpp[k]; + triple p111=vpp[k+1]; + triple m0=0.25*(p000+p010+p110+p100); + triple m1=0.25*(p010+p110+p111+p011); + triple m2=0.25*(p110+p100+p101+p111); + triple m3=0.25*(p100+p000+p001+p101); + triple m4=0.25*(p000+p010+p011+p001); + triple m5=0.25*(p001+p011+p111+p101); + triple mc=0.5*(m0+m5); + + // optimization: we make sure we don't work with empty rectangles + int countm=0; + int countz=0; + int countp=0; + + void check(real vdat) { + if(vdat < -eps) ++countm; + else { + if(vdat <= eps) ++countz; + else ++countp; + } + } + + check(vdat0); + check(vdat1); + check(vdat2); + check(vdat3); + check(vdat4); + check(vdat5); + check(vdat6); + check(vdat7); + + if(countm == 8 || countp == 8 || + ((countm == 7 || countp == 7) && countz == 1)) continue; + + int k2=2k; + int k2p1=k2+1; + int k2p2=k2+2; + + // Evaluate midpoints of cube sides. + // Then evaluate midpoint of cube. + real vdat8=midpoints ? midpoint[i2p1][j2p1][k2] : + 0.25*(vdat0+vdat2+vdat6+vdat4); + real vdat9=midpoints ? midpoint[i2p1][j2p2][k2p1] : + 0.25*(vdat2+vdat6+vdat7+vdat3); + real vdat10=midpoints ? midpoint[i2p2][j2p1][k2p1] : + 0.25*(vdat7+vdat6+vdat4+vdat5); + real vdat11=midpoints ? midpoint[i2p1][j2][k2p1] : + 0.25*(vdat0+vdat4+vdat5+vdat1); + real vdat12=midpoints ? midpoint[i2][j2p1][k2p1] : + 0.25*(vdat0+vdat2+vdat3+vdat1); + real vdat13=midpoints ? midpoint[i2p1][j2p1][k2p2] : + 0.25*(vdat1+vdat3+vdat7+vdat5); + real vdat14=midpoints ? midpoint[i2p1][j2p1][k2p1] : + 0.125*(vdat0+vdat1+vdat2+vdat3+vdat4+vdat5+vdat6+vdat7); + + // Go through the 24 pyramids, 4 for each side. + + void addval(int kp0, int kp1, int kp2, triple add, triple v) { + bucket[] cur=kps[kp0][kp1][kp2]; + for(int q=0; q < cur.length; ++q) { + if(length(cur[q].v-v) < eps) { + cur[q].val += add; + ++cur[q].count; + return; + } + } + bucket newbuck; + newbuck.v=v; + newbuck.val=add; + newbuck.count=1; + cur.push(newbuck); + } + + void accrue(weighted w) { + triple val1=w.normal*w.ratio; + triple val2=w.normal*(1-w.ratio); + addval(w.kpa0,w.kpa1,w.kpa2,val1,w.v); + addval(w.kpb0,w.kpb1,w.kpb2,val2,w.v); + } + + triple dir=P.normal; + + void addnormals(weighted[] pts) { + triple vec2=pts[1].v-pts[0].v; + triple vec1=pts[0].v-pts[2].v; + triple vec0=-vec2-vec1; + vec2=unit(vec2); + vec1=unit(vec1); + vec0=unit(vec0); + triple normal=cross(vec2,vec1); + normal *= sgn(dot(normal,dir)); + real angle0=acos(-dot(vec1,vec2)); + real angle1=acos(-dot(vec2,vec0)); + pts[0].normal=normal*angle0; + pts[1].normal=normal*angle1; + pts[2].normal=normal*(pi-angle0-angle1); + } + + void addobj(object obj) { + if(!obj.active) return; + + if(obj.pts.length == 4) { + weighted[] points=obj.pts; + object obj1; + object obj2; + obj1.active=true; + obj2.active=true; + obj1.pts=new weighted[] {points[0],points[1],points[2]}; + obj2.pts=new weighted[] {points[1],points[2],points[3]}; + addobj(obj1); + addobj(obj2); + } else { + addnormals(obj.pts); + for(int q=0; q < obj.pts.length; ++q) + accrue(obj.pts[q]); + objects.push(obj); + } + } + + weighted setupweighted(triple va, triple vb, real da, real db, + int[] kpa, int[] kpb) { + weighted w; + real ratio=abs(da/(db-da)); + w.v=interp(va,vb,ratio); + w.ratio=ratio; + w.kpa0=i2+kpa[0]; + w.kpa1=j2+kpa[1]; + w.kpa2=k2+kpa[2]; + w.kpb0=i2+kpb[0]; + w.kpb1=j2+kpb[1]; + w.kpb2=k2+kpb[2]; + + return w; + } + + weighted setupweighted(triple v, int[] kp) { + weighted w; + w.v=v; + w.ratio=0.5; + w.kpa0=w.kpb0=i2+kp[0]; + w.kpa1=w.kpb1=j2+kp[1]; + w.kpa2=w.kpb2=k2+kp[2]; + + return w; + } + + // Checks if a pyramid contains a contour object. + object checkpyr(triple v0, triple v1, triple v2, triple v3, + real d0, real d1, real d2, real d3, + int[] c0, int[] c1, int[] c2, int[] c3) { + object obj; + real a0=abs(d0); + real a1=abs(d1); + real a2=abs(d2); + real a3=abs(d3); + + bool b0=a0 < eps; + bool b1=a1 < eps; + bool b2=a2 < eps; + bool b3=a3 < eps; + + weighted[] pts; + + if(b0) pts.push(setupweighted(v0,c0)); + if(b1) pts.push(setupweighted(v1,c1)); + if(b2) pts.push(setupweighted(v2,c2)); + if(b3) pts.push(setupweighted(v3,c3)); + + if(!b0 && !b1 && abs(d0+d1)+eps < a0+a1) + pts.push(setupweighted(v0,v1,d0,d1,c0,c1)); + if(!b0 && !b2 && abs(d0+d2)+eps < a0+a2) + pts.push(setupweighted(v0,v2,d0,d2,c0,c2)); + if(!b0 && !b3 && abs(d0+d3)+eps < a0+a3) + pts.push(setupweighted(v0,v3,d0,d3,c0,c3)); + if(!b1 && !b2 && abs(d1+d2)+eps < a1+a2) + pts.push(setupweighted(v1,v2,d1,d2,c1,c2)); + if(!b1 && !b3 && abs(d1+d3)+eps < a1+a3) + pts.push(setupweighted(v1,v3,d1,d3,c1,c3)); + if(!b2 && !b3 && abs(d2+d3)+eps < a2+a3) + pts.push(setupweighted(v2,v3,d2,d3,c2,c3)); + + int s=pts.length; + //There are three or four points. + if(s > 2) { + obj.active=true; + obj.pts=pts; + } else obj.active=false; + + return obj; + } + + void check4pyr(triple v0, triple v1, triple v2, triple v3, + triple v4, triple v5, + real d0, real d1, real d2, real d3, real d4, real d5, + int[] c0, int[] c1, int[] c2, int[] c3, int[] c4, + int[] c5) { + addobj(checkpyr(v5,v4,v0,v1,d5,d4,d0,d1,c5,c4,c0,c1)); + addobj(checkpyr(v5,v4,v1,v2,d5,d4,d1,d2,c5,c4,c1,c2)); + addobj(checkpyr(v5,v4,v2,v3,d5,d4,d2,d3,c5,c4,c2,c3)); + addobj(checkpyr(v5,v4,v3,v0,d5,d4,d3,d0,c5,c4,c3,c0)); + } + + static int[] pp000={0,0,0}; + static int[] pp001={0,0,2}; + static int[] pp010={0,2,0}; + static int[] pp011={0,2,2}; + static int[] pp100={2,0,0}; + static int[] pp101={2,0,2}; + static int[] pp110={2,2,0}; + static int[] pp111={2,2,2}; + static int[] pm0={1,1,0}; + static int[] pm1={1,2,1}; + static int[] pm2={2,1,1}; + static int[] pm3={1,0,1}; + static int[] pm4={0,1,1}; + static int[] pm5={1,1,2}; + static int[] pmc={1,1,1}; + + check4pyr(p000,p010,p110,p100,mc,m0, + vdat0,vdat2,vdat6,vdat4,vdat14,vdat8, + pp000,pp010,pp110,pp100,pmc,pm0); + check4pyr(p010,p110,p111,p011,mc,m1, + vdat2,vdat6,vdat7,vdat3,vdat14,vdat9, + pp010,pp110,pp111,pp011,pmc,pm1); + check4pyr(p110,p100,p101,p111,mc,m2, + vdat6,vdat4,vdat5,vdat7,vdat14,vdat10, + pp110,pp100,pp101,pp111,pmc,pm2); + check4pyr(p100,p000,p001,p101,mc,m3, + vdat4,vdat0,vdat1,vdat5,vdat14,vdat11, + pp100,pp000,pp001,pp101,pmc,pm3); + check4pyr(p000,p010,p011,p001,mc,m4, + vdat0,vdat2,vdat3,vdat1,vdat14,vdat12, + pp000,pp010,pp011,pp001,pmc,pm4); + check4pyr(p001,p011,p111,p101,mc,m5, + vdat1,vdat3,vdat7,vdat5,vdat14,vdat13, + pp001,pp011,pp111,pp101,pmc,pm5); + } + } + } + + vertex preparevertex(weighted w) { + vertex ret; + triple normal=O; + bool first=true; + bucket[] kp1=kps[w.kpa0][w.kpa1][w.kpa2]; + bucket[] kp2=kps[w.kpb0][w.kpb1][w.kpb2]; + bool notfound1=true; + bool notfound2=true; + int count=0; + int stop=max(kp1.length,kp2.length); + for(int r=0; r < stop; ++r) { + if(notfound1) { + if(length(w.v-kp1[r].v) < eps) { + if(first) { + ret.v=kp1[r].v; + first=false; + } + normal += kp1[r].val; + count += kp1[r].count; + notfound1=false; + } + } + if(notfound2) { + if(length(w.v-kp2[r].v) < eps) { + if(first) { + ret.v=kp2[r].v; + first=false; + } + normal += kp2[r].val; + count += kp2[r].count; + notfound2=false; + } + } + } + ret.normal=normal*2/count; + return ret; + } + + // Prepare return value. + vertex[][] g; + + for(int q=0; q < objects.length; ++q) { + object p=objects[q]; + g.push(new vertex[] {preparevertex(p.pts[0]),preparevertex(p.pts[1]), + preparevertex(p.pts[2])}); + } + return g; +} + +// Return contour vertices for a 3D data array on a uniform lattice. +// f: three-dimensional arrays of real data values +// midpoint: optional array containing estimate of f at midpoint values +// a,b: diagonally opposite points of rectangular parellelpiped domain +vertex[][] contour3(real[][][] f, real[][][] midpoint=new real[][][], + triple a, triple b, projection P=currentprojection) + +{ + int nx=f.length-1; + if(nx == 0) + abort("array f must have length >= 2"); + int ny=f[0].length-1; + if(ny == 0) + abort("array f[0] must have length >= 2"); + int nz=f[0][0].length-1; + if(nz == 0) + abort("array f[0][0] must have length >= 2"); + + triple[][][] v=new triple[nx+1][ny+1][nz+1]; + for(int i=0; i <= nx; ++i) { + real xi=interp(a.x,b.x,i/nx); + triple[][] vi=v[i]; + for(int j=0; j <= ny; ++j) { + triple[] vij=v[i][j]; + real yj=interp(a.y,b.y,j/ny); + for(int k=0; k <= nz; ++k) { + vij[k]=(xi,yj,interp(a.z,b.z,k/nz)); + } + } + } + return contour3(v,f,midpoint,P); +} + +// Return contour vertices for a 3D data array, using a pyramid mesh +// f: real-valued function of three real variables +// a,b: diagonally opposite points of rectangular parellelpiped domain +// nx,ny,nz number of subdivisions in x, y, and z directions +vertex[][] contour3(real f(real, real, real), triple a, triple b, + int nx=nmesh, int ny=nx, int nz=nx, + projection P=currentprojection) +{ + // evaluate function at points and midpoints + real[][][] dat=new real[nx+1][ny+1][nz+1]; + real[][][] midpoint=new real[2nx+2][2ny+2][2nz+1]; + + for(int i=0; i <= nx; ++i) { + real x=interp(a.x,b.x,i/nx); + real x2=interp(a.x,b.x,(i+0.5)/nx); + real[][] dati=dat[i]; + real[][] midpointi2=midpoint[2i]; + real[][] midpointi2p1=midpoint[2i+1]; + for(int j=0; j <= ny; ++j) { + real y=interp(a.y,b.y,j/ny); + real y2=interp(a.y,b.y,(j+0.5)/ny); + real datij[]=dati[j]; + real[] midpointi2p1j2=midpointi2p1[2j]; + real[] midpointi2p1j2p1=midpointi2p1[2j+1]; + real[] midpointi2j2p1=midpointi2[2j+1]; + for(int k=0; k <= nz; ++k) { + real z=interp(a.z,b.z,k/nz); + real z2=interp(a.z,b.z,(k+0.5)/nz); + datij[k]=f(x,y,z); + if(i == nx || j == ny || k == nz) continue; + int k2p1=2k+1; + midpointi2p1j2p1[2k]=f(x2,y2,z); + midpointi2p1j2p1[k2p1]=f(x2,y2,z2); + midpointi2p1j2[k2p1]=f(x2,y,z2); + midpointi2j2p1[k2p1]=f(x,y2,z2); + if(i == 0) midpoint[2nx][2j+1][k2p1]=f(b.x,y2,z2); + if(j == 0) midpointi2p1[2ny][k2p1]=f(x2,b.y,z2); + if(k == 0) midpointi2p1j2p1[2nz]=f(x2,y2,b.z); + } + } + } + return contour3(dat,midpoint,a,b,P); +} + +// Construct contour surface for a 3D data array, using a pyramid mesh. +surface surface(vertex[][] g) +{ + surface s=surface(g.length); + for(int i=0; i < g.length; ++i) { + vertex[] cur=g[i]; + s.s[i]=patch(new triple[] {cur[0].v,cur[0].v,cur[1].v,cur[2].v}, + normals=new triple[] {cur[0].normal,cur[0].normal, + cur[1].normal,cur[2].normal}); + } + return s; +} |