diff options
Diffstat (limited to 'Master/texmf-dist/asymptote/GUI/CubicBezier.py')
-rwxr-xr-x | Master/texmf-dist/asymptote/GUI/CubicBezier.py | 101 |
1 files changed, 101 insertions, 0 deletions
diff --git a/Master/texmf-dist/asymptote/GUI/CubicBezier.py b/Master/texmf-dist/asymptote/GUI/CubicBezier.py new file mode 100755 index 00000000000..6455b700a79 --- /dev/null +++ b/Master/texmf-dist/asymptote/GUI/CubicBezier.py @@ -0,0 +1,101 @@ +#!/usr/bin/env python +########################################################################### +# +# Convert a Bezier curve to a polyline +# +# Once Tk supports "RawCurves" this will not be needed. +# +# +# Author: Orest Shardt +# Created: June 29, 2007 +# +########################################################################### +import math + +def norm(vector): + """Return the norm of a vector""" + return math.sqrt(vector[0]**2+vector[1]**2) + +def splitLine(end0,end1,t): + """Split a line at the distance t, with t in (0,1)""" + return (end0[0]+t*(end1[0]-end0[0]),end0[1]+t*(end1[1]-end0[1])) + +def splitBezier(node0,control0,control1,node1,t): + """Find the nodes and control points for the segments of a Bezier curve split at t""" + a = splitLine(node0,control0,t) + b = splitLine(control0,control1,t) + c = splitLine(control1,node1,t) + d = splitLine(a,b,t) + e = splitLine(b,c,t) + f = splitLine(d,e,t)#this is the point on the curve at t + return ([node0,a,d,f],[f,e,c,node1]) + +def BezierWidth(node0,control0,control1,node1): + """Compute the distance of the control points from the node-node axis""" + deltax = node1[0] - node0[0] + deltay = node1[1] - node0[1] + length = norm((deltax,deltay)) + if length == 0: + y1 = control0[1]-node0[1] + y2 = control1[1]-node0[1] + else: + cosine = deltax/length + sine = deltay/length + y1 = cosine*(control0[1]-node0[1])-sine*(control0[0]-node0[0]) + y2 = cosine*(control1[1]-node0[1])-sine*(control1[0]-node0[0]) + if y1*y2 >= 0: + #same sign + return max(abs(y1),abs(y2)) + else: + #opposite sign + return abs(y1)+abs(y2) + +#If the above algorithm fails, this one will work, but it is far from elegant +#def computeIntermediates(steps,node0,control0,control1,node1): + #pointList = [] + #for a in range(0,100,100/steps)+[100]: + #t = a/100.0 + #t1 = 1-t + #x = node0[0]*t1**3+3*control0[0]*t*t1**2+3*control1[0]*t**2*t1+node1[0]*t**3 + #y = node0[1]*t1**3+3*control0[1]*t*t1**2+3*control1[1]*t**2*t1+node1[1]*t**3 + #pointList.append((x,y)) + #return pointList +#def makeBezier(steps,node0,control0,control1,node1): + #if len(node0)!=2 or len(control0)!=2 or len(control1)!=2 or len(node1)!=2: + #return -1 + #else: + #return [node0]+computeIntermediates(steps,node0,control0,control1,node1)+[node1] + +def makeBezierIntermediates(node0,control0,control1,node1,epsilon): + """Find the points, excluding node0, to be used as the line segment endpoints""" + if(BezierWidth(node0,control0,control1,node1) <= epsilon): + return [node1] + else: + splitUp = splitBezier(node0,control0,control1,node1,0.5) + return makeBezierIntermediates(*splitUp[0]+[epsilon])+makeBezierIntermediates(*splitUp[1]+[epsilon]) + +def makeBezier(node0,control0,control1,node1,epsilon=1): + """Return the vertices to be used in the polyline representation of a Bezier curve""" + return [node0]+makeBezierIntermediates(node0,control0,control1,node1,epsilon) + +if __name__ == '__main__': + pointList = makeBezier((-80,0),(-150,40),(150,120),(80,0),0.5) + from timeit import Timer + t = Timer('makeBezier((-80,0),(-40,-40),(40,120),(80,0),1)','from __main__ import makeBezier') + print pointList + print len(pointList) + iterations = 1000 + time = t.timeit(iterations) + print "%d iterations took %f seconds (%f ms for each)."%(iterations,time,1000.0*time/iterations) + points = [] + for point in pointList: + points.append(point[0]) + points.append(-point[1]) + from Tkinter import * + root = Tk() + canv = Canvas(root,scrollregion=(-100,-100,100,100)) + canv.pack() + canv.create_line(points) + for point in pointList: + canv.create_oval(point[0],-point[1],point[0],-point[1],fill='red',outline='red') + root.mainloop() |