summaryrefslogtreecommitdiff
path: root/Build/source/utils/asymptote/transform.h
diff options
context:
space:
mode:
Diffstat (limited to 'Build/source/utils/asymptote/transform.h')
-rw-r--r--Build/source/utils/asymptote/transform.h243
1 files changed, 243 insertions, 0 deletions
diff --git a/Build/source/utils/asymptote/transform.h b/Build/source/utils/asymptote/transform.h
new file mode 100644
index 00000000000..3d60dfd8069
--- /dev/null
+++ b/Build/source/utils/asymptote/transform.h
@@ -0,0 +1,243 @@
+/*****
+ * transform.h
+ * Andy Hammerlindl 2002/05/22
+ *
+ * The transform datatype stores an affine transformation on the plane
+ * The datamembers are x, y, xx, xy, yx, and yy. A pair (x,y) is
+ * transformed as
+ * x' = t.x + t.xx * x + t.xy * y
+ * y' = t.y + t.yx * x + t.yy * y
+ *****/
+
+#ifndef TRANSFORM_H
+#define TRANSFORM_H
+
+#include <iostream>
+
+#include "pair.h"
+
+namespace camp {
+
+class transform : public gc {
+ double x;
+ double y;
+ double xx;
+ double xy;
+ double yx;
+ double yy;
+
+public:
+ transform()
+ : x(0.0), y(0.0), xx(1.0), xy(0.0), yx(0.0), yy(1.0) {}
+
+ virtual ~transform() {}
+
+ transform(double x, double y,
+ double xx, double xy,
+ double yx, double yy)
+ : x(x), y(y), xx(xx), xy(xy), yx(yx), yy(yy) {}
+
+ double getx() const { return x; }
+ double gety() const { return y; }
+ double getxx() const { return xx; }
+ double getxy() const { return xy; }
+ double getyx() const { return yx; }
+ double getyy() const { return yy; }
+
+ friend transform operator+ (const transform& t, const transform& s)
+ {
+ return transform(t.x + s.x, t.y + s.y,
+ t.xx + s.xx, t.xy + s.xy,
+ t.yx + s.yx, t.yy + s.yy);
+ }
+
+ friend transform operator- (const transform& t, const transform& s)
+ {
+ return transform(t.x - s.x, t.y - s.y,
+ t.xx - s.xx, t.xy - s.xy,
+ t.yx - s.yx, t.yy - s.yy);
+ }
+
+ friend transform operator- (const transform& t)
+ {
+ return transform(-t.x, -t.y,
+ -t.xx, -t.xy,
+ -t.yx, -t.yy);
+ }
+
+ friend pair operator* (const transform& t, const pair& z)
+ {
+ double x = z.getx(), y = z.gety();
+ return pair(t.x + t.xx * x + t.xy * y, t.y + t.yx * x + t.yy * y);
+ }
+
+ // Calculates the composition of t and s, so for a pair, z,
+ // t * (s * z) == (t * s) * z
+ // Can be thought of as matrix multiplication.
+ friend transform operator* (const transform& t, const transform& s)
+ {
+ return transform(t.x + t.xx * s.x + t.xy * s.y,
+ t.y + t.yx * s.x + t.yy * s.y,
+ t.xx * s.xx + t.xy * s.yx,
+ t.xx * s.xy + t.xy * s.yy,
+ t.yx * s.xx + t.yy * s.yx,
+ t.yx * s.xy + t.yy * s.yy);
+ }
+
+ friend bool operator== (const transform& t1, const transform& t2)
+ {
+ return t1.x == t2.x && t1.y == t2.y &&
+ t1.xx == t2.xx && t1.xy == t2.xy &&
+ t1.yx == t2.yx && t1.yy == t2.yy;
+ }
+
+ friend bool operator!= (const transform& t1, const transform& t2)
+ {
+ return !(t1 == t2);
+ }
+
+ bool isIdentity() const
+ {
+ return x == 0.0 && y == 0.0 &&
+ xx == 1.0 && xy == 0.0 && yx == 0.0 && yy == 1.0;
+ }
+
+ bool isNull() const
+ {
+ return x == 0.0 && y == 0.0 &&
+ xx == 0.0 && xy == 0.0 && yx == 0.0 && yy == 0.0;
+ }
+
+ // Calculates the determinant, as if it were a matrix.
+ friend double det(const transform& t)
+ {
+ return t.xx * t.yy - t.xy * t.yx;
+ }
+
+ // Tells if the transformation is invertible (bijective).
+ bool invertible() const
+ {
+ return det(*this) != 0.0;
+ }
+
+ friend transform inverse(const transform& t)
+ {
+ double d = det(t);
+ if (d == 0.0)
+ reportError("inverting singular transform");
+
+ d=1.0/d;
+ return transform((t.xy * t.y - t.yy * t.x)*d,
+ (t.yx * t.x - t.xx * t.y)*d,
+ t.yy*d, -t.xy*d, -t.yx*d, t.xx*d);
+ }
+
+ friend ostream& operator<< (ostream& out, const transform& t)
+ {
+ return out << "(" << t.x << ","
+ << t.y << ","
+ << t.xx << ","
+ << t.xy << ","
+ << t.yx << ","
+ << t.yy << ")";
+ }
+};
+
+// The common transforms
+static const transform identity;
+
+inline transform shift(pair z)
+{
+ return transform (z.getx(), z.gety(), 1.0, 0.0, 0.0, 1.0);
+}
+
+inline transform xscale(double s)
+{
+ return transform (0.0, 0.0, s, 0.0, 0.0, 1.0);
+}
+
+inline transform yscale(double s)
+{
+ return transform (0.0, 0.0, 1.0, 0.0, 0.0, s);
+}
+
+inline transform scale(double s)
+{
+ return transform (0.0, 0.0, s, 0.0, 0.0, s);
+}
+
+inline transform scale(pair z)
+{
+ // Equivalent to multiplication by z.
+ double x = z.getx(), y = z.gety();
+ return transform (0.0, 0.0, x, -y, y, x);
+}
+
+inline transform slant(double s)
+{
+ return transform (0.0, 0.0, 1.0, s, 0.0, 1.0);
+}
+
+inline transform rotate(double theta)
+{
+ double s = sin(theta), c = cos(theta);
+ return transform (0.0, 0.0, c, -s, s, c);
+}
+
+// return rotate(angle(v)) if z != (0,0); otherwise return identity.
+inline transform rotate(pair z)
+{
+ double d=z.length();
+ if(d == 0.0) return identity;
+ d=1.0/d;
+ return transform (0.0, 0.0, d*z.getx(), -d*z.gety(), d*z.gety(), d*z.getx());
+}
+
+inline transform rotatearound(pair z, double theta)
+{
+ // Notice the operators are applied from right to left.
+ // Could be optimized.
+ return shift(z) * rotate(theta) * shift(-z);
+}
+
+inline transform reflectabout(pair z, pair w)
+{
+ if (z == w)
+ reportError("points determining line to reflect about must be distinct");
+
+ // Also could be optimized.
+ transform basis = shift(z) * scale(w-z);
+ transform flip = yscale(-1.0);
+
+ return basis * flip * inverse(basis);
+}
+
+// Remove the x and y components, so the new transform maps zero to zero.
+inline transform shiftless(transform t)
+{
+ return transform(0, 0, t.getxx(), t.getxy(), t.getyx(), t.getyy());
+}
+
+// Return the translational component of t.
+inline transform shift(transform t)
+{
+ return transform(t.getx(), t.gety(), 1.0, 0, 0, 1.0);
+}
+
+// Return the translational component of t.
+inline pair shiftpair(transform t)
+{
+ return (t.getx(), t.gety());
+}
+
+inline transform matrix(pair lb, pair rt)
+{
+ pair size=rt-lb;
+ return transform(lb.getx(),lb.gety(),size.getx(),0,0,size.gety());
+}
+
+} //namespace camp
+
+GC_DECLARE_PTRFREE(camp::transform);
+
+#endif