diff options
Diffstat (limited to 'Build/source/utils/asymptote/transform.h')
-rw-r--r-- | Build/source/utils/asymptote/transform.h | 243 |
1 files changed, 243 insertions, 0 deletions
diff --git a/Build/source/utils/asymptote/transform.h b/Build/source/utils/asymptote/transform.h new file mode 100644 index 00000000000..3d60dfd8069 --- /dev/null +++ b/Build/source/utils/asymptote/transform.h @@ -0,0 +1,243 @@ +/***** + * transform.h + * Andy Hammerlindl 2002/05/22 + * + * The transform datatype stores an affine transformation on the plane + * The datamembers are x, y, xx, xy, yx, and yy. A pair (x,y) is + * transformed as + * x' = t.x + t.xx * x + t.xy * y + * y' = t.y + t.yx * x + t.yy * y + *****/ + +#ifndef TRANSFORM_H +#define TRANSFORM_H + +#include <iostream> + +#include "pair.h" + +namespace camp { + +class transform : public gc { + double x; + double y; + double xx; + double xy; + double yx; + double yy; + +public: + transform() + : x(0.0), y(0.0), xx(1.0), xy(0.0), yx(0.0), yy(1.0) {} + + virtual ~transform() {} + + transform(double x, double y, + double xx, double xy, + double yx, double yy) + : x(x), y(y), xx(xx), xy(xy), yx(yx), yy(yy) {} + + double getx() const { return x; } + double gety() const { return y; } + double getxx() const { return xx; } + double getxy() const { return xy; } + double getyx() const { return yx; } + double getyy() const { return yy; } + + friend transform operator+ (const transform& t, const transform& s) + { + return transform(t.x + s.x, t.y + s.y, + t.xx + s.xx, t.xy + s.xy, + t.yx + s.yx, t.yy + s.yy); + } + + friend transform operator- (const transform& t, const transform& s) + { + return transform(t.x - s.x, t.y - s.y, + t.xx - s.xx, t.xy - s.xy, + t.yx - s.yx, t.yy - s.yy); + } + + friend transform operator- (const transform& t) + { + return transform(-t.x, -t.y, + -t.xx, -t.xy, + -t.yx, -t.yy); + } + + friend pair operator* (const transform& t, const pair& z) + { + double x = z.getx(), y = z.gety(); + return pair(t.x + t.xx * x + t.xy * y, t.y + t.yx * x + t.yy * y); + } + + // Calculates the composition of t and s, so for a pair, z, + // t * (s * z) == (t * s) * z + // Can be thought of as matrix multiplication. + friend transform operator* (const transform& t, const transform& s) + { + return transform(t.x + t.xx * s.x + t.xy * s.y, + t.y + t.yx * s.x + t.yy * s.y, + t.xx * s.xx + t.xy * s.yx, + t.xx * s.xy + t.xy * s.yy, + t.yx * s.xx + t.yy * s.yx, + t.yx * s.xy + t.yy * s.yy); + } + + friend bool operator== (const transform& t1, const transform& t2) + { + return t1.x == t2.x && t1.y == t2.y && + t1.xx == t2.xx && t1.xy == t2.xy && + t1.yx == t2.yx && t1.yy == t2.yy; + } + + friend bool operator!= (const transform& t1, const transform& t2) + { + return !(t1 == t2); + } + + bool isIdentity() const + { + return x == 0.0 && y == 0.0 && + xx == 1.0 && xy == 0.0 && yx == 0.0 && yy == 1.0; + } + + bool isNull() const + { + return x == 0.0 && y == 0.0 && + xx == 0.0 && xy == 0.0 && yx == 0.0 && yy == 0.0; + } + + // Calculates the determinant, as if it were a matrix. + friend double det(const transform& t) + { + return t.xx * t.yy - t.xy * t.yx; + } + + // Tells if the transformation is invertible (bijective). + bool invertible() const + { + return det(*this) != 0.0; + } + + friend transform inverse(const transform& t) + { + double d = det(t); + if (d == 0.0) + reportError("inverting singular transform"); + + d=1.0/d; + return transform((t.xy * t.y - t.yy * t.x)*d, + (t.yx * t.x - t.xx * t.y)*d, + t.yy*d, -t.xy*d, -t.yx*d, t.xx*d); + } + + friend ostream& operator<< (ostream& out, const transform& t) + { + return out << "(" << t.x << "," + << t.y << "," + << t.xx << "," + << t.xy << "," + << t.yx << "," + << t.yy << ")"; + } +}; + +// The common transforms +static const transform identity; + +inline transform shift(pair z) +{ + return transform (z.getx(), z.gety(), 1.0, 0.0, 0.0, 1.0); +} + +inline transform xscale(double s) +{ + return transform (0.0, 0.0, s, 0.0, 0.0, 1.0); +} + +inline transform yscale(double s) +{ + return transform (0.0, 0.0, 1.0, 0.0, 0.0, s); +} + +inline transform scale(double s) +{ + return transform (0.0, 0.0, s, 0.0, 0.0, s); +} + +inline transform scale(pair z) +{ + // Equivalent to multiplication by z. + double x = z.getx(), y = z.gety(); + return transform (0.0, 0.0, x, -y, y, x); +} + +inline transform slant(double s) +{ + return transform (0.0, 0.0, 1.0, s, 0.0, 1.0); +} + +inline transform rotate(double theta) +{ + double s = sin(theta), c = cos(theta); + return transform (0.0, 0.0, c, -s, s, c); +} + +// return rotate(angle(v)) if z != (0,0); otherwise return identity. +inline transform rotate(pair z) +{ + double d=z.length(); + if(d == 0.0) return identity; + d=1.0/d; + return transform (0.0, 0.0, d*z.getx(), -d*z.gety(), d*z.gety(), d*z.getx()); +} + +inline transform rotatearound(pair z, double theta) +{ + // Notice the operators are applied from right to left. + // Could be optimized. + return shift(z) * rotate(theta) * shift(-z); +} + +inline transform reflectabout(pair z, pair w) +{ + if (z == w) + reportError("points determining line to reflect about must be distinct"); + + // Also could be optimized. + transform basis = shift(z) * scale(w-z); + transform flip = yscale(-1.0); + + return basis * flip * inverse(basis); +} + +// Remove the x and y components, so the new transform maps zero to zero. +inline transform shiftless(transform t) +{ + return transform(0, 0, t.getxx(), t.getxy(), t.getyx(), t.getyy()); +} + +// Return the translational component of t. +inline transform shift(transform t) +{ + return transform(t.getx(), t.gety(), 1.0, 0, 0, 1.0); +} + +// Return the translational component of t. +inline pair shiftpair(transform t) +{ + return (t.getx(), t.gety()); +} + +inline transform matrix(pair lb, pair rt) +{ + pair size=rt-lb; + return transform(lb.getx(),lb.gety(),size.getx(),0,0,size.gety()); +} + +} //namespace camp + +GC_DECLARE_PTRFREE(camp::transform); + +#endif |