summaryrefslogtreecommitdiff
path: root/Build/source/utils/asymptote/base/smoothcontour3.asy
diff options
context:
space:
mode:
Diffstat (limited to 'Build/source/utils/asymptote/base/smoothcontour3.asy')
-rw-r--r--Build/source/utils/asymptote/base/smoothcontour3.asy1582
1 files changed, 1582 insertions, 0 deletions
diff --git a/Build/source/utils/asymptote/base/smoothcontour3.asy b/Build/source/utils/asymptote/base/smoothcontour3.asy
new file mode 100644
index 00000000000..be6f900a4d1
--- /dev/null
+++ b/Build/source/utils/asymptote/base/smoothcontour3.asy
@@ -0,0 +1,1582 @@
+// Copyright 2015 Charles Staats III
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// smoothcontour3
+// An Asymptote module for drawing smooth implicitly defined surfaces
+// author: Charles Staats III
+// charles dot staats dot iii at gmail dot com
+
+import graph_settings; // for nmesh
+import three;
+import math;
+
+/***********************************************/
+/******** CREATING BEZIER PATCHES **************/
+/******** WITH SPECIFIED NORMALS **************/
+/***********************************************/
+
+// The weight given to minimizing the sum of squares of
+// the mixed partials at the corners of the bezier patch.
+// If this weight is zero, the result is undefined in
+// places and can be rather wild even where it is
+// defined.
+// The struct is used to as a namespace.
+struct pathwithnormals_settings {
+ static real wildnessweight = 1e-3;
+}
+private from pathwithnormals_settings unravel wildnessweight;
+
+// The Bernstein basis polynomials of degree 3:
+real B03(real t) { return (1-t)^3; }
+real B13(real t) { return 3*t*(1-t)^2; }
+real B23(real t) { return 3*t^2*(1-t); }
+real B33(real t) { return t^3; }
+
+private typedef real function(real);
+function[] bernstein = new function[] {B03, B13, B23, B33};
+
+// This function attempts to produce a Bezier patch
+// with the specified boundary path and normal directions.
+// For instance, the patch should be normal to
+// u0normals[0] at (0, 0.25),
+// normal to u0normals[1] at (0, 0.5), and
+// normal to u0normals[2] at (0, 0.75).
+// The actual normal (as computed by the patch.normal() function)
+// may be parallel to the specified normal, antiparallel, or
+// even zero.
+//
+// A small amount of deviation is allowed in order to stabilize
+// the algorithm (by keeping the mixed partials at the corners from
+// growing too large).
+//
+// Note that the specified normals are projected to be orthogonal to
+// the specified boundary path. However, the entries in the array
+// remain intact.
+patch patchwithnormals(path3 external, triple[] u0normals, triple[] u1normals,
+ triple[] v0normals, triple[] v1normals)
+{
+ assert(cyclic(external));
+ assert(length(external) == 4);
+ assert(u0normals.length == 3);
+ assert(u1normals.length == 3);
+ assert(v0normals.length == 3);
+ assert(v1normals.length == 3);
+
+ triple[][] controlpoints = new triple[4][4];
+ controlpoints[0][0] = point(external,0);
+ controlpoints[1][0] = postcontrol(external,0);
+ controlpoints[2][0] = precontrol(external,1);
+ controlpoints[3][0] = point(external,1);
+ controlpoints[3][1] = postcontrol(external,1);
+ controlpoints[3][2] = precontrol(external,2);
+ controlpoints[3][3] = point(external,2);
+ controlpoints[2][3] = postcontrol(external,2);
+ controlpoints[1][3] = precontrol(external,3);
+ controlpoints[0][3] = point(external,3);
+ controlpoints[0][2] = postcontrol(external,3);
+ controlpoints[0][1] = precontrol(external, 4);
+
+ real[][] matrix = new real[24][12];
+ for (int i = 0; i < matrix.length; ++i)
+ for (int j = 0; j < matrix[i].length; ++j)
+ matrix[i][j] = 0;
+ real[] rightvector = new real[24];
+ for (int i = 0; i < rightvector.length; ++i)
+ rightvector[i] = 0;
+
+ void addtocoeff(int i, int j, int count, triple coeffs) {
+ if (1 <= i && i <= 2 && 1 <= j && j <= 2) {
+ int position = 3 * (2 * (i-1) + (j-1));
+ matrix[count][position] += coeffs.x;
+ matrix[count][position+1] += coeffs.y;
+ matrix[count][position+2] += coeffs.z;
+ } else {
+ rightvector[count] -= dot(controlpoints[i][j], coeffs);
+ }
+ }
+
+ void addtocoeff(int i, int j, int count, real coeff) {
+ if (1 <= i && i <= 2 && 1 <= j && j <= 2) {
+ int position = 3 * (2 * (i-1) + (j-1));
+ matrix[count][position] += coeff;
+ matrix[count+1][position+1] += coeff;
+ matrix[count+2][position+2] += coeff;
+ } else {
+ rightvector[count] -= controlpoints[i][j].x * coeff;
+ rightvector[count+1] -= controlpoints[i][j].y * coeff;
+ rightvector[count+2] -= controlpoints[i][j].z * coeff;
+ }
+ }
+
+ int count = 0;
+
+ void apply_u0(int j, real a, triple n) {
+ real factor = 3 * bernstein[j](a);
+ addtocoeff(0,j,count,-factor*n);
+ addtocoeff(1,j,count,factor*n);
+ }
+ void apply_u0(real a, triple n) {
+ triple tangent = dir(external, 4-a);
+ n -= dot(n,tangent)*tangent;
+ n = unit(n);
+ for (int j = 0; j < 4; ++j) {
+ apply_u0(j,a,n);
+ }
+ ++count;
+ }
+ apply_u0(0.25, u0normals[0]);
+ apply_u0(0.5, u0normals[1]);
+ apply_u0(0.75, u0normals[2]);
+
+ void apply_u1(int j, real a, triple n) {
+ real factor = 3 * bernstein[j](a);
+ addtocoeff(3,j,count,factor*n);
+ addtocoeff(2,j,count,-factor*n);
+ }
+ void apply_u1(real a, triple n) {
+ triple tangent = dir(external, 1+a);
+ n -= dot(n,tangent)*tangent;
+ n = unit(n);
+ for (int j = 0; j < 4; ++j)
+ apply_u1(j,a,n);
+ ++count;
+ }
+ apply_u1(0.25, u1normals[0]);
+ apply_u1(0.5, u1normals[1]);
+ apply_u1(0.75, u1normals[2]);
+
+ void apply_v0(int i, real a, triple n) {
+ real factor = 3 * bernstein[i](a);
+ addtocoeff(i,0,count,-factor*n);
+ addtocoeff(i,1,count,factor*n);
+ }
+ void apply_v0(real a, triple n) {
+ triple tangent = dir(external, a);
+ n -= dot(n,tangent) * tangent;
+ n = unit(n);
+ for (int i = 0; i < 4; ++i)
+ apply_v0(i,a,n);
+ ++count;
+ }
+ apply_v0(0.25, v0normals[0]);
+ apply_v0(0.5, v0normals[1]);
+ apply_v0(0.75, v0normals[2]);
+
+ void apply_v1(int i, real a, triple n) {
+ real factor = 3 * bernstein[i](a);
+ addtocoeff(i,3,count,factor*n);
+ addtocoeff(i,2,count,-factor*n);
+ }
+ void apply_v1(real a, triple n) {
+ triple tangent = dir(external, 3-a);
+ n -= dot(n,tangent)*tangent;
+ n = unit(n);
+ for (int i = 0; i < 4; ++i)
+ apply_v1(i,a,n);
+ ++count;
+ }
+ apply_v1(0.25, v1normals[0]);
+ apply_v1(0.5, v1normals[1]);
+ apply_v1(0.75, v1normals[2]);
+
+ addtocoeff(0,0,count,9*wildnessweight);
+ addtocoeff(1,1,count,9*wildnessweight);
+ addtocoeff(0,1,count,-9*wildnessweight);
+ addtocoeff(1,0,count,-9*wildnessweight);
+ count+=3;
+ addtocoeff(3,3,count,9*wildnessweight);
+ addtocoeff(2,2,count,9*wildnessweight);
+ addtocoeff(3,2,count,-9*wildnessweight);
+ addtocoeff(2,3,count,-9*wildnessweight);
+ count+=3;
+ addtocoeff(0,3,count,9*wildnessweight);
+ addtocoeff(1,2,count,9*wildnessweight);
+ addtocoeff(1,3,count,-9*wildnessweight);
+ addtocoeff(0,2,count,-9*wildnessweight);
+ count += 3;
+ addtocoeff(3,0,count,9*wildnessweight);
+ addtocoeff(2,1,count,9*wildnessweight);
+ addtocoeff(3,1,count,-9*wildnessweight);
+ addtocoeff(2,0,count,-9*wildnessweight);
+ count += 3;
+
+ real[] solution = leastsquares(matrix, rightvector, warn=false);
+ if (solution.length == 0) { // if the matrix was singular
+ write("Warning: unable to solve matrix for specifying edge normals "
+ + "on bezier patch. Using coons patch.");
+ return patch(external);
+ }
+
+ for (int i = 1; i <= 2; ++i) {
+ for (int j = 1; j <= 2; ++j) {
+ int position = 3 * (2 * (i-1) + (j-1));
+ controlpoints[i][j] = (solution[position],
+ solution[position+1],
+ solution[position+2]);
+ }
+ }
+
+ return patch(controlpoints);
+}
+
+// This function attempts to produce a Bezier triangle
+// with the specified boundary path and normal directions at the
+// edge midpoints. The bezier triangle should be normal to
+// n1 at point(external, 0.5),
+// normal to n2 at point(external, 1.5), and
+// normal to n3 at point(external, 2.5).
+// The actual normal (as computed by the patch.normal() function)
+// may be parallel to the specified normal, antiparallel, or
+// even zero.
+//
+// A small amount of deviation is allowed in order to stabilize
+// the algorithm (by keeping the mixed partials at the corners from
+// growing too large).
+patch trianglewithnormals(path3 external, triple n1,
+ triple n2, triple n3) {
+ assert(cyclic(external));
+ assert(length(external) == 3);
+ // Use the formal symbols a3, a2b, abc, etc. to denote the control points,
+ // following the Wikipedia article on Bezier triangles.
+ triple a3 = point(external, 0), a2b = postcontrol(external, 0),
+ ab2 = precontrol(external, 1), b3 = point(external, 1),
+ b2c = postcontrol(external, 1), bc2 = precontrol(external, 2),
+ c3 = point(external, 2), ac2 = postcontrol(external, 2),
+ a2c = precontrol(external, 0);
+
+ // Use orthogonal projection to ensure that the normal vectors are
+ // actually normal to the boundary path.
+ triple tangent = dir(external, 0.5);
+ n1 -= dot(n1,tangent)*tangent;
+ n1 = unit(n1);
+
+ tangent = dir(external, 1.5);
+ n2 -= dot(n2,tangent)*tangent;
+ n2 = unit(n2);
+
+ tangent = dir(external, 2.5);
+ n3 -= dot(n3,tangent)*tangent;
+ n3 = unit(n3);
+
+ real wild = 2 * wildnessweight;
+ real[][] matrix = { {n1.x, n1.y, n1.z},
+ {n2.x, n2.y, n2.z},
+ {n3.x, n3.y, n3.z},
+ { wild, 0, 0},
+ { 0, wild, 0},
+ { 0, 0, wild} };
+ real[] rightvector =
+ { dot(n1, (a3 + 3a2b + 3ab2 + b3 - 2a2c - 2b2c)) / 4,
+ dot(n2, (b3 + 3b2c + 3bc2 + c3 - 2ab2 - 2ac2)) / 4,
+ dot(n3, (c3 + 3ac2 + 3a2c + a3 - 2bc2 - 2a2b)) / 4 };
+
+ // The inner control point that minimizes the sum of squares of
+ // the mixed partials on the corners.
+ triple tameinnercontrol =
+ ((a2b + a2c - a3) + (ab2 + b2c - b3) + (ac2 + bc2 - c3)) / 3;
+ rightvector.append(wild * new real[]
+ {tameinnercontrol.x, tameinnercontrol.y, tameinnercontrol.z});
+ real[] solution = leastsquares(matrix, rightvector, warn=false);
+ if (solution.length == 0) { // if the matrix was singular
+ write("Warning: unable to solve matrix for specifying edge normals "
+ + "on bezier triangle. Using coons triangle.");
+ return patch(external);
+ }
+ triple innercontrol = (solution[0], solution[1], solution[2]);
+ return patch(external, innercontrol);
+}
+
+// A wrapper for the previous functions when the normal direction
+// is given as a function of direction. The wrapper can also
+// accommodate cyclic boundary paths of between one and four
+// segments, although the results are best by far when there
+// are three or four segments.
+patch patchwithnormals(path3 external, triple normalat(triple)) {
+ assert(cyclic(external));
+ assert(1 <= length(external) && length(external) <= 4);
+ if (length(external) == 3) {
+ triple n1 = normalat(point(external, 0.5));
+ triple n2 = normalat(point(external, 1.5));
+ triple n3 = normalat(point(external, 2.5));
+ return trianglewithnormals(external, n1, n2, n3);
+ }
+ while (length(external) < 4) external = external -- cycle;
+ triple[] u0normals = new triple[3];
+ triple[] u1normals = new triple[3];
+ triple[] v0normals = new triple[3];
+ triple[] v1normals = new triple[3];
+ for (int i = 1; i <= 3; ++i) {
+ v0normals[i-1] = unit(normalat(point(external, i/4)));
+ u1normals[i-1] = unit(normalat(point(external, 1 + i/4)));
+ v1normals[i-1] = unit(normalat(point(external, 3 - i/4)));
+ u0normals[i-1] = unit(normalat(point(external, 4 - i/4)));
+ }
+ return patchwithnormals(external, u0normals, u1normals, v0normals, v1normals);
+}
+
+/***********************************************/
+/********* DUAL CUBE GRAPH UTILITY *************/
+/***********************************************/
+
+// Suppose a plane intersects a (hollow) cube, and
+// does not intersect any vertices. Then its intersection
+// with cube forms a cycle. The goal of the code below
+// is to reconstruct the order of the cycle
+// given only an unordered list of which edges the plane
+// intersects.
+//
+// Basically, the question is this: If we know the points
+// in which a more-or-less planar surface intersects the
+// edges of cube, how do we connect those points?
+//
+// When I wrote the code, I was thinking in terms of the
+// dual graph of a cube, in which "vertices" are really
+// faces of the cube and "edges" connect those "vertices."
+
+// An enum for the different "vertices" (i.e. faces)
+// available. NULL_VERTEX is primarily intended as a
+// return value to indicate the absence of a desired
+// vertex.
+private int NULL_VERTEX = -1;
+private int XHIGH = 0;
+private int XLOW = 1;
+private int YHIGH = 2;
+private int YLOW = 3;
+private int ZHIGH = 4;
+private int ZLOW = 5;
+
+// An unordered set of nonnegative integers.
+// Since the intent is to use
+// only the six values from the enum above, no effort
+// was made to use scalable algorithms.
+struct intset {
+ private bool[] ints = new bool[0];
+ private int size = 0;
+
+ bool contains(int item) {
+ assert(item >= 0);
+ if (item >= ints.length) return false;
+ return ints[item];
+ }
+
+ // Returns true if the item was added (i.e., was
+ // not already present).
+ bool add(int item) {
+ assert(item >= 0);
+ while (item >= ints.length) ints.push(false);
+ if (ints[item]) return false;
+ ints[item] = true;
+ ++size;
+ return true;
+ }
+
+ int[] elements() {
+ int[] toreturn;
+ for (int i = 0; i < ints.length; ++i) {
+ if (ints[i]) toreturn.push(i);
+ }
+ return toreturn;
+ }
+
+ int size() { return size; }
+}
+
+// A map from integers to sets of integers. Again, no
+// attempt is made to use scalable data structures.
+struct int_to_intset {
+ int[] keys = new int[0];
+ intset[] values = new intset[0];
+
+ void add(int key, int value) {
+ for (int i = 0; i < keys.length; ++i) {
+ if (keys[i] == key) {
+ values[i].add(value);
+ return;
+ }
+ }
+ keys.push(key);
+ intset newset;
+ values.push(newset);
+ newset.add(value);
+ }
+
+ private int indexOf(int key) {
+ for (int i = 0; i < keys.length; ++i) {
+ if (keys[i] == key) return i;
+ }
+ return -1;
+ }
+
+ int[] get(int key) {
+ int i = indexOf(key);
+ if (i < 0) return new int[0];
+ else return values[i].elements();
+ }
+
+ int numvalues(int key) {
+ int i = indexOf(key);
+ if (i < 0) return 0;
+ else return values[i].size();
+ }
+
+ int numkeys() {
+ return keys.length;
+ }
+}
+
+// A struct intended to represent an undirected edge between
+// two "vertices."
+struct edge {
+ int start;
+ int end;
+ void operator init(int a, int b) {
+ start = a;
+ end = b;
+ }
+ bool bordersvertex(int v) { return start == v || end == v; }
+}
+
+string operator cast(edge e) {
+ int a, b;
+ if (e.start <= e.end) {a = e.start; b = e.end;}
+ else {a = e.end; b = e.start; }
+ return (string)a + " <-> " + (string)b;
+}
+
+bool operator == (edge a, edge b) {
+ if (a.start == b.start && a.end == b.end) return true;
+ if (a.start == b.end && a.end == b.start) return true;
+ return false;
+}
+
+string operator cast(edge[] edges) {
+ string toreturn = "{ ";
+ for (int i = 0; i < edges.length; ++i) {
+ toreturn += edges[i];
+ if (i < edges.length-1) toreturn += ", ";
+ }
+ return toreturn + " }";
+}
+
+// Finally, the function that strings together a list of edges
+// into a cycle. It makes assumptions that hold true if the
+// list of edges did in fact come from a plane intersection
+// containing no vertices of the cube. For instance, such a
+// plane can contain at most two noncollinear points of any
+// one face; consequently, no face can border more than two of
+// the selected edges.
+//
+// If the underlying assumptions prove to be false, the function
+// returns null.
+int[] makecircle(edge[] edges) {
+ if (edges.length == 0) return new int[0];
+ int_to_intset graph;
+ for (edge e : edges) {
+ graph.add(e.start, e.end);
+ graph.add(e.end, e.start);
+ }
+ int currentvertex = edges[0].start;
+ int startvertex = currentvertex;
+ int lastvertex = NULL_VERTEX;
+ int[] toreturn = new int[0];
+ do {
+ toreturn.push(currentvertex);
+ int[] adjacentvertices = graph.get(currentvertex);
+ if (adjacentvertices.length != 2) return null;
+ for (int v : adjacentvertices) {
+ if (v != lastvertex) {
+ lastvertex = currentvertex;
+ currentvertex = v;
+ break;
+ }
+ }
+ } while (currentvertex != startvertex);
+ if (toreturn.length != graph.numkeys()) return null;
+ toreturn.cyclic = true;
+ return toreturn;
+}
+
+/***********************************************/
+/********** PATHS BETWEEN POINTS ***************/
+/***********************************************/
+// Construct paths between two points with additional
+// constraints; for instance, the path must be orthogonal
+// to a certain vector at each of the endpoints, must
+// lie within a specified plane or a specified face
+// of a rectangular solid,....
+
+// A vector (typically a normal vector) at a specified position.
+struct positionedvector {
+ triple position;
+ triple direction;
+ void operator init(triple position, triple direction) {
+ this.position = position;
+ this.direction = direction;
+ }
+}
+
+string operator cast(positionedvector vv) {
+ return "position: " + (string)(vv.position) + " vector: " + (string)vv.direction;
+}
+
+// The angle, in degrees, between two vectors.
+real angledegrees(triple a, triple b) {
+ real dotprod = dot(a,b);
+ real lengthprod = max(abs(a) * abs(b), abs(dotprod));
+ if (lengthprod == 0) return 0;
+ return aCos(dotprod / lengthprod);
+}
+
+// A path (single curved segment) between two points. At each point
+// is specified a vector orthogonal to the path.
+path3 pathbetween(positionedvector v1, positionedvector v2) {
+ triple n1 = unit(v1.direction);
+ triple n2 = unit(v2.direction);
+
+ triple p1 = v1.position;
+ triple p2 = v2.position;
+ triple delta = p2-p1;
+
+ triple dir1 = delta - dot(delta, n1)*n1;
+ triple dir2 = delta - dot(delta, n2)*n2;
+ return p1 {dir1} .. {dir2} p2;
+}
+
+// Assuming v1 and v2 are linearly independent, returns an array {a, b}
+// such that a v1 + b v2 is the orthogonal projection of toproject onto
+// the span of v1 and v2. If v1 and v2 are dependent, returns an empty array
+// (if warn==false) or throws an error (if warn==true).
+real[] projecttospan_findcoeffs(triple toproject, triple v1, triple v2,
+ bool warn=false) {
+ real[][] matrix = {{v1.x, v2.x},
+ {v1.y, v2.y},
+ {v1.z, v2.z}};
+ real[] desiredanswer = {toproject.x, toproject.y, toproject.z};
+ return leastsquares(matrix, desiredanswer, warn=warn);
+}
+
+// Project the triple toproject into the span of a and b, but restrict
+// to the quarter-plane of linear combinations a v1 + b v2 such that
+// a >= mincoeff and b >= mincoeff. If v1 and v2 are linearly dependent,
+// return a random (positive) linear combination.
+triple projecttospan(triple toproject, triple v1, triple v2,
+ real mincoeff = 0.05) {
+ real[] coeffs = projecttospan_findcoeffs(toproject, v1, v2, warn=false);
+ real a, b;
+ if (coeffs.length == 0) {
+ a = mincoeff + unitrand();
+ b = mincoeff + unitrand();
+ } else {
+ a = max(coeffs[0], mincoeff);
+ b = max(coeffs[1], mincoeff);
+ }
+ return a*v1 + b*v2;
+}
+
+// A path between two specified vertices of a cyclic path. The
+// path tangent at each endpoint is guaranteed to lie within the
+// quarter-plane spanned by positive linear combinations of the
+// tangents of the two outgoing paths at that endpoint.
+path3 pathbetween(path3 edgecycle, int vertex1, int vertex2) {
+ triple point1 = point(edgecycle, vertex1);
+ triple point2 = point(edgecycle, vertex2);
+
+ triple v1 = -dir(edgecycle, vertex1, sign=-1);
+ triple v2 = dir(edgecycle, vertex1, sign= 1);
+ triple direction1 = projecttospan(unit(point2-point1), v1, v2);
+
+ v1 = -dir(edgecycle, vertex2, sign=-1);
+ v2 = dir(edgecycle, vertex2, sign= 1);
+ triple direction2 = projecttospan(unit(point1-point2), v1, v2);
+
+ return point1 {direction1} .. {-direction2} point2;
+}
+
+// This function applies a heuristic to choose two "opposite"
+// vertices (separated by three segments) of edgecycle, which
+// is required to be a cyclic path consisting of 5 or 6 segments.
+// The two chosen vertices are pushed to savevertices.
+//
+// The function returns a path between the two chosen vertices. The
+// path tangent at each endpoint is guaranteed to lie within the
+// quarter-plane spanned by positive linear combinations of the
+// tangents of the two outgoing paths at that endpoint.
+path3 bisector(path3 edgecycle, int[] savevertices) {
+ real mincoeff = 0.05;
+ assert(cyclic(edgecycle));
+ int n = length(edgecycle);
+ assert(n >= 5 && n <= 6);
+ triple[] forwarddirections = sequence(new triple(int i) {
+ return dir(edgecycle, i, sign=1);
+ }, n);
+ forwarddirections.cyclic = true;
+ triple[] backwarddirections = sequence(new triple(int i) {
+ return -dir(edgecycle, i, sign=-1);
+ }, n);
+ backwarddirections.cyclic = true;
+ real[] angles = sequence(new real(int i) {
+ return angledegrees(forwarddirections[i], backwarddirections[i]);
+ }, n);
+ angles.cyclic = true;
+ int lastindex = (n == 5 ? 4 : 2);
+ real maxgoodness = 0;
+ int chosenindex = -1;
+ triple directionout, directionin;
+ for (int i = 0; i <= lastindex; ++i) {
+ int opposite = i + 3;
+ triple vec = unit(point(edgecycle, opposite) - point(edgecycle, i));
+ real[] coeffsbegin = projecttospan_findcoeffs(vec, forwarddirections[i],
+ backwarddirections[i]);
+ if (coeffsbegin.length == 0) continue;
+ coeffsbegin[0] = max(coeffsbegin[0], mincoeff);
+ coeffsbegin[1] = max(coeffsbegin[1], mincoeff);
+
+ real[] coeffsend = projecttospan_findcoeffs(-vec, forwarddirections[opposite],
+ backwarddirections[opposite]);
+ if (coeffsend.length == 0) continue;
+ coeffsend[0] = max(coeffsend[0], mincoeff);
+ coeffsend[1] = max(coeffsend[1], mincoeff);
+
+ real goodness = angles[i] * angles[opposite] * coeffsbegin[0] * coeffsend[0]
+ * coeffsbegin[1] * coeffsend[1];
+ if (goodness > maxgoodness) {
+ maxgoodness = goodness;
+ directionout = coeffsbegin[0] * forwarddirections[i] +
+ coeffsbegin[1] * backwarddirections[i];
+ directionin = -(coeffsend[0] * forwarddirections[opposite] +
+ coeffsend[1] * backwarddirections[opposite]);
+ chosenindex = i;
+ }
+ }
+ if (chosenindex == -1) {
+ savevertices.push(0);
+ savevertices.push(3);
+ return pathbetween(edgecycle, 0, 3);
+ } else {
+ savevertices.push(chosenindex);
+ savevertices.push(chosenindex+3);
+ return point(edgecycle, chosenindex) {directionout} ..
+ {directionin} point(edgecycle, chosenindex + 3);
+ }
+}
+
+// A path between two specified points (with specified normals) that lies
+// within a specified face of a rectangular solid.
+path3 pathinface(positionedvector v1, positionedvector v2,
+ triple facenorm, triple edge1normout, triple edge2normout)
+{
+ triple dir1 = cross(v1.direction, facenorm);
+ real dotprod = dot(dir1, edge1normout);
+ if (dotprod > 0) dir1 = -dir1;
+ // Believe it or not, this "tiebreaker" is actually relevant at times,
+ // for instance, when graphing the cone x^2 + y^2 = z^2 over the region
+ // -1 <= x,y,z <= 1.
+ else if (dotprod == 0 && dot(dir1, v2.position - v1.position) < 0) dir1 = -dir1;
+
+ triple dir2 = cross(v2.direction, facenorm);
+ dotprod = dot(dir2, edge2normout);
+ if (dotprod < 0) dir2 = -dir2;
+ else if (dotprod == 0 && dot(dir2, v2.position - v1.position) < 0) dir2 = -dir2;
+
+ return v1.position {dir1} .. {dir2} v2.position;
+}
+
+triple normalout(int face) {
+ if (face == XHIGH) return X;
+ else if (face == YHIGH) return Y;
+ else if (face == ZHIGH) return Z;
+ else if (face == XLOW) return -X;
+ else if (face == YLOW) return -Y;
+ else if (face == ZLOW) return -Z;
+ else return O;
+}
+
+// A path between two specified points (with specified normals) that lies
+// within a specified face of a rectangular solid.
+path3 pathinface(positionedvector v1, positionedvector v2,
+ int face, int edge1face, int edge2face) {
+ return pathinface(v1, v2, normalout(face), normalout(edge1face),
+ normalout(edge2face));
+}
+
+/***********************************************/
+/******** DRAWING IMPLICIT SURFACES ************/
+/***********************************************/
+
+// DEPRECATED
+// Quadrilateralization:
+// Produce a surface (array of *nondegenerate* Bezier patches) with a
+// specified three-segment boundary. The surface should approximate the
+// zero locus of the specified f with its specified gradient.
+//
+// If it is not possible to produce the desired result without leaving the
+// specified rectangular region, returns a length-zero array.
+//
+// Dividing a triangle into smaller quadrilaterals this way is opposite
+// the usual trend in mathematics. However, *before the introduction of bezier
+// triangles,* the pathwithnormals algorithm
+// did a poor job of choosing a good surface when the boundary path did
+// not consist of four positive-length segments.
+patch[] triangletoquads(path3 external, real f(triple), triple grad(triple),
+ triple a, triple b) {
+ static real epsilon = 1e-3;
+ assert(length(external) == 3);
+ assert(cyclic(external));
+
+ triple c0 = point(external, 0);
+ triple c1 = point(external, 1);
+ triple c2 = point(external, 2);
+
+ triple center = (c0 + c1 + c2) / 3;
+ triple n = unit(cross(c1-c0, c2-c0));
+
+ real g(real t) { return f(center + t*n); }
+
+ real tmin = -realMax, tmax = realMax;
+ void absorb(real t) {
+ if (t < 0) tmin = max(t,tmin);
+ else tmax = min(t,tmax);
+ }
+ if (n.x != 0) {
+ absorb((a.x - center.x) / n.x);
+ absorb((b.x - center.x) / n.x);
+ }
+ if (n.y != 0) {
+ absorb((a.y - center.y) / n.y);
+ absorb((b.y - center.y) / n.y);
+ }
+ if (n.z != 0) {
+ absorb((a.z - center.z) / n.z);
+ absorb((b.z - center.z) / n.z);
+ }
+
+ real fa = g(tmin);
+ real fb = g(tmax);
+ if ((fa > 0 && fb > 0) || (fa < 0 && fb < 0)) {
+ return new patch[0];
+ } else {
+ real t = findroot(g, tmin, tmax, fa=fa, fb=fb);
+ center += t * n;
+ }
+
+ n = unit(grad(center));
+
+ triple m0 = point(external, 0.5);
+ positionedvector m0 = positionedvector(m0, unit(grad(m0)));
+ triple m1 = point(external, 1.5);
+ positionedvector m1 = positionedvector(m1, unit(grad(m1)));
+ triple m2 = point(external, 2.5);
+ positionedvector m2 = positionedvector(m2, unit(grad(m2)));
+ positionedvector c = positionedvector(center, unit(grad(center)));
+
+ path3 pathto_m0 = pathbetween(c, m0);
+ path3 pathto_m1 = pathbetween(c, m1);
+ path3 pathto_m2 = pathbetween(c, m2);
+
+ path3 quad0 = subpath(external, 0, 0.5)
+ & reverse(pathto_m0)
+ & pathto_m2
+ & subpath(external, -0.5, 0)
+ & cycle;
+ path3 quad1 = subpath(external, 1, 1.5)
+ & reverse(pathto_m1)
+ & pathto_m0
+ & subpath(external, 0.5, 1)
+ & cycle;
+ path3 quad2 = subpath(external, 2, 2.5)
+ & reverse(pathto_m2)
+ & pathto_m1
+ & subpath(external, 1.5, 2)
+ & cycle;
+
+ return new patch[] {patchwithnormals(quad0, grad),
+ patchwithnormals(quad1, grad),
+ patchwithnormals(quad2, grad)};
+}
+
+// Attempts to fill the path external (which should by a cyclic path consisting of
+// three segments) with bezier triangle(s). Returns an empty array if it fails.
+//
+// In more detail: A single bezier triangle is computed using trianglewithnormals. The normals of
+// the resulting triangle at the midpoint of each edge are computed. If any of these normals
+// is in the negative f direction, the external triangle is subdivided into four external triangles
+// and the same procedure is applied to each. If one or more of them has an incorrectly oriented
+// edge normal, the function gives up and returns an empty array.
+//
+// Thus, the returned array consists of 0, 1, or 4 bezier triangles; no other array lengths
+// are possible.
+//
+// This function assumes that the path orientation is consistent with f (and its gradient)
+// -- i.e., that
+// at a corner, (tangent in) x (tangent out) is in the positive f direction.
+patch[] maketriangle(path3 external, real f(triple),
+ triple grad(triple), bool allowsubdivide = true) {
+ assert(cyclic(external));
+ assert(length(external) == 3);
+ triple m1 = point(external, 0.5);
+ triple n1 = unit(grad(m1));
+ triple m2 = point(external, 1.5);
+ triple n2 = unit(grad(m2));
+ triple m3 = point(external, 2.5);
+ triple n3 = unit(grad(m3));
+ patch beziertriangle = trianglewithnormals(external, n1, n2, n3);
+ if (dot(n1, beziertriangle.normal(0.5, 0)) >= 0 &&
+ dot(n2, beziertriangle.normal(0.5, 0.5)) >= 0 &&
+ dot(n3, beziertriangle.normal(0, 0.5)) >= 0)
+ return new patch[] {beziertriangle};
+
+ if (!allowsubdivide) return new patch[0];
+
+ positionedvector m1 = positionedvector(m1, n1);
+ positionedvector m2 = positionedvector(m2, n2);
+ positionedvector m3 = positionedvector(m3, n3);
+ path3 p12 = pathbetween(m1, m2);
+ path3 p23 = pathbetween(m2, m3);
+ path3 p31 = pathbetween(m3, m1);
+ patch[] triangles = maketriangle(p12 & p23 & p31 & cycle, f, grad=grad,
+ allowsubdivide=false);
+ if (triangles.length < 1) return new patch[0];
+
+ triangles.append(maketriangle(subpath(external, -0.5, 0.5) & reverse(p31) & cycle,
+ f, grad=grad, allowsubdivide=false));
+ if (triangles.length < 2) return new patch[0];
+
+ triangles.append(maketriangle(subpath(external, 0.5, 1.5) & reverse(p12) & cycle,
+ f, grad=grad, allowsubdivide=false));
+ if (triangles.length < 3) return new patch[0];
+
+ triangles.append(maketriangle(subpath(external, 1.5, 2.5) & reverse(p23) & cycle,
+ f, grad=grad, allowsubdivide=false));
+ if (triangles.length < 4) return new patch[0];
+
+ return triangles;
+}
+
+
+// Returns true if the point is "nonsingular" (in the sense that the magnitude
+// of the gradient is not too small) AND very close to the zero locus of f
+// (assuming f is locally linear).
+bool check_fpt_zero(triple testpoint, real f(triple), triple grad(triple)) {
+ real testval = f(testpoint);
+ real slope = abs(grad(testpoint));
+ static real tolerance = 2*rootfinder_settings.roottolerance;
+ return !(slope > tolerance && abs(testval) / slope > tolerance);
+}
+
+// Returns true if pt lies within the rectangular solid with
+// opposite corners at a and b.
+bool checkptincube(triple pt, triple a, triple b) {
+ real xmin = a.x;
+ real xmax = b.x;
+ real ymin = a.y;
+ real ymax = b.y;
+ real zmin = a.z;
+ real zmax = b.z;
+ if (xmin > xmax) { real t = xmax; xmax=xmin; xmin=t; }
+ if (ymin > ymax) { real t = ymax; ymax=ymin; ymin=t; }
+ if (zmin > zmax) { real t = zmax; zmax=zmin; zmin=t; }
+
+ return ((xmin <= pt.x) && (pt.x <= xmax) &&
+ (ymin <= pt.y) && (pt.y <= ymax) &&
+ (zmin <= pt.z) && (pt.z <= zmax));
+
+}
+
+// A convenience function for combining the previous two tests.
+bool checkpt(triple testpt, real f(triple), triple grad(triple),
+ triple a, triple b) {
+ return checkptincube(testpt, a, b) &&
+ check_fpt_zero(testpt, f, grad);
+}
+
+// Attempts to fill in the boundary cycle with a collection of
+// patches to approximate smoothly the zero locus of f. If unable to
+// do so while satisfying certain checks, returns null.
+// This is distinct from returning an empty
+// array, which merely indicates that the boundary cycle is too small
+// to be worth filling in.
+patch[] quadpatches(path3 edgecycle, positionedvector[] corners,
+ real f(triple), triple grad(triple),
+ triple a, triple b, bool usetriangles) {
+ assert(corners.cyclic);
+
+ // The tolerance for considering two points "essentially identical."
+ static real tolerance = 2.5 * rootfinder_settings.roottolerance;
+
+ // If there are two neighboring vertices that are essentially identical,
+ // unify them into one.
+ for (int i = 0; i < corners.length; ++i) {
+ if (abs(corners[i].position - corners[i+1].position) < tolerance) {
+ if (corners.length == 2) return new patch[0];
+ corners.delete(i);
+ edgecycle = subpath(edgecycle, 0, i)
+ & subpath(edgecycle, i+1, length(edgecycle))
+ & cycle;
+ --i;
+ assert(length(edgecycle) == corners.length);
+ }
+ }
+
+ static real areatolerance = tolerance^2;
+
+ assert(corners.length >= 2);
+ if (corners.length == 2) {
+ // If the area is too small, just ignore it; otherwise, subdivide.
+ real area0 = abs(cross(-dir(edgecycle, 0, sign=-1, normalize=false),
+ dir(edgecycle, 0, sign=1, normalize=false)));
+ real area1 = abs(cross(-dir(edgecycle, 1, sign=-1, normalize=false),
+ dir(edgecycle, 1, sign=1, normalize=false)));
+ if (area0 < areatolerance && area1 < areatolerance) return new patch[0];
+ else return null;
+ }
+ if (length(edgecycle) > 6) abort("too many edges: not possible.");
+
+ for (int i = 0; i < length(edgecycle); ++i) {
+ if (angledegrees(dir(edgecycle,i,sign=1),
+ dir(edgecycle,i+1,sign=-1)) > 80) {
+ return null;
+ }
+ }
+
+ if (length(edgecycle) == 3) {
+ patch[] toreturn = usetriangles ? maketriangle(edgecycle, f, grad)
+ : triangletoquads(edgecycle, f, grad, a, b);
+ if (toreturn.length == 0) return null;
+ else return toreturn;
+ }
+ if (length(edgecycle) == 4) {
+ return new patch[] {patchwithnormals(edgecycle, grad)};
+ }
+
+ int[] bisectorindices;
+ path3 middleguide = bisector(edgecycle, bisectorindices);
+
+ triple testpoint = point(middleguide, 0.5);
+ if (!checkpt(testpoint, f, grad, a, b)) {
+ return null;
+ }
+
+ patch[] toreturn = null;
+ path3 firstpatch = subpath(edgecycle, bisectorindices[0], bisectorindices[1])
+ & reverse(middleguide) & cycle;
+ if (length(edgecycle) == 5) {
+ path3 secondpatch = middleguide
+ & subpath(edgecycle, bisectorindices[1], 5+bisectorindices[0]) & cycle;
+ toreturn = usetriangles ? maketriangle(secondpatch, f, grad)
+ : triangletoquads(secondpatch, f, grad, a, b);
+ if (toreturn.length == 0) return null;
+ toreturn.push(patchwithnormals(firstpatch, grad));
+ } else {
+ // now length(edgecycle) == 6
+ path3 secondpatch = middleguide
+ & subpath(edgecycle, bisectorindices[1], 6+bisectorindices[0])
+ & cycle;
+ toreturn = new patch[] {patchwithnormals(firstpatch, grad),
+ patchwithnormals(secondpatch, grad)};
+ }
+ return toreturn;
+}
+
+// Numerical gradient of a function
+typedef triple vectorfunction(triple);
+vectorfunction nGrad(real f(triple)) {
+ static real epsilon = 1e-3;
+ return new triple(triple v) {
+ return ( (f(v + epsilon*X) - f(v - epsilon*X)) / (2 epsilon),
+ (f(v + epsilon*Y) - f(v - epsilon*Y)) / (2 epsilon),
+ (f(v + epsilon*Z) - f(v - epsilon*Z)) / (2 epsilon) );
+ };
+}
+
+// A point together with a value at that location.
+struct evaluatedpoint {
+ triple pt;
+ real value;
+ void operator init(triple pt, real value) {
+ this.pt = pt;
+ this.value = value;
+ }
+}
+
+triple operator cast(evaluatedpoint p) { return p.pt; }
+
+// Compute the values of a function at every vertex of an nx by ny by nz
+// array of rectangular solids.
+evaluatedpoint[][][] make3dgrid(triple a, triple b, int nx, int ny, int nz,
+ real f(triple), bool allowzero = false)
+{
+ evaluatedpoint[][][] toreturn = new evaluatedpoint[nx+1][ny+1][nz+1];
+ for (int i = 0; i <= nx; ++i) {
+ for (int j = 0; j <= ny; ++j) {
+ for (int k = 0; k <= nz; ++k) {
+ triple pt = (interp(a.x, b.x, i/nx),
+ interp(a.y, b.y, j/ny),
+ interp(a.z, b.z, k/nz));
+ real value = f(pt);
+ if (value == 0 && !allowzero) value = 1e-5;
+ toreturn[i][j][k] = evaluatedpoint(pt, value);
+ }
+ }
+ }
+ return toreturn;
+}
+
+// The following utilities make, for instance, slice(A, i, j, k, l)
+// equivalent to what A[i:j][k:l] ought to mean for two- and three-
+// -dimensional arrays of evaluatedpoints and of positionedvectors.
+typedef evaluatedpoint T;
+T[][] slice(T[][] a, int start1, int end1, int start2, int end2) {
+ T[][] toreturn = new T[end1-start1][];
+ for (int i = start1; i < end1; ++i) {
+ toreturn[i-start1] = a[i][start2:end2];
+ }
+ return toreturn;
+}
+T[][][] slice(T[][][] a, int start1, int end1,
+ int start2, int end2,
+ int start3, int end3) {
+ T[][][] toreturn = new T[end1-start1][][];
+ for (int i = start1; i < end1; ++i) {
+ toreturn[i-start1] = slice(a[i], start2, end2, start3, end3);
+ }
+ return toreturn;
+}
+typedef positionedvector T;
+T[][] slice(T[][] a, int start1, int end1, int start2, int end2) {
+ T[][] toreturn = new T[end1-start1][];
+ for (int i = start1; i < end1; ++i) {
+ toreturn[i-start1] = a[i][start2:end2];
+ }
+ return toreturn;
+}
+T[][][] slice(T[][][] a, int start1, int end1,
+ int start2, int end2,
+ int start3, int end3) {
+ T[][][] toreturn = new T[end1-start1][][];
+ for (int i = start1; i < end1; ++i) {
+ toreturn[i-start1] = slice(a[i], start2, end2, start3, end3);
+ }
+ return toreturn;
+}
+
+// An object of class gridwithzeros stores the values of a function at each vertex
+// of a three-dimensional grid, together with zeros of the function along edges
+// of the grid and the gradient of the function at each such zero.
+struct gridwithzeros {
+ int nx, ny, nz;
+ evaluatedpoint[][][] corners;
+ positionedvector[][][] xdirzeros;
+ positionedvector[][][] ydirzeros;
+ positionedvector[][][] zdirzeros;
+ triple grad(triple);
+ real f(triple);
+ int maxdepth;
+ bool usetriangles;
+
+ // Populate the edges with zeros that have a sign change and are not already
+ // populated.
+ void fillzeros() {
+ for (int j = 0; j < ny+1; ++j) {
+ for (int k = 0; k < nz+1; ++k) {
+ real y = corners[0][j][k].pt.y;
+ real z = corners[0][j][k].pt.z;
+ real f_along_x(real t) { return f((t, y, z)); }
+ for (int i = 0; i < nx; ++i) {
+ if (xdirzeros[i][j][k] != null) continue;
+ evaluatedpoint start = corners[i][j][k];
+ evaluatedpoint end = corners[i+1][j][k];
+ if ((start.value > 0 && end.value > 0) || (start.value < 0 && end.value < 0))
+ xdirzeros[i][j][k] = null;
+ else {
+ triple root = (0,y,z);
+ root += X * findroot(f_along_x, start.pt.x, end.pt.x,
+ fa=start.value, fb=end.value);
+ triple normal = grad(root);
+ xdirzeros[i][j][k] = positionedvector(root, normal);
+ }
+ }
+ }
+ }
+
+ for (int i = 0; i < nx+1; ++i) {
+ for (int k = 0; k < nz+1; ++k) {
+ real x = corners[i][0][k].pt.x;
+ real z = corners[i][0][k].pt.z;
+ real f_along_y(real t) { return f((x, t, z)); }
+ for (int j = 0; j < ny; ++j) {
+ if (ydirzeros[i][j][k] != null) continue;
+ evaluatedpoint start = corners[i][j][k];
+ evaluatedpoint end = corners[i][j+1][k];
+ if ((start.value > 0 && end.value > 0) || (start.value < 0 && end.value < 0))
+ ydirzeros[i][j][k] = null;
+ else {
+ triple root = (x,0,z);
+ root += Y * findroot(f_along_y, start.pt.y, end.pt.y,
+ fa=start.value, fb=end.value);
+ triple normal = grad(root);
+ ydirzeros[i][j][k] = positionedvector(root, normal);
+ }
+ }
+ }
+ }
+
+ for (int i = 0; i < nx+1; ++i) {
+ for (int j = 0; j < ny+1; ++j) {
+ real x = corners[i][j][0].pt.x;
+ real y = corners[i][j][0].pt.y;
+ real f_along_z(real t) { return f((x, y, t)); }
+ for (int k = 0; k < nz; ++k) {
+ if (zdirzeros[i][j][k] != null) continue;
+ evaluatedpoint start = corners[i][j][k];
+ evaluatedpoint end = corners[i][j][k+1];
+ if ((start.value > 0 && end.value > 0) || (start.value < 0 && end.value < 0))
+ zdirzeros[i][j][k] = null;
+ else {
+ triple root = (x,y,0);
+ root += Z * findroot(f_along_z, start.pt.z, end.pt.z,
+ fa=start.value, fb=end.value);
+ triple normal = grad(root);
+ zdirzeros[i][j][k] = positionedvector(root, normal);
+ }
+ }
+ }
+ }
+ }
+
+ // Fill in the grid vertices and the zeros along edges. Each cube starts at
+ // depth one and the depth increases each time it subdivides; maxdepth is the
+ // maximum subdivision depth. When a cube at maxdepth cannot be resolved to
+ // patches, it is left empty.
+ void operator init(int nx, int ny, int nz,
+ real f(triple), triple a, triple b,
+ int maxdepth = 6, bool usetriangles) {
+ this.nx = nx;
+ this.ny = ny;
+ this.nz = nz;
+ grad = nGrad(f);
+ this.f = f;
+ this.maxdepth = maxdepth;
+ this.usetriangles = usetriangles;
+ corners = make3dgrid(a, b, nx, ny, nz, f);
+ xdirzeros = new positionedvector[nx][ny+1][nz+1];
+ ydirzeros = new positionedvector[nx+1][ny][nz+1];
+ zdirzeros = new positionedvector[nx+1][ny+1][nz];
+
+ for (int i = 0; i <= nx; ++i) {
+ for (int j = 0; j <= ny; ++j) {
+ for (int k = 0; k <= nz; ++k) {
+ if (i < nx) xdirzeros[i][j][k] = null;
+ if (j < ny) ydirzeros[i][j][k] = null;
+ if (k < nz) zdirzeros[i][j][k] = null;
+ }
+ }
+ }
+
+ fillzeros();
+ }
+
+ // Doubles nx, ny, and nz by halving the sizes of the cubes along the x, y, and z
+ // directions (resulting in 8 times as many cubes). Already existing data about
+ // function values and zeros is copied; vertices and edges with no such pre-existing
+ // data are populated.
+ //
+ // Returns true if subdivide succeeded, false if it failed (because maxdepth
+ // was exceeded).
+ bool subdivide() {
+ if (maxdepth <= 1) {
+ return false;
+ }
+ --maxdepth;
+ triple a = corners[0][0][0];
+ triple b = corners[nx][ny][nz];
+ nx *= 2;
+ ny *= 2;
+ nz *= 2;
+ evaluatedpoint[][][] oldcorners = corners;
+ corners = new evaluatedpoint[nx+1][ny+1][nz+1];
+ for (int i = 0; i <= nx; ++i) {
+ for (int j = 0; j <= ny; ++j) {
+ for (int k = 0; k <= nz; ++k) {
+ if (i % 2 == 0 && j % 2 == 0 && k % 2 == 0) {
+ corners[i][j][k] = oldcorners[quotient(i,2)][quotient(j,2)][quotient(k,2)];
+ } else {
+ triple pt = (interp(a.x, b.x, i/nx),
+ interp(a.y, b.y, j/ny),
+ interp(a.z, b.z, k/nz));
+ real value = f(pt);
+ if (value == 0) value = 1e-5;
+ corners[i][j][k] = evaluatedpoint(pt, value);
+ }
+ }
+ }
+ }
+
+ positionedvector[][][] oldxdir = xdirzeros;
+ xdirzeros = new positionedvector[nx][ny+1][nz+1];
+ for (int i = 0; i < nx; ++i) {
+ for (int j = 0; j < ny + 1; ++j) {
+ for (int k = 0; k < nz + 1; ++k) {
+ if (j % 2 != 0 || k % 2 != 0) {
+ xdirzeros[i][j][k] = null;
+ } else {
+ positionedvector zero = oldxdir[quotient(i,2)][quotient(j,2)][quotient(k,2)];
+ if (zero == null) {
+ xdirzeros[i][j][k] = null;
+ continue;
+ }
+ real x = zero.position.x;
+ if (x > interp(a.x, b.x, i/nx) && x < interp(a.x, b.x, (i+1)/nx)) {
+ xdirzeros[i][j][k] = zero;
+ } else {
+ xdirzeros[i][j][k] = null;
+ }
+ }
+ }
+ }
+ }
+
+ positionedvector[][][] oldydir = ydirzeros;
+ ydirzeros = new positionedvector[nx+1][ny][nz+1];
+ for (int i = 0; i < nx+1; ++i) {
+ for (int j = 0; j < ny; ++j) {
+ for (int k = 0; k < nz + 1; ++k) {
+ if (i % 2 != 0 || k % 2 != 0) {
+ ydirzeros[i][j][k] = null;
+ } else {
+ positionedvector zero = oldydir[quotient(i,2)][quotient(j,2)][quotient(k,2)];
+ if (zero == null) {
+ ydirzeros[i][j][k] = null;
+ continue;
+ }
+ real y = zero.position.y;
+ if (y > interp(a.y, b.y, j/ny) && y < interp(a.y, b.y, (j+1)/ny)) {
+ ydirzeros[i][j][k] = zero;
+ } else {
+ ydirzeros[i][j][k] = null;
+ }
+ }
+ }
+ }
+ }
+
+ positionedvector[][][] oldzdir = zdirzeros;
+ zdirzeros = new positionedvector[nx+1][ny+1][nz];
+ for (int i = 0; i < nx + 1; ++i) {
+ for (int j = 0; j < ny + 1; ++j) {
+ for (int k = 0; k < nz; ++k) {
+ if (i % 2 != 0 || j % 2 != 0) {
+ zdirzeros[i][j][k] = null;
+ } else {
+ positionedvector zero = oldzdir[quotient(i,2)][quotient(j,2)][quotient(k,2)];
+ if (zero == null) {
+ zdirzeros[i][j][k] = null;
+ continue;
+ }
+ real z = zero.position.z;
+ if (z > interp(a.z, b.z, k/nz) && z < interp(a.z, b.z, (k+1)/nz)) {
+ zdirzeros[i][j][k] = zero;
+ } else {
+ zdirzeros[i][j][k] = null;
+ }
+ }
+ }
+ }
+ }
+
+ fillzeros();
+ return true;
+ }
+
+ // Forward declaration of the draw method, which will be called by drawcube().
+ patch[] draw(bool[] reportactive = null);
+
+ // Construct the patches, assuming that we are working
+ // with a single cube (nx = ny = nz = 1). This method will subdivide the
+ // cube if necessary. The parameter reportactive should be an array of
+ // length 6. Setting an entry to true indicates that the surface abuts the
+ // corresponding face (according to the earlier enum), and thus that the
+ // algorithm should be sure that something is drawn in the cube sharing
+ // that face--even if all the vertices of that cube have the same sign.
+ patch[] drawcube(bool[] reportactive = null) {
+ // First, determine which edges (if any) actually have zeros on them.
+ edge[] zeroedges = new edge[0];
+ positionedvector[] zeros = new positionedvector[0];
+
+ int currentface, nextface;
+
+ void pushifnonnull(positionedvector v) {
+ if (v != null) {
+ zeroedges.push(edge(currentface, nextface));
+ zeros.push(v);
+ }
+ }
+ positionedvector findzero(int face1, int face2) {
+ edge e = edge(face1, face2);
+ for (int i = 0; i < zeroedges.length; ++i) {
+ if (zeroedges[i] == e) return zeros[i];
+ }
+ return null;
+ }
+
+ currentface = XLOW;
+ nextface = YHIGH;
+ pushifnonnull(zdirzeros[0][1][0]);
+ nextface = YLOW;
+ pushifnonnull(zdirzeros[0][0][0]);
+ nextface = ZHIGH;
+ pushifnonnull(ydirzeros[0][0][1]);
+ nextface = ZLOW;
+ pushifnonnull(ydirzeros[0][0][0]);
+
+ currentface = XHIGH;
+ nextface = YHIGH;
+ pushifnonnull(zdirzeros[1][1][0]);
+ nextface = YLOW;
+ pushifnonnull(zdirzeros[1][0][0]);
+ nextface = ZHIGH;
+ pushifnonnull(ydirzeros[1][0][1]);
+ nextface = ZLOW;
+ pushifnonnull(ydirzeros[1][0][0]);
+
+ currentface = YHIGH;
+ nextface = ZHIGH;
+ pushifnonnull(xdirzeros[0][1][1]);
+ currentface = ZHIGH;
+ nextface = YLOW;
+ pushifnonnull(xdirzeros[0][0][1]);
+ currentface = YLOW;
+ nextface = ZLOW;
+ pushifnonnull(xdirzeros[0][0][0]);
+ currentface = ZLOW;
+ nextface = YHIGH;
+ pushifnonnull(xdirzeros[0][1][0]);
+
+ //Now, string those edges together to make a circle.
+
+ patch[] subdividecube() {
+ if (!subdivide()) {
+ return new patch[0];
+ }
+ return draw(reportactive);
+ }
+ if (zeroedges.length < 3) {
+ return subdividecube();
+ }
+ int[] faceorder = makecircle(zeroedges);
+ if (alias(faceorder,null)) {
+ return subdividecube();
+ }
+ positionedvector[] patchcorners = new positionedvector[0];
+ for (int i = 0; i < faceorder.length; ++i) {
+ patchcorners.push(findzero(faceorder[i], faceorder[i+1]));
+ }
+ patchcorners.cyclic = true;
+
+ //Now, produce the cyclic path around the edges.
+ path3 edgecycle;
+ for (int i = 0; i < faceorder.length; ++i) {
+ path3 currentpath = pathinface(patchcorners[i], patchcorners[i+1],
+ faceorder[i+1], faceorder[i],
+ faceorder[i+2]);
+ triple testpoint = point(currentpath, 0.5);
+ if (!checkpt(testpoint, f, grad, corners[0][0][0], corners[1][1][1])) {
+ return subdividecube();
+ }
+
+ edgecycle = edgecycle & currentpath;
+ }
+ edgecycle = edgecycle & cycle;
+
+
+ { // Ensure the outward normals are pointing in the same direction as the gradient.
+ triple tangentin = patchcorners[0].position - precontrol(edgecycle, 0);
+ triple tangentout = postcontrol(edgecycle, 0) - patchcorners[0].position;
+ triple normal = cross(tangentin, tangentout);
+ if (dot(normal, patchcorners[0].direction) < 0) {
+ edgecycle = reverse(edgecycle);
+ patchcorners = patchcorners[-sequence(patchcorners.length)];
+ patchcorners.cyclic = true;
+ }
+ }
+
+ patch[] toreturn = quadpatches(edgecycle, patchcorners, f, grad,
+ corners[0][0][0], corners[1][1][1], usetriangles);
+ if (alias(toreturn, null)) return subdividecube();
+ return toreturn;
+ }
+
+ // Extracts the specified cube as a gridwithzeros object with
+ // nx = ny = nz = 1.
+ gridwithzeros getcube(int i, int j, int k) {
+ gridwithzeros cube = new gridwithzeros;
+ cube.grad = grad;
+ cube.f = f;
+ cube.nx = 1;
+ cube.ny = 1;
+ cube.nz = 1;
+ cube.maxdepth = maxdepth;
+ cube.usetriangles = usetriangles;
+ cube.corners = slice(corners,i,i+2,j,j+2,k,k+2);
+ cube.xdirzeros = slice(xdirzeros,i,i+1,j,j+2,k,k+2);
+ cube.ydirzeros = slice(ydirzeros,i,i+2,j,j+1,k,k+2);
+ cube.zdirzeros = slice(zdirzeros,i,i+2,j,j+2,k,k+1);
+ return cube;
+ }
+
+ // Returns an array of patches representing the surface.
+ // The parameter reportactive should be an array of
+ // length 6. Setting an entry to true indicates that the surface abuts the
+ // corresponding face of the cube that bounds the entire grid.
+ //
+ // If reportactive == null, it is assumed that this is a top-level call;
+ // a dot is printed to stdout for each cube drawn as a very rough
+ // progress indicator.
+ //
+ // If reportactive != null, then it is assumed that the caller had a strong
+ // reason to believe that this grid contains a part of the surface; the
+ // grid will subdivide all the way to maxdepth if necessary to find points
+ // on the surface.
+ draw = new patch[](bool[] reportactive = null) {
+ if (alias(reportactive, null)) progress(true);
+ // A list of all the patches not already drawn but known
+ // to contain part of the surface. This "queue" is
+ // actually implemented as stack for simplicity, since
+ // it does not make any difference. In a multi-threaded
+ // version of the algorithm, a queue (shared across all threads)
+ // would make more sense than a stack.
+ triple[] queue = new triple[0];
+ bool[][][] enqueued = new bool[nx][ny][nz];
+ for (int i = 0; i < enqueued.length; ++i) {
+ for (int j = 0; j < enqueued[i].length; ++j) {
+ for (int k = 0; k < enqueued[i][j].length; ++k) {
+ enqueued[i][j][k] = false;
+ }
+ }
+ }
+
+ void enqueue(int i, int j, int k) {
+ if (i >= 0 && i < nx
+ && j >= 0 && j < ny
+ && k >= 0 && k < nz
+ && !enqueued[i][j][k]) {
+ queue.push((i,j,k));
+ enqueued[i][j][k] = true;
+ }
+ if (!alias(reportactive, null)) {
+ if (i < 0) reportactive[XLOW] = true;
+ if (i >= nx) reportactive[XHIGH] = true;
+ if (j < 0) reportactive[YLOW] = true;
+ if (j >= ny) reportactive[YHIGH] = true;
+ if (k < 0) reportactive[ZLOW] = true;
+ if (k >= nz) reportactive[ZHIGH] = true;
+ }
+ }
+
+ for (int i = 0; i < nx+1; ++i) {
+ for (int j = 0; j < ny+1; ++j) {
+ for (int k = 0; k < nz+1; ++k) {
+ if (i < nx && xdirzeros[i][j][k] != null) {
+ for (int jj = j-1; jj <= j; ++jj)
+ for (int kk = k-1; kk <= k; ++kk)
+ enqueue(i, jj, kk);
+ }
+ if (j < ny && ydirzeros[i][j][k] != null) {
+ for (int ii = i-1; ii <= i; ++ii)
+ for (int kk = k-1; kk <= k; ++kk)
+ enqueue(ii, j, kk);
+ }
+ if (k < nz && zdirzeros[i][j][k] != null) {
+ for (int ii = i-1; ii <= i; ++ii)
+ for (int jj = j-1; jj <= j; ++jj)
+ enqueue(ii, jj, k);
+ }
+ }
+ }
+ }
+
+ if (!alias(reportactive, null) && queue.length == 0) {
+ if (subdivide()) return draw(reportactive);
+ }
+
+ patch[] surface = new patch[0];
+
+ while (queue.length > 0) {
+ triple coord = queue.pop();
+ int i = floor(coord.x);
+ int j = floor(coord.y);
+ int k = floor(coord.z);
+ bool[] reportface = array(6, false);
+ patch[] toappend = getcube(i,j,k).drawcube(reportface);
+ if (reportface[XLOW]) enqueue(i-1,j,k);
+ if (reportface[XHIGH]) enqueue(i+1,j,k);
+ if (reportface[YLOW]) enqueue(i,j-1,k);
+ if (reportface[YHIGH]) enqueue(i,j+1,k);
+ if (reportface[ZLOW]) enqueue(i,j,k-1);
+ if (reportface[ZHIGH]) enqueue(i,j,k+1);
+ surface.append(toappend);
+ if (alias(reportactive, null)) progress();
+ }
+ if (alias(reportactive, null)) progress(false);
+ return surface;
+ };
+}
+
+// The external interface of this whole module. Accepts exactly one
+// function (throws an error if two or zero functions are specified).
+// The function should be differentiable. (Whatever you do, do not
+// pass in an indicator function!) Ideally, the zero locus of the
+// function should be smooth; singularities will significantly slow
+// down the algorithm and potentially give bad results.
+//
+// Returns a plot of the zero locus of the function within the
+// rectangular solid with opposite corners at a and b.
+//
+// Additional parameters:
+// n - the number of initial segments in each of the x, y, z directions.
+// overlapedges - if true, the patches of the surface are slightly enlarged
+// to compensate for an artifact in which the viewer can see through the
+// boundary between patches. (Some of this may actually be a result of
+// edges not lining up perfectly, but I'm fairly sure a lot of it arises
+// purely as a rendering artifact.)
+// nx - override n in the x direction
+// ny - override n in the y direction
+// nz - override n in the z direction
+// maxdepth - the maximum depth to which the algorithm will subdivide in
+// an effort to find patches that closely approximate the true surface.
+surface implicitsurface(real f(triple) = null, real ff(real,real,real) = null,
+ triple a, triple b,
+ int n = nmesh,
+ bool keyword overlapedges = false,
+ int keyword nx=n, int keyword ny=n,
+ int keyword nz=n,
+ int keyword maxdepth = 8,
+ bool keyword usetriangles=true) {
+ if (f == null && ff == null)
+ abort("implicitsurface called without specifying a function.");
+ if (f != null && ff != null)
+ abort("Only specify one function when calling implicitsurface.");
+ if (f == null) f = new real(triple w) { return ff(w.x, w.y, w.z); };
+ gridwithzeros grid = gridwithzeros(nx, ny, nz, f, a, b, maxdepth=maxdepth,
+ usetriangles=usetriangles);
+ patch[] patches = grid.draw();
+ if (overlapedges) {
+ for (int i = 0; i < patches.length; ++i) {
+ triple center = (patches[i].triangular ?
+ patches[i].point(1/3, 1/3) : patches[i].point(1/2,1/2));
+ transform3 T=shift(center) * scale3(1.03) * shift(-center);
+ patches[i] = T * patches[i];
+ }
+ }
+ return surface(...patches);
+}