diff options
Diffstat (limited to 'Build/source/utils/asymptote/base/smoothcontour3.asy')
-rw-r--r-- | Build/source/utils/asymptote/base/smoothcontour3.asy | 1582 |
1 files changed, 1582 insertions, 0 deletions
diff --git a/Build/source/utils/asymptote/base/smoothcontour3.asy b/Build/source/utils/asymptote/base/smoothcontour3.asy new file mode 100644 index 00000000000..be6f900a4d1 --- /dev/null +++ b/Build/source/utils/asymptote/base/smoothcontour3.asy @@ -0,0 +1,1582 @@ +// Copyright 2015 Charles Staats III +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +// smoothcontour3 +// An Asymptote module for drawing smooth implicitly defined surfaces +// author: Charles Staats III +// charles dot staats dot iii at gmail dot com + +import graph_settings; // for nmesh +import three; +import math; + +/***********************************************/ +/******** CREATING BEZIER PATCHES **************/ +/******** WITH SPECIFIED NORMALS **************/ +/***********************************************/ + +// The weight given to minimizing the sum of squares of +// the mixed partials at the corners of the bezier patch. +// If this weight is zero, the result is undefined in +// places and can be rather wild even where it is +// defined. +// The struct is used to as a namespace. +struct pathwithnormals_settings { + static real wildnessweight = 1e-3; +} +private from pathwithnormals_settings unravel wildnessweight; + +// The Bernstein basis polynomials of degree 3: +real B03(real t) { return (1-t)^3; } +real B13(real t) { return 3*t*(1-t)^2; } +real B23(real t) { return 3*t^2*(1-t); } +real B33(real t) { return t^3; } + +private typedef real function(real); +function[] bernstein = new function[] {B03, B13, B23, B33}; + +// This function attempts to produce a Bezier patch +// with the specified boundary path and normal directions. +// For instance, the patch should be normal to +// u0normals[0] at (0, 0.25), +// normal to u0normals[1] at (0, 0.5), and +// normal to u0normals[2] at (0, 0.75). +// The actual normal (as computed by the patch.normal() function) +// may be parallel to the specified normal, antiparallel, or +// even zero. +// +// A small amount of deviation is allowed in order to stabilize +// the algorithm (by keeping the mixed partials at the corners from +// growing too large). +// +// Note that the specified normals are projected to be orthogonal to +// the specified boundary path. However, the entries in the array +// remain intact. +patch patchwithnormals(path3 external, triple[] u0normals, triple[] u1normals, + triple[] v0normals, triple[] v1normals) +{ + assert(cyclic(external)); + assert(length(external) == 4); + assert(u0normals.length == 3); + assert(u1normals.length == 3); + assert(v0normals.length == 3); + assert(v1normals.length == 3); + + triple[][] controlpoints = new triple[4][4]; + controlpoints[0][0] = point(external,0); + controlpoints[1][0] = postcontrol(external,0); + controlpoints[2][0] = precontrol(external,1); + controlpoints[3][0] = point(external,1); + controlpoints[3][1] = postcontrol(external,1); + controlpoints[3][2] = precontrol(external,2); + controlpoints[3][3] = point(external,2); + controlpoints[2][3] = postcontrol(external,2); + controlpoints[1][3] = precontrol(external,3); + controlpoints[0][3] = point(external,3); + controlpoints[0][2] = postcontrol(external,3); + controlpoints[0][1] = precontrol(external, 4); + + real[][] matrix = new real[24][12]; + for (int i = 0; i < matrix.length; ++i) + for (int j = 0; j < matrix[i].length; ++j) + matrix[i][j] = 0; + real[] rightvector = new real[24]; + for (int i = 0; i < rightvector.length; ++i) + rightvector[i] = 0; + + void addtocoeff(int i, int j, int count, triple coeffs) { + if (1 <= i && i <= 2 && 1 <= j && j <= 2) { + int position = 3 * (2 * (i-1) + (j-1)); + matrix[count][position] += coeffs.x; + matrix[count][position+1] += coeffs.y; + matrix[count][position+2] += coeffs.z; + } else { + rightvector[count] -= dot(controlpoints[i][j], coeffs); + } + } + + void addtocoeff(int i, int j, int count, real coeff) { + if (1 <= i && i <= 2 && 1 <= j && j <= 2) { + int position = 3 * (2 * (i-1) + (j-1)); + matrix[count][position] += coeff; + matrix[count+1][position+1] += coeff; + matrix[count+2][position+2] += coeff; + } else { + rightvector[count] -= controlpoints[i][j].x * coeff; + rightvector[count+1] -= controlpoints[i][j].y * coeff; + rightvector[count+2] -= controlpoints[i][j].z * coeff; + } + } + + int count = 0; + + void apply_u0(int j, real a, triple n) { + real factor = 3 * bernstein[j](a); + addtocoeff(0,j,count,-factor*n); + addtocoeff(1,j,count,factor*n); + } + void apply_u0(real a, triple n) { + triple tangent = dir(external, 4-a); + n -= dot(n,tangent)*tangent; + n = unit(n); + for (int j = 0; j < 4; ++j) { + apply_u0(j,a,n); + } + ++count; + } + apply_u0(0.25, u0normals[0]); + apply_u0(0.5, u0normals[1]); + apply_u0(0.75, u0normals[2]); + + void apply_u1(int j, real a, triple n) { + real factor = 3 * bernstein[j](a); + addtocoeff(3,j,count,factor*n); + addtocoeff(2,j,count,-factor*n); + } + void apply_u1(real a, triple n) { + triple tangent = dir(external, 1+a); + n -= dot(n,tangent)*tangent; + n = unit(n); + for (int j = 0; j < 4; ++j) + apply_u1(j,a,n); + ++count; + } + apply_u1(0.25, u1normals[0]); + apply_u1(0.5, u1normals[1]); + apply_u1(0.75, u1normals[2]); + + void apply_v0(int i, real a, triple n) { + real factor = 3 * bernstein[i](a); + addtocoeff(i,0,count,-factor*n); + addtocoeff(i,1,count,factor*n); + } + void apply_v0(real a, triple n) { + triple tangent = dir(external, a); + n -= dot(n,tangent) * tangent; + n = unit(n); + for (int i = 0; i < 4; ++i) + apply_v0(i,a,n); + ++count; + } + apply_v0(0.25, v0normals[0]); + apply_v0(0.5, v0normals[1]); + apply_v0(0.75, v0normals[2]); + + void apply_v1(int i, real a, triple n) { + real factor = 3 * bernstein[i](a); + addtocoeff(i,3,count,factor*n); + addtocoeff(i,2,count,-factor*n); + } + void apply_v1(real a, triple n) { + triple tangent = dir(external, 3-a); + n -= dot(n,tangent)*tangent; + n = unit(n); + for (int i = 0; i < 4; ++i) + apply_v1(i,a,n); + ++count; + } + apply_v1(0.25, v1normals[0]); + apply_v1(0.5, v1normals[1]); + apply_v1(0.75, v1normals[2]); + + addtocoeff(0,0,count,9*wildnessweight); + addtocoeff(1,1,count,9*wildnessweight); + addtocoeff(0,1,count,-9*wildnessweight); + addtocoeff(1,0,count,-9*wildnessweight); + count+=3; + addtocoeff(3,3,count,9*wildnessweight); + addtocoeff(2,2,count,9*wildnessweight); + addtocoeff(3,2,count,-9*wildnessweight); + addtocoeff(2,3,count,-9*wildnessweight); + count+=3; + addtocoeff(0,3,count,9*wildnessweight); + addtocoeff(1,2,count,9*wildnessweight); + addtocoeff(1,3,count,-9*wildnessweight); + addtocoeff(0,2,count,-9*wildnessweight); + count += 3; + addtocoeff(3,0,count,9*wildnessweight); + addtocoeff(2,1,count,9*wildnessweight); + addtocoeff(3,1,count,-9*wildnessweight); + addtocoeff(2,0,count,-9*wildnessweight); + count += 3; + + real[] solution = leastsquares(matrix, rightvector, warn=false); + if (solution.length == 0) { // if the matrix was singular + write("Warning: unable to solve matrix for specifying edge normals " + + "on bezier patch. Using coons patch."); + return patch(external); + } + + for (int i = 1; i <= 2; ++i) { + for (int j = 1; j <= 2; ++j) { + int position = 3 * (2 * (i-1) + (j-1)); + controlpoints[i][j] = (solution[position], + solution[position+1], + solution[position+2]); + } + } + + return patch(controlpoints); +} + +// This function attempts to produce a Bezier triangle +// with the specified boundary path and normal directions at the +// edge midpoints. The bezier triangle should be normal to +// n1 at point(external, 0.5), +// normal to n2 at point(external, 1.5), and +// normal to n3 at point(external, 2.5). +// The actual normal (as computed by the patch.normal() function) +// may be parallel to the specified normal, antiparallel, or +// even zero. +// +// A small amount of deviation is allowed in order to stabilize +// the algorithm (by keeping the mixed partials at the corners from +// growing too large). +patch trianglewithnormals(path3 external, triple n1, + triple n2, triple n3) { + assert(cyclic(external)); + assert(length(external) == 3); + // Use the formal symbols a3, a2b, abc, etc. to denote the control points, + // following the Wikipedia article on Bezier triangles. + triple a3 = point(external, 0), a2b = postcontrol(external, 0), + ab2 = precontrol(external, 1), b3 = point(external, 1), + b2c = postcontrol(external, 1), bc2 = precontrol(external, 2), + c3 = point(external, 2), ac2 = postcontrol(external, 2), + a2c = precontrol(external, 0); + + // Use orthogonal projection to ensure that the normal vectors are + // actually normal to the boundary path. + triple tangent = dir(external, 0.5); + n1 -= dot(n1,tangent)*tangent; + n1 = unit(n1); + + tangent = dir(external, 1.5); + n2 -= dot(n2,tangent)*tangent; + n2 = unit(n2); + + tangent = dir(external, 2.5); + n3 -= dot(n3,tangent)*tangent; + n3 = unit(n3); + + real wild = 2 * wildnessweight; + real[][] matrix = { {n1.x, n1.y, n1.z}, + {n2.x, n2.y, n2.z}, + {n3.x, n3.y, n3.z}, + { wild, 0, 0}, + { 0, wild, 0}, + { 0, 0, wild} }; + real[] rightvector = + { dot(n1, (a3 + 3a2b + 3ab2 + b3 - 2a2c - 2b2c)) / 4, + dot(n2, (b3 + 3b2c + 3bc2 + c3 - 2ab2 - 2ac2)) / 4, + dot(n3, (c3 + 3ac2 + 3a2c + a3 - 2bc2 - 2a2b)) / 4 }; + + // The inner control point that minimizes the sum of squares of + // the mixed partials on the corners. + triple tameinnercontrol = + ((a2b + a2c - a3) + (ab2 + b2c - b3) + (ac2 + bc2 - c3)) / 3; + rightvector.append(wild * new real[] + {tameinnercontrol.x, tameinnercontrol.y, tameinnercontrol.z}); + real[] solution = leastsquares(matrix, rightvector, warn=false); + if (solution.length == 0) { // if the matrix was singular + write("Warning: unable to solve matrix for specifying edge normals " + + "on bezier triangle. Using coons triangle."); + return patch(external); + } + triple innercontrol = (solution[0], solution[1], solution[2]); + return patch(external, innercontrol); +} + +// A wrapper for the previous functions when the normal direction +// is given as a function of direction. The wrapper can also +// accommodate cyclic boundary paths of between one and four +// segments, although the results are best by far when there +// are three or four segments. +patch patchwithnormals(path3 external, triple normalat(triple)) { + assert(cyclic(external)); + assert(1 <= length(external) && length(external) <= 4); + if (length(external) == 3) { + triple n1 = normalat(point(external, 0.5)); + triple n2 = normalat(point(external, 1.5)); + triple n3 = normalat(point(external, 2.5)); + return trianglewithnormals(external, n1, n2, n3); + } + while (length(external) < 4) external = external -- cycle; + triple[] u0normals = new triple[3]; + triple[] u1normals = new triple[3]; + triple[] v0normals = new triple[3]; + triple[] v1normals = new triple[3]; + for (int i = 1; i <= 3; ++i) { + v0normals[i-1] = unit(normalat(point(external, i/4))); + u1normals[i-1] = unit(normalat(point(external, 1 + i/4))); + v1normals[i-1] = unit(normalat(point(external, 3 - i/4))); + u0normals[i-1] = unit(normalat(point(external, 4 - i/4))); + } + return patchwithnormals(external, u0normals, u1normals, v0normals, v1normals); +} + +/***********************************************/ +/********* DUAL CUBE GRAPH UTILITY *************/ +/***********************************************/ + +// Suppose a plane intersects a (hollow) cube, and +// does not intersect any vertices. Then its intersection +// with cube forms a cycle. The goal of the code below +// is to reconstruct the order of the cycle +// given only an unordered list of which edges the plane +// intersects. +// +// Basically, the question is this: If we know the points +// in which a more-or-less planar surface intersects the +// edges of cube, how do we connect those points? +// +// When I wrote the code, I was thinking in terms of the +// dual graph of a cube, in which "vertices" are really +// faces of the cube and "edges" connect those "vertices." + +// An enum for the different "vertices" (i.e. faces) +// available. NULL_VERTEX is primarily intended as a +// return value to indicate the absence of a desired +// vertex. +private int NULL_VERTEX = -1; +private int XHIGH = 0; +private int XLOW = 1; +private int YHIGH = 2; +private int YLOW = 3; +private int ZHIGH = 4; +private int ZLOW = 5; + +// An unordered set of nonnegative integers. +// Since the intent is to use +// only the six values from the enum above, no effort +// was made to use scalable algorithms. +struct intset { + private bool[] ints = new bool[0]; + private int size = 0; + + bool contains(int item) { + assert(item >= 0); + if (item >= ints.length) return false; + return ints[item]; + } + + // Returns true if the item was added (i.e., was + // not already present). + bool add(int item) { + assert(item >= 0); + while (item >= ints.length) ints.push(false); + if (ints[item]) return false; + ints[item] = true; + ++size; + return true; + } + + int[] elements() { + int[] toreturn; + for (int i = 0; i < ints.length; ++i) { + if (ints[i]) toreturn.push(i); + } + return toreturn; + } + + int size() { return size; } +} + +// A map from integers to sets of integers. Again, no +// attempt is made to use scalable data structures. +struct int_to_intset { + int[] keys = new int[0]; + intset[] values = new intset[0]; + + void add(int key, int value) { + for (int i = 0; i < keys.length; ++i) { + if (keys[i] == key) { + values[i].add(value); + return; + } + } + keys.push(key); + intset newset; + values.push(newset); + newset.add(value); + } + + private int indexOf(int key) { + for (int i = 0; i < keys.length; ++i) { + if (keys[i] == key) return i; + } + return -1; + } + + int[] get(int key) { + int i = indexOf(key); + if (i < 0) return new int[0]; + else return values[i].elements(); + } + + int numvalues(int key) { + int i = indexOf(key); + if (i < 0) return 0; + else return values[i].size(); + } + + int numkeys() { + return keys.length; + } +} + +// A struct intended to represent an undirected edge between +// two "vertices." +struct edge { + int start; + int end; + void operator init(int a, int b) { + start = a; + end = b; + } + bool bordersvertex(int v) { return start == v || end == v; } +} + +string operator cast(edge e) { + int a, b; + if (e.start <= e.end) {a = e.start; b = e.end;} + else {a = e.end; b = e.start; } + return (string)a + " <-> " + (string)b; +} + +bool operator == (edge a, edge b) { + if (a.start == b.start && a.end == b.end) return true; + if (a.start == b.end && a.end == b.start) return true; + return false; +} + +string operator cast(edge[] edges) { + string toreturn = "{ "; + for (int i = 0; i < edges.length; ++i) { + toreturn += edges[i]; + if (i < edges.length-1) toreturn += ", "; + } + return toreturn + " }"; +} + +// Finally, the function that strings together a list of edges +// into a cycle. It makes assumptions that hold true if the +// list of edges did in fact come from a plane intersection +// containing no vertices of the cube. For instance, such a +// plane can contain at most two noncollinear points of any +// one face; consequently, no face can border more than two of +// the selected edges. +// +// If the underlying assumptions prove to be false, the function +// returns null. +int[] makecircle(edge[] edges) { + if (edges.length == 0) return new int[0]; + int_to_intset graph; + for (edge e : edges) { + graph.add(e.start, e.end); + graph.add(e.end, e.start); + } + int currentvertex = edges[0].start; + int startvertex = currentvertex; + int lastvertex = NULL_VERTEX; + int[] toreturn = new int[0]; + do { + toreturn.push(currentvertex); + int[] adjacentvertices = graph.get(currentvertex); + if (adjacentvertices.length != 2) return null; + for (int v : adjacentvertices) { + if (v != lastvertex) { + lastvertex = currentvertex; + currentvertex = v; + break; + } + } + } while (currentvertex != startvertex); + if (toreturn.length != graph.numkeys()) return null; + toreturn.cyclic = true; + return toreturn; +} + +/***********************************************/ +/********** PATHS BETWEEN POINTS ***************/ +/***********************************************/ +// Construct paths between two points with additional +// constraints; for instance, the path must be orthogonal +// to a certain vector at each of the endpoints, must +// lie within a specified plane or a specified face +// of a rectangular solid,.... + +// A vector (typically a normal vector) at a specified position. +struct positionedvector { + triple position; + triple direction; + void operator init(triple position, triple direction) { + this.position = position; + this.direction = direction; + } +} + +string operator cast(positionedvector vv) { + return "position: " + (string)(vv.position) + " vector: " + (string)vv.direction; +} + +// The angle, in degrees, between two vectors. +real angledegrees(triple a, triple b) { + real dotprod = dot(a,b); + real lengthprod = max(abs(a) * abs(b), abs(dotprod)); + if (lengthprod == 0) return 0; + return aCos(dotprod / lengthprod); +} + +// A path (single curved segment) between two points. At each point +// is specified a vector orthogonal to the path. +path3 pathbetween(positionedvector v1, positionedvector v2) { + triple n1 = unit(v1.direction); + triple n2 = unit(v2.direction); + + triple p1 = v1.position; + triple p2 = v2.position; + triple delta = p2-p1; + + triple dir1 = delta - dot(delta, n1)*n1; + triple dir2 = delta - dot(delta, n2)*n2; + return p1 {dir1} .. {dir2} p2; +} + +// Assuming v1 and v2 are linearly independent, returns an array {a, b} +// such that a v1 + b v2 is the orthogonal projection of toproject onto +// the span of v1 and v2. If v1 and v2 are dependent, returns an empty array +// (if warn==false) or throws an error (if warn==true). +real[] projecttospan_findcoeffs(triple toproject, triple v1, triple v2, + bool warn=false) { + real[][] matrix = {{v1.x, v2.x}, + {v1.y, v2.y}, + {v1.z, v2.z}}; + real[] desiredanswer = {toproject.x, toproject.y, toproject.z}; + return leastsquares(matrix, desiredanswer, warn=warn); +} + +// Project the triple toproject into the span of a and b, but restrict +// to the quarter-plane of linear combinations a v1 + b v2 such that +// a >= mincoeff and b >= mincoeff. If v1 and v2 are linearly dependent, +// return a random (positive) linear combination. +triple projecttospan(triple toproject, triple v1, triple v2, + real mincoeff = 0.05) { + real[] coeffs = projecttospan_findcoeffs(toproject, v1, v2, warn=false); + real a, b; + if (coeffs.length == 0) { + a = mincoeff + unitrand(); + b = mincoeff + unitrand(); + } else { + a = max(coeffs[0], mincoeff); + b = max(coeffs[1], mincoeff); + } + return a*v1 + b*v2; +} + +// A path between two specified vertices of a cyclic path. The +// path tangent at each endpoint is guaranteed to lie within the +// quarter-plane spanned by positive linear combinations of the +// tangents of the two outgoing paths at that endpoint. +path3 pathbetween(path3 edgecycle, int vertex1, int vertex2) { + triple point1 = point(edgecycle, vertex1); + triple point2 = point(edgecycle, vertex2); + + triple v1 = -dir(edgecycle, vertex1, sign=-1); + triple v2 = dir(edgecycle, vertex1, sign= 1); + triple direction1 = projecttospan(unit(point2-point1), v1, v2); + + v1 = -dir(edgecycle, vertex2, sign=-1); + v2 = dir(edgecycle, vertex2, sign= 1); + triple direction2 = projecttospan(unit(point1-point2), v1, v2); + + return point1 {direction1} .. {-direction2} point2; +} + +// This function applies a heuristic to choose two "opposite" +// vertices (separated by three segments) of edgecycle, which +// is required to be a cyclic path consisting of 5 or 6 segments. +// The two chosen vertices are pushed to savevertices. +// +// The function returns a path between the two chosen vertices. The +// path tangent at each endpoint is guaranteed to lie within the +// quarter-plane spanned by positive linear combinations of the +// tangents of the two outgoing paths at that endpoint. +path3 bisector(path3 edgecycle, int[] savevertices) { + real mincoeff = 0.05; + assert(cyclic(edgecycle)); + int n = length(edgecycle); + assert(n >= 5 && n <= 6); + triple[] forwarddirections = sequence(new triple(int i) { + return dir(edgecycle, i, sign=1); + }, n); + forwarddirections.cyclic = true; + triple[] backwarddirections = sequence(new triple(int i) { + return -dir(edgecycle, i, sign=-1); + }, n); + backwarddirections.cyclic = true; + real[] angles = sequence(new real(int i) { + return angledegrees(forwarddirections[i], backwarddirections[i]); + }, n); + angles.cyclic = true; + int lastindex = (n == 5 ? 4 : 2); + real maxgoodness = 0; + int chosenindex = -1; + triple directionout, directionin; + for (int i = 0; i <= lastindex; ++i) { + int opposite = i + 3; + triple vec = unit(point(edgecycle, opposite) - point(edgecycle, i)); + real[] coeffsbegin = projecttospan_findcoeffs(vec, forwarddirections[i], + backwarddirections[i]); + if (coeffsbegin.length == 0) continue; + coeffsbegin[0] = max(coeffsbegin[0], mincoeff); + coeffsbegin[1] = max(coeffsbegin[1], mincoeff); + + real[] coeffsend = projecttospan_findcoeffs(-vec, forwarddirections[opposite], + backwarddirections[opposite]); + if (coeffsend.length == 0) continue; + coeffsend[0] = max(coeffsend[0], mincoeff); + coeffsend[1] = max(coeffsend[1], mincoeff); + + real goodness = angles[i] * angles[opposite] * coeffsbegin[0] * coeffsend[0] + * coeffsbegin[1] * coeffsend[1]; + if (goodness > maxgoodness) { + maxgoodness = goodness; + directionout = coeffsbegin[0] * forwarddirections[i] + + coeffsbegin[1] * backwarddirections[i]; + directionin = -(coeffsend[0] * forwarddirections[opposite] + + coeffsend[1] * backwarddirections[opposite]); + chosenindex = i; + } + } + if (chosenindex == -1) { + savevertices.push(0); + savevertices.push(3); + return pathbetween(edgecycle, 0, 3); + } else { + savevertices.push(chosenindex); + savevertices.push(chosenindex+3); + return point(edgecycle, chosenindex) {directionout} .. + {directionin} point(edgecycle, chosenindex + 3); + } +} + +// A path between two specified points (with specified normals) that lies +// within a specified face of a rectangular solid. +path3 pathinface(positionedvector v1, positionedvector v2, + triple facenorm, triple edge1normout, triple edge2normout) +{ + triple dir1 = cross(v1.direction, facenorm); + real dotprod = dot(dir1, edge1normout); + if (dotprod > 0) dir1 = -dir1; + // Believe it or not, this "tiebreaker" is actually relevant at times, + // for instance, when graphing the cone x^2 + y^2 = z^2 over the region + // -1 <= x,y,z <= 1. + else if (dotprod == 0 && dot(dir1, v2.position - v1.position) < 0) dir1 = -dir1; + + triple dir2 = cross(v2.direction, facenorm); + dotprod = dot(dir2, edge2normout); + if (dotprod < 0) dir2 = -dir2; + else if (dotprod == 0 && dot(dir2, v2.position - v1.position) < 0) dir2 = -dir2; + + return v1.position {dir1} .. {dir2} v2.position; +} + +triple normalout(int face) { + if (face == XHIGH) return X; + else if (face == YHIGH) return Y; + else if (face == ZHIGH) return Z; + else if (face == XLOW) return -X; + else if (face == YLOW) return -Y; + else if (face == ZLOW) return -Z; + else return O; +} + +// A path between two specified points (with specified normals) that lies +// within a specified face of a rectangular solid. +path3 pathinface(positionedvector v1, positionedvector v2, + int face, int edge1face, int edge2face) { + return pathinface(v1, v2, normalout(face), normalout(edge1face), + normalout(edge2face)); +} + +/***********************************************/ +/******** DRAWING IMPLICIT SURFACES ************/ +/***********************************************/ + +// DEPRECATED +// Quadrilateralization: +// Produce a surface (array of *nondegenerate* Bezier patches) with a +// specified three-segment boundary. The surface should approximate the +// zero locus of the specified f with its specified gradient. +// +// If it is not possible to produce the desired result without leaving the +// specified rectangular region, returns a length-zero array. +// +// Dividing a triangle into smaller quadrilaterals this way is opposite +// the usual trend in mathematics. However, *before the introduction of bezier +// triangles,* the pathwithnormals algorithm +// did a poor job of choosing a good surface when the boundary path did +// not consist of four positive-length segments. +patch[] triangletoquads(path3 external, real f(triple), triple grad(triple), + triple a, triple b) { + static real epsilon = 1e-3; + assert(length(external) == 3); + assert(cyclic(external)); + + triple c0 = point(external, 0); + triple c1 = point(external, 1); + triple c2 = point(external, 2); + + triple center = (c0 + c1 + c2) / 3; + triple n = unit(cross(c1-c0, c2-c0)); + + real g(real t) { return f(center + t*n); } + + real tmin = -realMax, tmax = realMax; + void absorb(real t) { + if (t < 0) tmin = max(t,tmin); + else tmax = min(t,tmax); + } + if (n.x != 0) { + absorb((a.x - center.x) / n.x); + absorb((b.x - center.x) / n.x); + } + if (n.y != 0) { + absorb((a.y - center.y) / n.y); + absorb((b.y - center.y) / n.y); + } + if (n.z != 0) { + absorb((a.z - center.z) / n.z); + absorb((b.z - center.z) / n.z); + } + + real fa = g(tmin); + real fb = g(tmax); + if ((fa > 0 && fb > 0) || (fa < 0 && fb < 0)) { + return new patch[0]; + } else { + real t = findroot(g, tmin, tmax, fa=fa, fb=fb); + center += t * n; + } + + n = unit(grad(center)); + + triple m0 = point(external, 0.5); + positionedvector m0 = positionedvector(m0, unit(grad(m0))); + triple m1 = point(external, 1.5); + positionedvector m1 = positionedvector(m1, unit(grad(m1))); + triple m2 = point(external, 2.5); + positionedvector m2 = positionedvector(m2, unit(grad(m2))); + positionedvector c = positionedvector(center, unit(grad(center))); + + path3 pathto_m0 = pathbetween(c, m0); + path3 pathto_m1 = pathbetween(c, m1); + path3 pathto_m2 = pathbetween(c, m2); + + path3 quad0 = subpath(external, 0, 0.5) + & reverse(pathto_m0) + & pathto_m2 + & subpath(external, -0.5, 0) + & cycle; + path3 quad1 = subpath(external, 1, 1.5) + & reverse(pathto_m1) + & pathto_m0 + & subpath(external, 0.5, 1) + & cycle; + path3 quad2 = subpath(external, 2, 2.5) + & reverse(pathto_m2) + & pathto_m1 + & subpath(external, 1.5, 2) + & cycle; + + return new patch[] {patchwithnormals(quad0, grad), + patchwithnormals(quad1, grad), + patchwithnormals(quad2, grad)}; +} + +// Attempts to fill the path external (which should by a cyclic path consisting of +// three segments) with bezier triangle(s). Returns an empty array if it fails. +// +// In more detail: A single bezier triangle is computed using trianglewithnormals. The normals of +// the resulting triangle at the midpoint of each edge are computed. If any of these normals +// is in the negative f direction, the external triangle is subdivided into four external triangles +// and the same procedure is applied to each. If one or more of them has an incorrectly oriented +// edge normal, the function gives up and returns an empty array. +// +// Thus, the returned array consists of 0, 1, or 4 bezier triangles; no other array lengths +// are possible. +// +// This function assumes that the path orientation is consistent with f (and its gradient) +// -- i.e., that +// at a corner, (tangent in) x (tangent out) is in the positive f direction. +patch[] maketriangle(path3 external, real f(triple), + triple grad(triple), bool allowsubdivide = true) { + assert(cyclic(external)); + assert(length(external) == 3); + triple m1 = point(external, 0.5); + triple n1 = unit(grad(m1)); + triple m2 = point(external, 1.5); + triple n2 = unit(grad(m2)); + triple m3 = point(external, 2.5); + triple n3 = unit(grad(m3)); + patch beziertriangle = trianglewithnormals(external, n1, n2, n3); + if (dot(n1, beziertriangle.normal(0.5, 0)) >= 0 && + dot(n2, beziertriangle.normal(0.5, 0.5)) >= 0 && + dot(n3, beziertriangle.normal(0, 0.5)) >= 0) + return new patch[] {beziertriangle}; + + if (!allowsubdivide) return new patch[0]; + + positionedvector m1 = positionedvector(m1, n1); + positionedvector m2 = positionedvector(m2, n2); + positionedvector m3 = positionedvector(m3, n3); + path3 p12 = pathbetween(m1, m2); + path3 p23 = pathbetween(m2, m3); + path3 p31 = pathbetween(m3, m1); + patch[] triangles = maketriangle(p12 & p23 & p31 & cycle, f, grad=grad, + allowsubdivide=false); + if (triangles.length < 1) return new patch[0]; + + triangles.append(maketriangle(subpath(external, -0.5, 0.5) & reverse(p31) & cycle, + f, grad=grad, allowsubdivide=false)); + if (triangles.length < 2) return new patch[0]; + + triangles.append(maketriangle(subpath(external, 0.5, 1.5) & reverse(p12) & cycle, + f, grad=grad, allowsubdivide=false)); + if (triangles.length < 3) return new patch[0]; + + triangles.append(maketriangle(subpath(external, 1.5, 2.5) & reverse(p23) & cycle, + f, grad=grad, allowsubdivide=false)); + if (triangles.length < 4) return new patch[0]; + + return triangles; +} + + +// Returns true if the point is "nonsingular" (in the sense that the magnitude +// of the gradient is not too small) AND very close to the zero locus of f +// (assuming f is locally linear). +bool check_fpt_zero(triple testpoint, real f(triple), triple grad(triple)) { + real testval = f(testpoint); + real slope = abs(grad(testpoint)); + static real tolerance = 2*rootfinder_settings.roottolerance; + return !(slope > tolerance && abs(testval) / slope > tolerance); +} + +// Returns true if pt lies within the rectangular solid with +// opposite corners at a and b. +bool checkptincube(triple pt, triple a, triple b) { + real xmin = a.x; + real xmax = b.x; + real ymin = a.y; + real ymax = b.y; + real zmin = a.z; + real zmax = b.z; + if (xmin > xmax) { real t = xmax; xmax=xmin; xmin=t; } + if (ymin > ymax) { real t = ymax; ymax=ymin; ymin=t; } + if (zmin > zmax) { real t = zmax; zmax=zmin; zmin=t; } + + return ((xmin <= pt.x) && (pt.x <= xmax) && + (ymin <= pt.y) && (pt.y <= ymax) && + (zmin <= pt.z) && (pt.z <= zmax)); + +} + +// A convenience function for combining the previous two tests. +bool checkpt(triple testpt, real f(triple), triple grad(triple), + triple a, triple b) { + return checkptincube(testpt, a, b) && + check_fpt_zero(testpt, f, grad); +} + +// Attempts to fill in the boundary cycle with a collection of +// patches to approximate smoothly the zero locus of f. If unable to +// do so while satisfying certain checks, returns null. +// This is distinct from returning an empty +// array, which merely indicates that the boundary cycle is too small +// to be worth filling in. +patch[] quadpatches(path3 edgecycle, positionedvector[] corners, + real f(triple), triple grad(triple), + triple a, triple b, bool usetriangles) { + assert(corners.cyclic); + + // The tolerance for considering two points "essentially identical." + static real tolerance = 2.5 * rootfinder_settings.roottolerance; + + // If there are two neighboring vertices that are essentially identical, + // unify them into one. + for (int i = 0; i < corners.length; ++i) { + if (abs(corners[i].position - corners[i+1].position) < tolerance) { + if (corners.length == 2) return new patch[0]; + corners.delete(i); + edgecycle = subpath(edgecycle, 0, i) + & subpath(edgecycle, i+1, length(edgecycle)) + & cycle; + --i; + assert(length(edgecycle) == corners.length); + } + } + + static real areatolerance = tolerance^2; + + assert(corners.length >= 2); + if (corners.length == 2) { + // If the area is too small, just ignore it; otherwise, subdivide. + real area0 = abs(cross(-dir(edgecycle, 0, sign=-1, normalize=false), + dir(edgecycle, 0, sign=1, normalize=false))); + real area1 = abs(cross(-dir(edgecycle, 1, sign=-1, normalize=false), + dir(edgecycle, 1, sign=1, normalize=false))); + if (area0 < areatolerance && area1 < areatolerance) return new patch[0]; + else return null; + } + if (length(edgecycle) > 6) abort("too many edges: not possible."); + + for (int i = 0; i < length(edgecycle); ++i) { + if (angledegrees(dir(edgecycle,i,sign=1), + dir(edgecycle,i+1,sign=-1)) > 80) { + return null; + } + } + + if (length(edgecycle) == 3) { + patch[] toreturn = usetriangles ? maketriangle(edgecycle, f, grad) + : triangletoquads(edgecycle, f, grad, a, b); + if (toreturn.length == 0) return null; + else return toreturn; + } + if (length(edgecycle) == 4) { + return new patch[] {patchwithnormals(edgecycle, grad)}; + } + + int[] bisectorindices; + path3 middleguide = bisector(edgecycle, bisectorindices); + + triple testpoint = point(middleguide, 0.5); + if (!checkpt(testpoint, f, grad, a, b)) { + return null; + } + + patch[] toreturn = null; + path3 firstpatch = subpath(edgecycle, bisectorindices[0], bisectorindices[1]) + & reverse(middleguide) & cycle; + if (length(edgecycle) == 5) { + path3 secondpatch = middleguide + & subpath(edgecycle, bisectorindices[1], 5+bisectorindices[0]) & cycle; + toreturn = usetriangles ? maketriangle(secondpatch, f, grad) + : triangletoquads(secondpatch, f, grad, a, b); + if (toreturn.length == 0) return null; + toreturn.push(patchwithnormals(firstpatch, grad)); + } else { + // now length(edgecycle) == 6 + path3 secondpatch = middleguide + & subpath(edgecycle, bisectorindices[1], 6+bisectorindices[0]) + & cycle; + toreturn = new patch[] {patchwithnormals(firstpatch, grad), + patchwithnormals(secondpatch, grad)}; + } + return toreturn; +} + +// Numerical gradient of a function +typedef triple vectorfunction(triple); +vectorfunction nGrad(real f(triple)) { + static real epsilon = 1e-3; + return new triple(triple v) { + return ( (f(v + epsilon*X) - f(v - epsilon*X)) / (2 epsilon), + (f(v + epsilon*Y) - f(v - epsilon*Y)) / (2 epsilon), + (f(v + epsilon*Z) - f(v - epsilon*Z)) / (2 epsilon) ); + }; +} + +// A point together with a value at that location. +struct evaluatedpoint { + triple pt; + real value; + void operator init(triple pt, real value) { + this.pt = pt; + this.value = value; + } +} + +triple operator cast(evaluatedpoint p) { return p.pt; } + +// Compute the values of a function at every vertex of an nx by ny by nz +// array of rectangular solids. +evaluatedpoint[][][] make3dgrid(triple a, triple b, int nx, int ny, int nz, + real f(triple), bool allowzero = false) +{ + evaluatedpoint[][][] toreturn = new evaluatedpoint[nx+1][ny+1][nz+1]; + for (int i = 0; i <= nx; ++i) { + for (int j = 0; j <= ny; ++j) { + for (int k = 0; k <= nz; ++k) { + triple pt = (interp(a.x, b.x, i/nx), + interp(a.y, b.y, j/ny), + interp(a.z, b.z, k/nz)); + real value = f(pt); + if (value == 0 && !allowzero) value = 1e-5; + toreturn[i][j][k] = evaluatedpoint(pt, value); + } + } + } + return toreturn; +} + +// The following utilities make, for instance, slice(A, i, j, k, l) +// equivalent to what A[i:j][k:l] ought to mean for two- and three- +// -dimensional arrays of evaluatedpoints and of positionedvectors. +typedef evaluatedpoint T; +T[][] slice(T[][] a, int start1, int end1, int start2, int end2) { + T[][] toreturn = new T[end1-start1][]; + for (int i = start1; i < end1; ++i) { + toreturn[i-start1] = a[i][start2:end2]; + } + return toreturn; +} +T[][][] slice(T[][][] a, int start1, int end1, + int start2, int end2, + int start3, int end3) { + T[][][] toreturn = new T[end1-start1][][]; + for (int i = start1; i < end1; ++i) { + toreturn[i-start1] = slice(a[i], start2, end2, start3, end3); + } + return toreturn; +} +typedef positionedvector T; +T[][] slice(T[][] a, int start1, int end1, int start2, int end2) { + T[][] toreturn = new T[end1-start1][]; + for (int i = start1; i < end1; ++i) { + toreturn[i-start1] = a[i][start2:end2]; + } + return toreturn; +} +T[][][] slice(T[][][] a, int start1, int end1, + int start2, int end2, + int start3, int end3) { + T[][][] toreturn = new T[end1-start1][][]; + for (int i = start1; i < end1; ++i) { + toreturn[i-start1] = slice(a[i], start2, end2, start3, end3); + } + return toreturn; +} + +// An object of class gridwithzeros stores the values of a function at each vertex +// of a three-dimensional grid, together with zeros of the function along edges +// of the grid and the gradient of the function at each such zero. +struct gridwithzeros { + int nx, ny, nz; + evaluatedpoint[][][] corners; + positionedvector[][][] xdirzeros; + positionedvector[][][] ydirzeros; + positionedvector[][][] zdirzeros; + triple grad(triple); + real f(triple); + int maxdepth; + bool usetriangles; + + // Populate the edges with zeros that have a sign change and are not already + // populated. + void fillzeros() { + for (int j = 0; j < ny+1; ++j) { + for (int k = 0; k < nz+1; ++k) { + real y = corners[0][j][k].pt.y; + real z = corners[0][j][k].pt.z; + real f_along_x(real t) { return f((t, y, z)); } + for (int i = 0; i < nx; ++i) { + if (xdirzeros[i][j][k] != null) continue; + evaluatedpoint start = corners[i][j][k]; + evaluatedpoint end = corners[i+1][j][k]; + if ((start.value > 0 && end.value > 0) || (start.value < 0 && end.value < 0)) + xdirzeros[i][j][k] = null; + else { + triple root = (0,y,z); + root += X * findroot(f_along_x, start.pt.x, end.pt.x, + fa=start.value, fb=end.value); + triple normal = grad(root); + xdirzeros[i][j][k] = positionedvector(root, normal); + } + } + } + } + + for (int i = 0; i < nx+1; ++i) { + for (int k = 0; k < nz+1; ++k) { + real x = corners[i][0][k].pt.x; + real z = corners[i][0][k].pt.z; + real f_along_y(real t) { return f((x, t, z)); } + for (int j = 0; j < ny; ++j) { + if (ydirzeros[i][j][k] != null) continue; + evaluatedpoint start = corners[i][j][k]; + evaluatedpoint end = corners[i][j+1][k]; + if ((start.value > 0 && end.value > 0) || (start.value < 0 && end.value < 0)) + ydirzeros[i][j][k] = null; + else { + triple root = (x,0,z); + root += Y * findroot(f_along_y, start.pt.y, end.pt.y, + fa=start.value, fb=end.value); + triple normal = grad(root); + ydirzeros[i][j][k] = positionedvector(root, normal); + } + } + } + } + + for (int i = 0; i < nx+1; ++i) { + for (int j = 0; j < ny+1; ++j) { + real x = corners[i][j][0].pt.x; + real y = corners[i][j][0].pt.y; + real f_along_z(real t) { return f((x, y, t)); } + for (int k = 0; k < nz; ++k) { + if (zdirzeros[i][j][k] != null) continue; + evaluatedpoint start = corners[i][j][k]; + evaluatedpoint end = corners[i][j][k+1]; + if ((start.value > 0 && end.value > 0) || (start.value < 0 && end.value < 0)) + zdirzeros[i][j][k] = null; + else { + triple root = (x,y,0); + root += Z * findroot(f_along_z, start.pt.z, end.pt.z, + fa=start.value, fb=end.value); + triple normal = grad(root); + zdirzeros[i][j][k] = positionedvector(root, normal); + } + } + } + } + } + + // Fill in the grid vertices and the zeros along edges. Each cube starts at + // depth one and the depth increases each time it subdivides; maxdepth is the + // maximum subdivision depth. When a cube at maxdepth cannot be resolved to + // patches, it is left empty. + void operator init(int nx, int ny, int nz, + real f(triple), triple a, triple b, + int maxdepth = 6, bool usetriangles) { + this.nx = nx; + this.ny = ny; + this.nz = nz; + grad = nGrad(f); + this.f = f; + this.maxdepth = maxdepth; + this.usetriangles = usetriangles; + corners = make3dgrid(a, b, nx, ny, nz, f); + xdirzeros = new positionedvector[nx][ny+1][nz+1]; + ydirzeros = new positionedvector[nx+1][ny][nz+1]; + zdirzeros = new positionedvector[nx+1][ny+1][nz]; + + for (int i = 0; i <= nx; ++i) { + for (int j = 0; j <= ny; ++j) { + for (int k = 0; k <= nz; ++k) { + if (i < nx) xdirzeros[i][j][k] = null; + if (j < ny) ydirzeros[i][j][k] = null; + if (k < nz) zdirzeros[i][j][k] = null; + } + } + } + + fillzeros(); + } + + // Doubles nx, ny, and nz by halving the sizes of the cubes along the x, y, and z + // directions (resulting in 8 times as many cubes). Already existing data about + // function values and zeros is copied; vertices and edges with no such pre-existing + // data are populated. + // + // Returns true if subdivide succeeded, false if it failed (because maxdepth + // was exceeded). + bool subdivide() { + if (maxdepth <= 1) { + return false; + } + --maxdepth; + triple a = corners[0][0][0]; + triple b = corners[nx][ny][nz]; + nx *= 2; + ny *= 2; + nz *= 2; + evaluatedpoint[][][] oldcorners = corners; + corners = new evaluatedpoint[nx+1][ny+1][nz+1]; + for (int i = 0; i <= nx; ++i) { + for (int j = 0; j <= ny; ++j) { + for (int k = 0; k <= nz; ++k) { + if (i % 2 == 0 && j % 2 == 0 && k % 2 == 0) { + corners[i][j][k] = oldcorners[quotient(i,2)][quotient(j,2)][quotient(k,2)]; + } else { + triple pt = (interp(a.x, b.x, i/nx), + interp(a.y, b.y, j/ny), + interp(a.z, b.z, k/nz)); + real value = f(pt); + if (value == 0) value = 1e-5; + corners[i][j][k] = evaluatedpoint(pt, value); + } + } + } + } + + positionedvector[][][] oldxdir = xdirzeros; + xdirzeros = new positionedvector[nx][ny+1][nz+1]; + for (int i = 0; i < nx; ++i) { + for (int j = 0; j < ny + 1; ++j) { + for (int k = 0; k < nz + 1; ++k) { + if (j % 2 != 0 || k % 2 != 0) { + xdirzeros[i][j][k] = null; + } else { + positionedvector zero = oldxdir[quotient(i,2)][quotient(j,2)][quotient(k,2)]; + if (zero == null) { + xdirzeros[i][j][k] = null; + continue; + } + real x = zero.position.x; + if (x > interp(a.x, b.x, i/nx) && x < interp(a.x, b.x, (i+1)/nx)) { + xdirzeros[i][j][k] = zero; + } else { + xdirzeros[i][j][k] = null; + } + } + } + } + } + + positionedvector[][][] oldydir = ydirzeros; + ydirzeros = new positionedvector[nx+1][ny][nz+1]; + for (int i = 0; i < nx+1; ++i) { + for (int j = 0; j < ny; ++j) { + for (int k = 0; k < nz + 1; ++k) { + if (i % 2 != 0 || k % 2 != 0) { + ydirzeros[i][j][k] = null; + } else { + positionedvector zero = oldydir[quotient(i,2)][quotient(j,2)][quotient(k,2)]; + if (zero == null) { + ydirzeros[i][j][k] = null; + continue; + } + real y = zero.position.y; + if (y > interp(a.y, b.y, j/ny) && y < interp(a.y, b.y, (j+1)/ny)) { + ydirzeros[i][j][k] = zero; + } else { + ydirzeros[i][j][k] = null; + } + } + } + } + } + + positionedvector[][][] oldzdir = zdirzeros; + zdirzeros = new positionedvector[nx+1][ny+1][nz]; + for (int i = 0; i < nx + 1; ++i) { + for (int j = 0; j < ny + 1; ++j) { + for (int k = 0; k < nz; ++k) { + if (i % 2 != 0 || j % 2 != 0) { + zdirzeros[i][j][k] = null; + } else { + positionedvector zero = oldzdir[quotient(i,2)][quotient(j,2)][quotient(k,2)]; + if (zero == null) { + zdirzeros[i][j][k] = null; + continue; + } + real z = zero.position.z; + if (z > interp(a.z, b.z, k/nz) && z < interp(a.z, b.z, (k+1)/nz)) { + zdirzeros[i][j][k] = zero; + } else { + zdirzeros[i][j][k] = null; + } + } + } + } + } + + fillzeros(); + return true; + } + + // Forward declaration of the draw method, which will be called by drawcube(). + patch[] draw(bool[] reportactive = null); + + // Construct the patches, assuming that we are working + // with a single cube (nx = ny = nz = 1). This method will subdivide the + // cube if necessary. The parameter reportactive should be an array of + // length 6. Setting an entry to true indicates that the surface abuts the + // corresponding face (according to the earlier enum), and thus that the + // algorithm should be sure that something is drawn in the cube sharing + // that face--even if all the vertices of that cube have the same sign. + patch[] drawcube(bool[] reportactive = null) { + // First, determine which edges (if any) actually have zeros on them. + edge[] zeroedges = new edge[0]; + positionedvector[] zeros = new positionedvector[0]; + + int currentface, nextface; + + void pushifnonnull(positionedvector v) { + if (v != null) { + zeroedges.push(edge(currentface, nextface)); + zeros.push(v); + } + } + positionedvector findzero(int face1, int face2) { + edge e = edge(face1, face2); + for (int i = 0; i < zeroedges.length; ++i) { + if (zeroedges[i] == e) return zeros[i]; + } + return null; + } + + currentface = XLOW; + nextface = YHIGH; + pushifnonnull(zdirzeros[0][1][0]); + nextface = YLOW; + pushifnonnull(zdirzeros[0][0][0]); + nextface = ZHIGH; + pushifnonnull(ydirzeros[0][0][1]); + nextface = ZLOW; + pushifnonnull(ydirzeros[0][0][0]); + + currentface = XHIGH; + nextface = YHIGH; + pushifnonnull(zdirzeros[1][1][0]); + nextface = YLOW; + pushifnonnull(zdirzeros[1][0][0]); + nextface = ZHIGH; + pushifnonnull(ydirzeros[1][0][1]); + nextface = ZLOW; + pushifnonnull(ydirzeros[1][0][0]); + + currentface = YHIGH; + nextface = ZHIGH; + pushifnonnull(xdirzeros[0][1][1]); + currentface = ZHIGH; + nextface = YLOW; + pushifnonnull(xdirzeros[0][0][1]); + currentface = YLOW; + nextface = ZLOW; + pushifnonnull(xdirzeros[0][0][0]); + currentface = ZLOW; + nextface = YHIGH; + pushifnonnull(xdirzeros[0][1][0]); + + //Now, string those edges together to make a circle. + + patch[] subdividecube() { + if (!subdivide()) { + return new patch[0]; + } + return draw(reportactive); + } + if (zeroedges.length < 3) { + return subdividecube(); + } + int[] faceorder = makecircle(zeroedges); + if (alias(faceorder,null)) { + return subdividecube(); + } + positionedvector[] patchcorners = new positionedvector[0]; + for (int i = 0; i < faceorder.length; ++i) { + patchcorners.push(findzero(faceorder[i], faceorder[i+1])); + } + patchcorners.cyclic = true; + + //Now, produce the cyclic path around the edges. + path3 edgecycle; + for (int i = 0; i < faceorder.length; ++i) { + path3 currentpath = pathinface(patchcorners[i], patchcorners[i+1], + faceorder[i+1], faceorder[i], + faceorder[i+2]); + triple testpoint = point(currentpath, 0.5); + if (!checkpt(testpoint, f, grad, corners[0][0][0], corners[1][1][1])) { + return subdividecube(); + } + + edgecycle = edgecycle & currentpath; + } + edgecycle = edgecycle & cycle; + + + { // Ensure the outward normals are pointing in the same direction as the gradient. + triple tangentin = patchcorners[0].position - precontrol(edgecycle, 0); + triple tangentout = postcontrol(edgecycle, 0) - patchcorners[0].position; + triple normal = cross(tangentin, tangentout); + if (dot(normal, patchcorners[0].direction) < 0) { + edgecycle = reverse(edgecycle); + patchcorners = patchcorners[-sequence(patchcorners.length)]; + patchcorners.cyclic = true; + } + } + + patch[] toreturn = quadpatches(edgecycle, patchcorners, f, grad, + corners[0][0][0], corners[1][1][1], usetriangles); + if (alias(toreturn, null)) return subdividecube(); + return toreturn; + } + + // Extracts the specified cube as a gridwithzeros object with + // nx = ny = nz = 1. + gridwithzeros getcube(int i, int j, int k) { + gridwithzeros cube = new gridwithzeros; + cube.grad = grad; + cube.f = f; + cube.nx = 1; + cube.ny = 1; + cube.nz = 1; + cube.maxdepth = maxdepth; + cube.usetriangles = usetriangles; + cube.corners = slice(corners,i,i+2,j,j+2,k,k+2); + cube.xdirzeros = slice(xdirzeros,i,i+1,j,j+2,k,k+2); + cube.ydirzeros = slice(ydirzeros,i,i+2,j,j+1,k,k+2); + cube.zdirzeros = slice(zdirzeros,i,i+2,j,j+2,k,k+1); + return cube; + } + + // Returns an array of patches representing the surface. + // The parameter reportactive should be an array of + // length 6. Setting an entry to true indicates that the surface abuts the + // corresponding face of the cube that bounds the entire grid. + // + // If reportactive == null, it is assumed that this is a top-level call; + // a dot is printed to stdout for each cube drawn as a very rough + // progress indicator. + // + // If reportactive != null, then it is assumed that the caller had a strong + // reason to believe that this grid contains a part of the surface; the + // grid will subdivide all the way to maxdepth if necessary to find points + // on the surface. + draw = new patch[](bool[] reportactive = null) { + if (alias(reportactive, null)) progress(true); + // A list of all the patches not already drawn but known + // to contain part of the surface. This "queue" is + // actually implemented as stack for simplicity, since + // it does not make any difference. In a multi-threaded + // version of the algorithm, a queue (shared across all threads) + // would make more sense than a stack. + triple[] queue = new triple[0]; + bool[][][] enqueued = new bool[nx][ny][nz]; + for (int i = 0; i < enqueued.length; ++i) { + for (int j = 0; j < enqueued[i].length; ++j) { + for (int k = 0; k < enqueued[i][j].length; ++k) { + enqueued[i][j][k] = false; + } + } + } + + void enqueue(int i, int j, int k) { + if (i >= 0 && i < nx + && j >= 0 && j < ny + && k >= 0 && k < nz + && !enqueued[i][j][k]) { + queue.push((i,j,k)); + enqueued[i][j][k] = true; + } + if (!alias(reportactive, null)) { + if (i < 0) reportactive[XLOW] = true; + if (i >= nx) reportactive[XHIGH] = true; + if (j < 0) reportactive[YLOW] = true; + if (j >= ny) reportactive[YHIGH] = true; + if (k < 0) reportactive[ZLOW] = true; + if (k >= nz) reportactive[ZHIGH] = true; + } + } + + for (int i = 0; i < nx+1; ++i) { + for (int j = 0; j < ny+1; ++j) { + for (int k = 0; k < nz+1; ++k) { + if (i < nx && xdirzeros[i][j][k] != null) { + for (int jj = j-1; jj <= j; ++jj) + for (int kk = k-1; kk <= k; ++kk) + enqueue(i, jj, kk); + } + if (j < ny && ydirzeros[i][j][k] != null) { + for (int ii = i-1; ii <= i; ++ii) + for (int kk = k-1; kk <= k; ++kk) + enqueue(ii, j, kk); + } + if (k < nz && zdirzeros[i][j][k] != null) { + for (int ii = i-1; ii <= i; ++ii) + for (int jj = j-1; jj <= j; ++jj) + enqueue(ii, jj, k); + } + } + } + } + + if (!alias(reportactive, null) && queue.length == 0) { + if (subdivide()) return draw(reportactive); + } + + patch[] surface = new patch[0]; + + while (queue.length > 0) { + triple coord = queue.pop(); + int i = floor(coord.x); + int j = floor(coord.y); + int k = floor(coord.z); + bool[] reportface = array(6, false); + patch[] toappend = getcube(i,j,k).drawcube(reportface); + if (reportface[XLOW]) enqueue(i-1,j,k); + if (reportface[XHIGH]) enqueue(i+1,j,k); + if (reportface[YLOW]) enqueue(i,j-1,k); + if (reportface[YHIGH]) enqueue(i,j+1,k); + if (reportface[ZLOW]) enqueue(i,j,k-1); + if (reportface[ZHIGH]) enqueue(i,j,k+1); + surface.append(toappend); + if (alias(reportactive, null)) progress(); + } + if (alias(reportactive, null)) progress(false); + return surface; + }; +} + +// The external interface of this whole module. Accepts exactly one +// function (throws an error if two or zero functions are specified). +// The function should be differentiable. (Whatever you do, do not +// pass in an indicator function!) Ideally, the zero locus of the +// function should be smooth; singularities will significantly slow +// down the algorithm and potentially give bad results. +// +// Returns a plot of the zero locus of the function within the +// rectangular solid with opposite corners at a and b. +// +// Additional parameters: +// n - the number of initial segments in each of the x, y, z directions. +// overlapedges - if true, the patches of the surface are slightly enlarged +// to compensate for an artifact in which the viewer can see through the +// boundary between patches. (Some of this may actually be a result of +// edges not lining up perfectly, but I'm fairly sure a lot of it arises +// purely as a rendering artifact.) +// nx - override n in the x direction +// ny - override n in the y direction +// nz - override n in the z direction +// maxdepth - the maximum depth to which the algorithm will subdivide in +// an effort to find patches that closely approximate the true surface. +surface implicitsurface(real f(triple) = null, real ff(real,real,real) = null, + triple a, triple b, + int n = nmesh, + bool keyword overlapedges = false, + int keyword nx=n, int keyword ny=n, + int keyword nz=n, + int keyword maxdepth = 8, + bool keyword usetriangles=true) { + if (f == null && ff == null) + abort("implicitsurface called without specifying a function."); + if (f != null && ff != null) + abort("Only specify one function when calling implicitsurface."); + if (f == null) f = new real(triple w) { return ff(w.x, w.y, w.z); }; + gridwithzeros grid = gridwithzeros(nx, ny, nz, f, a, b, maxdepth=maxdepth, + usetriangles=usetriangles); + patch[] patches = grid.draw(); + if (overlapedges) { + for (int i = 0; i < patches.length; ++i) { + triple center = (patches[i].triangular ? + patches[i].point(1/3, 1/3) : patches[i].point(1/2,1/2)); + transform3 T=shift(center) * scale3(1.03) * shift(-center); + patches[i] = T * patches[i]; + } + } + return surface(...patches); +} |