summaryrefslogtreecommitdiff
path: root/Build/source/texk/web2c/luatexdir/tex/texmath.c
diff options
context:
space:
mode:
Diffstat (limited to 'Build/source/texk/web2c/luatexdir/tex/texmath.c')
-rw-r--r--Build/source/texk/web2c/luatexdir/tex/texmath.c2723
1 files changed, 2723 insertions, 0 deletions
diff --git a/Build/source/texk/web2c/luatexdir/tex/texmath.c b/Build/source/texk/web2c/luatexdir/tex/texmath.c
new file mode 100644
index 00000000000..69e58b0ea77
--- /dev/null
+++ b/Build/source/texk/web2c/luatexdir/tex/texmath.c
@@ -0,0 +1,2723 @@
+/*
+
+Copyright 2008-2010 Taco Hoekwater <taco@luatex.org>
+
+This file is part of LuaTeX.
+
+LuaTeX is free software; you can redistribute it and/or modify it under the terms
+of the GNU General Public License as published by the Free Software Foundation;
+either version 2 of the License, or (at your option) any later version.
+
+LuaTeX is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
+PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
+
+You should have received a copy of the GNU General Public License along with
+LuaTeX; if not, see <http://www.gnu.org/licenses/>.
+
+*/
+
+#include "ptexlib.h"
+
+#define mode mode_par
+#define tail tail_par
+#define head head_par
+#define dir_save dirs_par
+
+/*tex
+
+ Concerning display skips, \TEX\ normally always inserts before and only after
+ when larger than zero. THis can ow be controlled with |\mathdisplayskipmode|:
+
+ \starttabulate
+ \NC 0 \NC normal \TEX \NC \NR
+ \NC 1 \NC always \NC \NR
+ \NC 2 \NC non-zero \NC \NR
+ \NC 3 \NC ignore \NC \NR
+ \stoptabulate
+
+*/
+
+#define back_error(A,B) do { \
+ OK_to_interrupt=false; \
+ back_input(); \
+ OK_to_interrupt=true; \
+ tex_error(A,B); \
+ } while (0)
+
+int scan_math(pointer, int);
+int scan_math_style(pointer, int);
+pointer fin_mlist(pointer);
+
+/*tex
+
+ When \TeX\ reads a formula that is enclosed between \.\$'s, it constructs an
+ {\sl mlist}, which is essentially a tree structure representing that formula.
+ An mlist is a linear sequence of items, but we can regard it as a tree
+ structure because mlists can appear within mlists. For example, many of the
+ entries can be subscripted or superscripted, and such ``scripts'' are mlists
+ in their own right.
+
+ An entire formula is parsed into such a tree before any of the actual
+ typesetting is done, because the current style of type is usually not known
+ until the formula has been fully scanned. For example, when the formula
+ `\.{\$a+b \\over c+d\$}' is being read, there is no way to tell that
+ `\.{a+b}' will be in script size until `\.{\\over}' has appeared.
+
+ During the scanning process, each element of the mlist being built is
+ classified as a relation, a binary operator, an open parenthesis, etc., or as
+ a construct like `\.{\\sqrt}' that must be built up. This classification
+ appears in the mlist data structure.
+
+ After a formula has been fully scanned, the mlist is converted to an hlist so
+ that it can be incorporated into the surrounding text. This conversion is
+ controlled by a recursive procedure that decides all of the appropriate
+ styles by a ``top-down'' process starting at the outermost level and working
+ in towards the subformulas. The formula is ultimately pasted together using
+ combinations of horizontal and vertical boxes, with glue and penalty nodes
+ inserted as necessary.
+
+ An mlist is represented internally as a linked list consisting chiefly of
+ ``noads'' (pronounced ``no-adds''), to distinguish them from the somewhat
+ similar ``nodes'' in hlists and vlists. Certain kinds of ordinary nodes are
+ allowed to appear in mlists together with the noads; \TeX\ tells the
+ difference by means of the |type| field, since a noad's |type| is always
+ greater than that of a node. An mlist does not contain character nodes, hlist
+ nodes, vlist nodes, math nodes or unset nodes; in particular, each mlist item
+ appears in the variable-size part of |mem|, so the |type| field is always
+ present.
+
+ Each noad is five or more words long. The first word contains the |type| and
+ |subtype| and |link| fields that are already so familiar to us; the second
+ contains the attribute list pointer, and the third, fourth an fifth words are
+ called the noad's |nucleus|, |subscr|, and |supscr| fields. (This use of a
+ combined attribute list is temporary. Eventually, each of fields need their
+ own list)
+
+ Consider, for example, the simple formula `\.{\$x\^2\$}', which would be
+ parsed into an mlist containing a single element called an |ord_noad|. The
+ |nucleus| of this noad is a representation of `\.x', the |subscr| is empty,
+ and the |supscr| is a representation of `\.2'.
+
+ The |nucleus|, |subscr|, and |supscr| fields are further broken into
+ subfields. If |p| points to a noad, and if |q| is one of its principal fields
+ (e.g., |q=subscr(p)|), |q=null| indicates a field with no value (the
+ corresponding attribute of noad |p| is not present). Otherwise, there are
+ several possibilities for the subfields, depending on the |type| of |q|.
+
+ \startitemize
+
+ \startitem
+ |type(q)=math_char_node| means that |math_fam(q)| refers to one of
+ the sixteen font families, and |character(q)| is the number of a
+ character within a font of that family, as in a character node.
+ \stopitem
+
+ \startitem
+ |type(q)=math_text_char_node| is similar, but the character is
+ unsubscripted and unsuperscripted and it is followed immediately by
+ another character from the same font. (This |type| setting appears
+ only briefly during the processing; it is used to suppress unwanted
+ italic corrections.)
+ \stopitem
+
+ \startitem
+ |type(q)=sub_box_node| means that |math_list(q)| points to a box node
+ (either an |hlist_node| or a |vlist_node|) that should be used as the
+ value of the field. The |shift_amount| in the subsidiary box node is
+ the amount by which that box will be shifted downward.
+ \stopitem
+
+ \startitem
+ |type(q)=sub_mlist_node| means that |math_list(q)| points to an
+ mlist; the mlist must be converted to an hlist in order to obtain the
+ value of this field.
+ \stopitem
+
+ \startitem
+ In the latter case, we might have |math_list(q)=null|. This is not
+ the same as |q=null|; for example, `\.{\$P\_\{\}\$}' and `\.{\$P\$}'
+ produce different results (the former will not have the ``italic
+ correction'' added to the width of |P|, but the ``script skip'' will
+ be added).
+ \stopitem
+
+ \startitemize
+
+*/
+
+static void unsave_math(void)
+{
+ unsave();
+ decr(save_ptr);
+ flush_node_list(text_dir_ptr);
+ assert(saved_type(0) == saved_textdir);
+ text_dir_ptr = saved_value(0);
+}
+
+/*tex
+
+ Sometimes it is necessary to destroy an mlist. The following subroutine
+ empties the current list, assuming that |abs(mode)=mmode|.
+
+*/
+
+void flush_math(void)
+{
+ flush_node_list(vlink(head));
+ flush_node_list(incompleat_noad_par);
+ vlink(head) = null;
+ tail = head;
+ incompleat_noad_par = null;
+}
+
+/*tex Before we can do anything in math mode, we need fonts. */
+
+#define MATHFONTSTACK 8
+#define MATHFONTDEFAULT 0
+
+static sa_tree math_fam_head = NULL;
+
+int fam_fnt(int fam_id, int size_id)
+{
+ int n = fam_id + (256 * size_id);
+ return (int) get_sa_item(math_fam_head, n).int_value;
+}
+
+void def_fam_fnt(int fam_id, int size_id, int f, int lvl)
+{
+ int n = fam_id + (256 * size_id);
+ sa_tree_item sa_value = { 0 };
+ sa_value.int_value = f;
+ set_sa_item(math_fam_head, n, sa_value, lvl);
+ fixup_math_parameters(fam_id, size_id, f, lvl);
+ if (tracing_assigns_par > 1) {
+ begin_diagnostic();
+ tprint("{assigning");
+ print_char(' ');
+ print_cmd_chr(def_family_cmd, size_id);
+ print_int(fam_id);
+ print_char('=');
+ print_font_identifier(fam_fnt(fam_id, size_id));
+ print_char('}');
+ end_diagnostic(false);
+ }
+}
+
+static void unsave_math_fam_data(int gl)
+{
+ sa_stack_item st;
+ if (math_fam_head->stack == NULL)
+ return;
+ while (math_fam_head->stack_ptr > 0 &&
+ abs(math_fam_head->stack[math_fam_head->stack_ptr].level)
+ >= (int) gl) {
+ st = math_fam_head->stack[math_fam_head->stack_ptr];
+ if (st.level > 0) {
+ rawset_sa_item(math_fam_head, st.code, st.value);
+ /*tex Now do a trace message, if requested. */
+ if (tracing_restores_par > 1) {
+ int size_id = st.code / 256;
+ int fam_id = st.code % 256;
+ begin_diagnostic();
+ tprint("{restoring");
+ print_char(' ');
+ print_cmd_chr(def_family_cmd, size_id);
+ print_int(fam_id);
+ print_char('=');
+ print_font_identifier(fam_fnt(fam_id, size_id));
+ print_char('}');
+ end_diagnostic(false);
+ }
+ }
+ (math_fam_head->stack_ptr)--;
+ }
+}
+
+/*tex Parameters */
+
+#define MATHPARAMSTACK 8
+#define MATHPARAMDEFAULT undefined_math_parameter
+
+static sa_tree math_param_head = NULL;
+
+void def_math_param(int param_id, int style_id, scaled value, int lvl)
+{
+ int n = param_id + (256 * style_id);
+ sa_tree_item sa_value = { 0 };
+ sa_value.int_value = (int) value;
+ set_sa_item(math_param_head, n, sa_value, lvl);
+ if (tracing_assigns_par > 1) {
+ begin_diagnostic();
+ tprint("{assigning");
+ print_char(' ');
+ print_cmd_chr(set_math_param_cmd, param_id);
+ print_cmd_chr(math_style_cmd, style_id);
+ print_char('=');
+ print_int(value);
+ print_char('}');
+ end_diagnostic(false);
+ }
+}
+
+scaled get_math_param(int param_id, int style_id)
+{
+ int n = param_id + (256 * style_id);
+ return (scaled) get_sa_item(math_param_head, n).int_value;
+}
+
+static void unsave_math_param_data(int gl)
+{
+ sa_stack_item st;
+ if (math_param_head->stack == NULL)
+ return;
+ while (math_param_head->stack_ptr > 0 &&
+ abs(math_param_head->stack[math_param_head->stack_ptr].level)
+ >= (int) gl) {
+ st = math_param_head->stack[math_param_head->stack_ptr];
+ if (st.level > 0) {
+ rawset_sa_item(math_param_head, st.code, st.value);
+ /*tex Do a trace message, if requested. */
+ if (tracing_restores_par > 1) {
+ int param_id = st.code % 256;
+ int style_id = st.code / 256;
+ begin_diagnostic();
+ tprint("{restoring");
+ print_char(' ');
+ print_cmd_chr(set_math_param_cmd, param_id);
+ print_cmd_chr(math_style_cmd, style_id);
+ print_char('=');
+ print_int(get_math_param(param_id, style_id));
+ print_char('}');
+ end_diagnostic(false);
+ }
+ }
+ (math_param_head->stack_ptr)--;
+ }
+}
+
+/*tex Saving and unsaving of both: */
+
+void unsave_math_data(int gl)
+{
+ unsave_math_fam_data(gl);
+ unsave_math_param_data(gl);
+}
+
+/*tex Dumping and undumping: */
+
+void dump_math_data(void)
+{
+ sa_tree_item sa_value = { 0 };
+ if (math_fam_head == NULL) {
+ sa_value.int_value = MATHFONTDEFAULT;
+ math_fam_head = new_sa_tree(MATHFONTSTACK, 1, sa_value);
+ }
+ dump_sa_tree(math_fam_head, "mathfonts");
+ if (math_param_head == NULL) {
+ sa_value.int_value = MATHPARAMDEFAULT;
+ math_param_head = new_sa_tree(MATHPARAMSTACK, 1, sa_value);
+ }
+ dump_sa_tree(math_param_head, "mathparameters");
+}
+
+void undump_math_data(void)
+{
+ math_fam_head = undump_sa_tree("mathfonts");
+ math_param_head = undump_sa_tree("mathparameters");
+}
+
+void initialize_math(void)
+{
+ sa_tree_item sa_value = { 0 };
+ if (math_fam_head == NULL) {
+ sa_value.int_value = MATHFONTDEFAULT;
+ math_fam_head = new_sa_tree(MATHFONTSTACK, 1, sa_value);
+ }
+ if (math_param_head == NULL) {
+ sa_value.int_value = MATHPARAMDEFAULT;
+ math_param_head = new_sa_tree(MATHPARAMSTACK, 1, sa_value);
+ initialize_math_spacing();
+ }
+ return;
+}
+
+/*tex
+
+ Each portion of a formula is classified as Ord, Op, Bin, Rel, Ope, Clo, Pun,
+ or Inn, for purposes of spacing and line breaking. An |ord_noad|, |op_noad|,
+ |bin_noad|, |rel_noad|, |open_noad|, |close_noad|, |punct_noad|, or
+ |inner_noad| is used to represent portions of the various types. For example,
+ an `\.=' sign in a formula leads to the creation of a |rel_noad| whose
+ |nucleus| field is a representation of an equals sign (usually |fam=0|,
+ |character=075|). A formula preceded by \.{\\mathrel} also results in a
+ |rel_noad|. When a |rel_noad| is followed by an |op_noad|, say, and possibly
+ separated by one or more ordinary nodes (not noads), \TeX\ will insert a
+ penalty node (with the current |rel_penalty|) just after the formula that
+ corresponds to the |rel_noad|, unless there already was a penalty immediately
+ following; and a ``thick space'' will be inserted just before the formula
+ that corresponds to the |op_noad|.
+
+ A noad of type |ord_noad|, |op_noad|, \dots, |inner_noad| usually has a
+ |subtype=normal|. The only exception is that an |op_noad| might have
+ |subtype=limits| or |no_limits|, if the normal positioning of limits has been
+ overridden for this operator.
+
+ A |radical_noad| also has a |left_delimiter| field, which usually represents
+ a square root sign.
+
+ A |fraction_noad| has a |right_delimiter| field as well as a
+ |left_delimiter|.
+
+ Delimiter fields have four subfields called |small_fam|, |small_char|,
+ |large_fam|, |large_char|. These subfields represent variable-size delimiters
+ by giving the ``small'' and ``large'' starting characters, as explained in
+ Chapter~17 of {\sl The \TeX book}.
+
+ A |fraction_noad| is actually quite different from all other noads. It has
+ |thickness|, |denominator|, and |numerator| fields instead of |nucleus|,
+ |subscr|, and |supscr|. The |thickness| is a scaled value that tells how
+ thick to make a fraction rule; however, the special value |default_code| is
+ used to stand for the |default_rule_thickness| of the current size. The
+ |numerator| and |denominator| point to mlists that define a fraction; we
+ always have $$\hbox{|type(numerator)=type(denominator)=sub_mlist|}.$$ The
+ |left_delimiter| and |right_delimiter| fields specify delimiters that will be
+ placed at the left and right of the fraction. In this way, a |fraction_noad|
+ is able to represent all of \TeX's operators \.{\\over}, \.{\\atop},
+ \.{\\above}, \.{\\overwithdelims}, \.{\\atopwithdelims}, and
+ \.{\\abovewithdelims}.
+
+ The |new_noad| function creates an |ord_noad| that is completely null
+
+*/
+
+pointer new_noad(void)
+{
+ pointer p;
+ p = new_node(simple_noad, ord_noad_type);
+ /*tex All noad fields are zero after this. */
+ return p;
+}
+
+pointer new_sub_box(pointer curbox)
+{
+ pointer p, q;
+ p = new_noad();
+ q = new_node(sub_box_node, 0);
+ nucleus(p) = q;
+ math_list(nucleus(p)) = curbox;
+ return p;
+}
+
+/*tex
+
+ A few more kinds of noads will complete the set: An |under_noad| has its
+ nucleus underlined; an |over_noad| has it overlined. An |accent_noad| places
+ an accent over its nucleus; the accent character appears as
+ |math_fam(accent_chr(p))| and |math_character(accent_chr(p))|. A
+ |vcenter_noad| centers its nucleus vertically with respect to the axis of the
+ formula; in such noads we always have |type(nucleus(p))=sub_box|.
+
+ And finally, we have the |fence_noad| type, to implement \TeX's \.{\\left}
+ and \.{\\right} as well as eTeX's \.{\\middle}. The |nucleus| of such noads
+ is replaced by a |delimiter| field; thus, for example, `\.{\\left(}' produces
+ a |fence_noad| such that |delimiter(p)| holds the family and character codes
+ for all left parentheses. A |fence_noad| of subtype |left_noad_side| never
+ appears in an mlist except as the first element, and a |fence_noad| with
+ subtype |right_noad_side| never appears in an mlist except as the last
+ element; furthermore, we either have both a |left_noad_side| and a
+ |right_noad_side|, or neither one is present.
+
+ Math formulas can also contain instructions like \.{\\textstyle} that
+ override \TeX's normal style rules. A |style_node| is inserted into the data
+ structure to record such instructions; it is three words long, so it is
+ considered a node instead of a noad. The |subtype| is either |display_style|
+ or |text_style| or |script_style| or |script_script_style|. The second and
+ third words of a |style_node| are not used, but they are present because a
+ |choice_node| is converted to a |style_node|.
+
+ \TeX\ uses even numbers 0, 2, 4, 6 to encode the basic styles
+ |display_style|, \dots, |script_script_style|, and adds~1 to get the
+ ``cramped'' versions of these styles. This gives a numerical order that is
+ backwards from the convention of Appendix~G in {\sl The \TeX book\/}; i.e., a
+ smaller style has a larger numerical value.
+
+*/
+
+const char *math_style_names[] = {
+ "display", "crampeddisplay",
+ "text", "crampedtext",
+ "script", "crampedscript",
+ "scriptscript", "crampedscriptscript",
+ NULL
+};
+
+const char *math_param_names[] = {
+ "quad", "axis", "operatorsize",
+ "overbarkern", "overbarrule", "overbarvgap",
+ "underbarkern", "underbarrule", "underbarvgap",
+ "radicalkern", "radicalrule", "radicalvgap",
+ "radicaldegreebefore", "radicaldegreeafter", "radicaldegreeraise",
+ "stackvgap", "stacknumup", "stackdenomdown",
+ "fractionrule", "fractionnumvgap", "fractionnumup",
+ "fractiondenomvgap", "fractiondenomdown", "fractiondelsize",
+ "limitabovevgap", "limitabovebgap", "limitabovekern",
+ "limitbelowvgap", "limitbelowbgap", "limitbelowkern",
+ "nolimitsubfactor", "nolimitsupfactor", /* bonus */
+ "underdelimitervgap", "underdelimiterbgap",
+ "overdelimitervgap", "overdelimiterbgap",
+ "subshiftdrop", "supshiftdrop", "subshiftdown",
+ "subsupshiftdown", "subtopmax", "supshiftup",
+ "supbottommin", "supsubbottommax", "subsupvgap",
+ "spaceafterscript", "connectoroverlapmin",
+ "ordordspacing", "ordopspacing", "ordbinspacing", "ordrelspacing",
+ "ordopenspacing", "ordclosespacing", "ordpunctspacing", "ordinnerspacing",
+ "opordspacing", "opopspacing", "opbinspacing", "oprelspacing",
+ "opopenspacing", "opclosespacing", "oppunctspacing", "opinnerspacing",
+ "binordspacing", "binopspacing", "binbinspacing", "binrelspacing",
+ "binopenspacing", "binclosespacing", "binpunctspacing", "bininnerspacing",
+ "relordspacing", "relopspacing", "relbinspacing", "relrelspacing",
+ "relopenspacing", "relclosespacing", "relpunctspacing", "relinnerspacing",
+ "openordspacing", "openopspacing", "openbinspacing", "openrelspacing",
+ "openopenspacing", "openclosespacing", "openpunctspacing",
+ "openinnerspacing",
+ "closeordspacing", "closeopspacing", "closebinspacing", "closerelspacing",
+ "closeopenspacing", "closeclosespacing", "closepunctspacing",
+ "closeinnerspacing",
+ "punctordspacing", "punctopspacing", "punctbinspacing", "punctrelspacing",
+ "punctopenspacing", "punctclosespacing", "punctpunctspacing",
+ "punctinnerspacing",
+ "innerordspacing", "inneropspacing", "innerbinspacing", "innerrelspacing",
+ "inneropenspacing", "innerclosespacing", "innerpunctspacing",
+ "innerinnerspacing",
+ NULL
+};
+
+pointer new_style(small_number s)
+{
+ m_style = s;
+ return new_node(style_node, s);
+}
+
+/*tex
+
+ Finally, the \.{\\mathchoice} primitive creates a |choice_node|, which has
+ special subfields |display_mlist|, |text_mlist|, |script_mlist|, and
+ |script_script_mlist| pointing to the mlists for each style.
+
+*/
+
+static pointer new_choice(void)
+{
+ return new_node(choice_node, 0);
+}
+
+/*tex
+
+ Let's consider now the previously unwritten part of |show_node_list| that
+ displays the things that can only be present in mlists; this program
+ illustrates how to access the data structures just defined.
+
+ In the context of the following program, |p| points to a node or noad that
+ should be displayed, and the current string contains the ``recursion
+ history'' that leads to this point. The recursion history consists of a dot
+ for each outer level in which |p| is subsidiary to some node, or in which |p|
+ is subsidiary to the |nucleus| field of some noad; the dot is replaced by
+ `\.\_' or `\.\^' or `\./' or `\.\\' if |p| is descended from the |subscr| or
+ |supscr| or |denominator| or |numerator| fields of noads. For example, the
+ current string would be `\.{.\^.\_/}' if |p| points to the |ord_noad| for |x|
+ in the (ridiculous) formula `\.{\$\\sqrt\{a\^\{\\mathinner\{b\_\{c\\over
+ x+y\}\}\}\}\$}'.
+
+*/
+
+void display_normal_noad(pointer p);
+void display_fence_noad(pointer p);
+void display_fraction_noad(pointer p);
+
+void show_math_node(pointer p)
+{
+ switch (type(p)) {
+ case style_node:
+ print_cmd_chr(math_style_cmd, subtype(p));
+ break;
+ case choice_node:
+ tprint_esc("mathchoice");
+ append_char('D');
+ show_node_list(display_mlist(p));
+ flush_char();
+ append_char('T');
+ show_node_list(text_mlist(p));
+ flush_char();
+ append_char('S');
+ show_node_list(script_mlist(p));
+ flush_char();
+ append_char('s');
+ show_node_list(script_script_mlist(p));
+ flush_char();
+ break;
+ case simple_noad:
+ case radical_noad:
+ case accent_noad:
+ display_normal_noad(p);
+ break;
+ case fence_noad:
+ display_fence_noad(p);
+ break;
+ case fraction_noad:
+ display_fraction_noad(p);
+ break;
+ default:
+ tprint("Unknown node type!");
+ break;
+ }
+}
+
+/*tex Here are some simple routines used in the display of noads. */
+
+static void print_fam_and_char(pointer p)
+{
+ tprint_esc("fam");
+ print_int(math_fam(p));
+ print_char(' ');
+ print(math_character(p));
+}
+
+static void print_delimiter(pointer p)
+{
+ int a;
+ if (delimiteroptionset(p)) {
+ tprint(" [ ");
+ if (delimiteraxis(p))
+ tprint("axis ");
+ if (delimiternoaxis(p))
+ tprint("noaxis ");
+ if (delimiterexact(p))
+ tprint("exact ");
+ tprint("]");
+ }
+ if (delimiterheight(p)) {
+ tprint("height=");
+ print_scaled(delimiterheight(p));
+ tprint(" ");
+ }
+ if (delimiterdepth(p)) {
+ tprint("depth=");
+ print_scaled(delimiterdepth(p));
+ tprint(" ");
+ }
+ if (delimiterclass(p)) {
+ tprint("class=");
+ print_int(delimiterclass(p));
+ tprint(" ");
+ }
+ if (small_fam(p) < 0) {
+ /*tex This should never happen. */
+ print_int(-1);
+ } else if (small_fam(p) < 16 && large_fam(p) < 16 && small_char(p) < 256 && large_char(p) < 256) {
+ /*tex Traditional tex style. */
+ a = small_fam(p) * 256 + small_char(p);
+ a = a * 0x1000 + large_fam(p) * 256 + large_char(p);
+ print_qhex(a);
+ } else if ((large_fam(p) == 0 && large_char(p) == 0) || small_char(p) > 65535 || large_char(p) > 65535) {
+ /*tex \LUATEX\ style. */
+ print_qhex(small_fam(p));
+ print_qhex(small_char(p));
+ }
+}
+
+/*tex
+
+ The next subroutine will descend to another level of recursion when a
+ subsidiary mlist needs to be displayed. The parameter |c| indicates what
+ character is to become part of the recursion history. An empty mlist is
+ distinguished from a missing field, because these are not equivalent (as
+ explained above).
+
+*/
+
+static void print_subsidiary_data(pointer p, ASCII_code c)
+{
+ if ((int) cur_length >= depth_threshold) {
+ if (p != null)
+ tprint(" []");
+ } else {
+ /*tex Include |c| in the recursion history. */
+ append_char(c);
+ if (p != null) {
+ switch (type(p)) {
+ case math_char_node:
+ print_ln();
+ print_current_string();
+ print_fam_and_char(p);
+ break;
+ case sub_box_node:
+ show_node_list(math_list(p));
+ break;
+ case sub_mlist_node:
+ if (math_list(p) == null) {
+ print_ln();
+ print_current_string();
+ tprint("{}");
+ } else {
+ show_node_list(math_list(p));
+ }
+ break;
+ }
+ }
+ /*tex Remove |c| from the recursion history. */
+ flush_char();
+ }
+}
+
+void display_normal_noad(pointer p)
+{
+ switch (type(p)) {
+ case simple_noad:
+ switch (subtype(p)) {
+ case ord_noad_type:
+ tprint_esc("mathord");
+ break;
+ case op_noad_type_normal:
+ case op_noad_type_limits:
+ case op_noad_type_no_limits:
+ tprint_esc("mathop");
+ if (subtype(p) == op_noad_type_limits)
+ tprint_esc("limits");
+ else if (subtype(p) == op_noad_type_no_limits)
+ tprint_esc("nolimits");
+ break;
+ case bin_noad_type:
+ tprint_esc("mathbin");
+ break;
+ case rel_noad_type:
+ tprint_esc("mathrel");
+ break;
+ case open_noad_type:
+ tprint_esc("mathopen");
+ break;
+ case close_noad_type:
+ tprint_esc("mathclose");
+ break;
+ case punct_noad_type:
+ tprint_esc("mathpunct");
+ break;
+ case inner_noad_type:
+ tprint_esc("mathinner");
+ break;
+ case over_noad_type:
+ tprint_esc("overline");
+ break;
+ case under_noad_type:
+ tprint_esc("underline");
+ break;
+ case vcenter_noad_type:
+ tprint_esc("vcenter");
+ break;
+ default:
+ tprint("<unknown noad type!>");
+ break;
+ }
+ break;
+ case radical_noad:
+ if (subtype(p) == 6)
+ tprint_esc("Udelimiterover");
+ else if (subtype(p) == 5)
+ tprint_esc("Udelimiterunder");
+ else if (subtype(p) == 4)
+ tprint_esc("Uoverdelimiter");
+ else if (subtype(p) == 3)
+ tprint_esc("Uunderdelimiter");
+ else if (subtype(p) == 2)
+ tprint_esc("Uroot");
+ else
+ tprint_esc("radical");
+ print_delimiter(left_delimiter(p));
+ if (degree(p) != null) {
+ print_subsidiary_data(degree(p), '/');
+ }
+ if (radicalwidth(p)) {
+ tprint("width=");
+ print_scaled(radicalwidth(p));
+ tprint(" ");
+ }
+ if (radicaloptionset(p)) {
+ tprint(" [ ");
+ if (radicalexact(p))
+ tprint("exact ");
+ if (radicalleft(p))
+ tprint("left ");
+ if (radicalmiddle(p))
+ tprint("middle ");
+ if (radicalright(p))
+ tprint("right ");
+ tprint("]");
+ }
+ break;
+ case accent_noad:
+ if (top_accent_chr(p) != null) {
+ if (bot_accent_chr(p) != null) {
+ tprint_esc("Umathaccent both");
+ } else {
+ tprint_esc("Umathaccent");
+ }
+ } else if (bot_accent_chr(p) != null) {
+ tprint_esc("Umathaccent bottom");
+ } else {
+ tprint_esc("Umathaccent overlay");
+ }
+ if (accentfraction(p)) {
+ tprint(" fraction=");
+ print_int(accentfraction(p));
+ tprint(" ");
+ }
+ switch (subtype(p)) {
+ case 0:
+ if (top_accent_chr(p) != null) {
+ if (bot_accent_chr(p) != null) {
+ print_fam_and_char(top_accent_chr(p));
+ print_fam_and_char(bot_accent_chr(p));
+ } else {
+ print_fam_and_char(top_accent_chr(p));
+ }
+ } else if (bot_accent_chr(p) != null) {
+ print_fam_and_char(bot_accent_chr(p));
+ } else {
+ print_fam_and_char(overlay_accent_chr(p));
+ }
+ break;
+ case 1:
+ if (top_accent_chr(p) != null) {
+ tprint(" fixed ");
+ print_fam_and_char(top_accent_chr(p));
+ if (bot_accent_chr(p) != null) {
+ print_fam_and_char(bot_accent_chr(p));
+ }
+ } else {
+ confusion("display_accent_noad");
+ }
+ break;
+ case 2:
+ if (bot_accent_chr(p) != null) {
+ if (top_accent_chr(p) != null) {
+ print_fam_and_char(top_accent_chr(p));
+ }
+ tprint(" fixed ");
+ print_fam_and_char(bot_accent_chr(p));
+ } else{
+ confusion("display_accent_noad");
+ }
+ break;
+ case 3:
+ if (top_accent_chr(p) != null && bot_accent_chr(p) != null) {
+ tprint(" fixed ");
+ print_fam_and_char(top_accent_chr(p));
+ tprint(" fixed ");
+ print_fam_and_char(bot_accent_chr(p));
+ } else {
+ confusion("display_accent_noad");
+ }
+ break;
+ }
+ break;
+ }
+ print_subsidiary_data(nucleus(p), '.');
+ print_subsidiary_data(supscr(p), '^');
+ print_subsidiary_data(subscr(p), '_');
+}
+
+void display_fence_noad(pointer p)
+{
+ if (subtype(p) == right_noad_side)
+ tprint_esc("right");
+ else if (subtype(p) == left_noad_side)
+ tprint_esc("left");
+ else
+ tprint_esc("middle");
+ print_delimiter(delimiter(p));
+}
+
+void display_fraction_noad(pointer p)
+{
+ tprint_esc("fraction, thickness ");
+ if (thickness(p) == default_code)
+ tprint("= default");
+ else
+ print_scaled(thickness(p));
+ if ((left_delimiter(p) != null) &&
+ ((small_fam(left_delimiter(p)) != 0) || (small_char(left_delimiter(p)) != 0) ||
+ (large_fam(left_delimiter(p)) != 0) || (large_char(left_delimiter(p)) != 0))) {
+ tprint(", left-delimiter ");
+ print_delimiter(left_delimiter(p));
+ }
+ if ((right_delimiter(p) != null) &&
+ ((small_fam(right_delimiter(p)) != 0) || (small_char(right_delimiter(p)) != 0) ||
+ (large_fam(right_delimiter(p)) != 0) || (large_char(right_delimiter(p)) != 0))) {
+ tprint(", right-delimiter ");
+ print_delimiter(right_delimiter(p));
+ }
+ print_subsidiary_data(numerator(p), '\\');
+ print_subsidiary_data(denominator(p), '/');
+}
+
+/*tex
+
+ The routines that \TeX\ uses to create mlists are similar to those we have
+ just seen for the generation of hlists and vlists. But it is necessary to
+ make ``noads'' as well as nodes, so the reader should review the discussion
+ of math mode data structures before trying to make sense out of the following
+ program.
+
+ Here is a little routine that needs to be done whenever a subformula is about
+ to be processed. The parameter is a code like |math_group|.
+
+*/
+
+static void new_save_level_math(group_code c)
+{
+ set_saved_record(0, saved_textdir, 0, text_dir_ptr);
+ text_dir_ptr = new_dir(math_direction_par);
+ incr(save_ptr);
+ new_save_level(c);
+ eq_word_define(int_base + body_direction_code, math_direction_par);
+ eq_word_define(int_base + par_direction_code, math_direction_par);
+ eq_word_define(int_base + text_direction_code, math_direction_par);
+}
+
+static void push_math(group_code c, int mstyle)
+{
+ if (math_direction_par != text_direction_par)
+ dir_math_save = true;
+ push_nest();
+ mode = -mmode;
+ incompleat_noad_par = null;
+ m_style = mstyle;
+ new_save_level_math(c);
+}
+
+static void enter_ordinary_math(void)
+{
+ push_math(math_shift_group, text_style);
+ eq_word_define(int_base + cur_fam_code, -1);
+ if (every_math_par != null)
+ begin_token_list(every_math_par, every_math_text);
+}
+
+void enter_display_math(void);
+
+/*tex
+
+ We get into math mode from horizontal mode when a `\.\$' (i.e., a
+ |math_shift| character) is scanned. We must check to see whether this `\.\$'
+ is immediately followed by another, in case display math mode is called for.
+
+*/
+
+void init_math(void)
+{
+ if (cur_cmd == math_shift_cmd) {
+ /*tex |get_x_token| would fail on \.{\\ifmmode}\thinspace! */
+ get_token();
+ if ((cur_cmd == math_shift_cmd) && (mode > 0)) {
+ enter_display_math();
+ } else {
+ back_input();
+ enter_ordinary_math();
+ }
+ } else if (cur_cmd == math_shift_cs_cmd && cur_chr == display_style && (mode > 0)) {
+ enter_display_math();
+ } else if (cur_cmd == math_shift_cs_cmd && cur_chr == text_style) {
+ enter_ordinary_math();
+ } else {
+ you_cant();
+ }
+}
+
+/*tex
+
+ We get into ordinary math mode from display math mode when `\.{\\eqno}' or
+ `\.{\\leqno}' appears. In such cases |cur_chr| will be 0 or~1, respectively;
+ the value of |cur_chr| is placed onto |save_stack| for safe keeping.
+
+ When \TeX\ is in display math mode, |cur_group=math_shift_group|, so it is
+ not necessary for the |start_eq_no| procedure to test for this condition.
+
+*/
+
+void start_eq_no(void)
+{
+ set_saved_record(0, saved_eqno, 0, cur_chr);
+ incr(save_ptr);
+ enter_ordinary_math();
+}
+
+/*tex
+
+ Subformulas of math formulas cause a new level of math mode to be entered, on
+ the semantic nest as well as the save stack. These subformulas arise in
+ several ways: (1)~A left brace by itself indicates the beginning of a
+ subformula that will be put into a box, thereby freezing its glue and
+ preventing line breaks. (2)~A subscript or superscript is treated as a
+ subformula if it is not a single character; the same applies to the nucleus
+ of things like \.{\\underline}. (3)~The \.{\\left} primitive initiates a
+ subformula that will be terminated by a matching \.{\\right}. The group codes
+ placed on |save_stack| in these three cases are |math_group|, |math_group|,
+ and |math_left_group|, respectively.
+
+ Here is the code that handles case (1); the other cases are not quite as
+ trivial, so we shall consider them later.
+
+*/
+
+void math_left_brace(void)
+{
+ pointer q;
+ tail_append(new_noad());
+ q = new_node(math_char_node, 0);
+ nucleus(tail) = q;
+ back_input();
+ (void) scan_math(nucleus(tail), m_style);
+}
+
+/*tex
+
+ If the inline directions of \.{\\pardir} and \.{\\mathdir} are opposite, then
+ this function will return true. Discovering that fact is somewhat odd because
+ it needs traversal of the |save_stack|. The occurance of displayed equations
+ is weird enough that this is probably still better than having yet another
+ field in the |input_stack| structures.
+
+ None of this makes much sense if the inline direction of either one of
+ \.{\\pardir} or \.{\\mathdir} is vertical, but in that case the current math
+ machinery is ill suited anyway so I do not bother to test that.
+
+*/
+
+static boolean math_and_text_reversed_p(void)
+{
+ int i = save_ptr - 1;
+ while (save_type(i) != level_boundary)
+ i--;
+ while (i < save_ptr) {
+ if (save_type(i) == restore_old_value &&
+ save_value(i) == int_base + par_direction_code) {
+ if (textdir_opposite(math_direction_par, save_value(i - 1)))
+ return true;
+ }
+ i++;
+ }
+ return false;
+}
+
+/*tex
+
+ When we enter display math mode, we need to call |line_break| to process the
+ partial paragraph that has just been interrupted by the display. Then we can
+ set the proper values of |display_width| and |display_indent| and
+ |pre_display_size|.
+
+*/
+
+void enter_display_math(void)
+{
+ /*tex new or partial |pre_display_size| */
+ scaled w;
+ /*tex new |display_width| */
+ scaled l;
+ /*tex new |display_indent| */
+ scaled s;
+ pointer p;
+ /*tex scope of paragraph shape specification */
+ int n;
+ /*tex
+
+ `\.{\\noindent\$\$}' or `\.{\$\${ }\$\$}' or the 2nd of \.{\$\${ }\$\$}
+ \.{\$\${ }\$\$}
+
+ */
+ if (head == tail ||
+ (vlink(head) == tail &&
+ type(tail) == local_par_node && vlink(tail) == null)) {
+ if (vlink(head) == tail) {
+ /*tex
+
+ |resume_after_display| inserts a |local_par_node|, but if there
+ is another display immediately following, we have to get rid of
+ that node.
+
+ */
+ flush_node(tail);
+ }
+ pop_nest();
+ w = -max_dimen;
+ } else {
+ line_break(true, math_shift_group);
+ w = actual_box_width(just_box, x_over_n(quad(get_cur_font()),1000) * math_pre_display_gap_factor_par);
+ }
+ /*tex
+
+ Now we are in vertical mode, working on the list that will contain the
+ display. A displayed equation is considered to be three lines long, so we
+ calculate the length and offset of line number |prev_graf+2|.
+
+ */
+ if (par_shape_par_ptr == null) {
+ if ((hang_indent_par != 0) && (((hang_after_par >= 0) && (prev_graf_par + 2 > hang_after_par)) || (prev_graf_par + 1 < -hang_after_par))) {
+ halfword used_hang_indent = swap_hang_indent(hang_indent_par);
+ l = hsize_par - abs(used_hang_indent);
+ if (used_hang_indent > 0)
+ s = used_hang_indent;
+ else
+ s = 0;
+ } else {
+ l = hsize_par;
+ s = 0;
+ }
+ } else {
+ n = vinfo(par_shape_par_ptr + 1);
+ if (prev_graf_par + 2 >= n)
+ p = par_shape_par_ptr + 2 * n + 1;
+ else
+ p = par_shape_par_ptr + 2 * (prev_graf_par + 2) + 1;
+ s = varmem[(p - 1)].cint;
+ l = varmem[p].cint;
+ s = swap_parshape_indent(s,l);
+ }
+ push_math(math_shift_group, display_style);
+ mode = mmode;
+ eq_word_define(int_base + cur_fam_code, -1);
+ eq_word_define(dimen_base + pre_display_size_code, w);
+ eq_word_define(dimen_base + display_width_code, l);
+ eq_word_define(dimen_base + display_indent_code, s);
+ eq_word_define(int_base + pre_display_direction_code, (math_and_text_reversed_p() ? -1 : 0));
+ if (every_display_par != null)
+ begin_token_list(every_display_par, every_display_text);
+ if (nest_ptr == 1) {
+ checked_page_filter(before_display);
+ build_page();
+ }
+}
+
+/*tex
+
+ The next routine parses all variations of a delimiter code. The |extcode|
+ tells what syntax form to use (\TeX, XeTeX, XeTeXnum, ...) , the |doclass|
+ tells whether or not read a math class also (for \.{\\delimiter} c.s.). (the
+ class is passed on for conversion to \.{\\mathchar}).
+
+*/
+
+static delcodeval do_scan_extdef_del_code(int extcode, boolean doclass)
+{
+ const char *hlp[] = {
+ "I'm going to use 0 instead of that illegal code value.",
+ NULL
+ };
+ delcodeval d;
+ int mcls = 0, msfam = 0, mschr = 0, mlfam = 0, mlchr = 0;
+ if (extcode == tex_mathcode) {
+ /*tex
+
+ \.{\\delcode}, this is the easiest
+
+ */
+ scan_int();
+ /*tex "MFCCFCC or "FCCFCC */
+ if (doclass) {
+ mcls = (cur_val / 0x1000000);
+ cur_val = (cur_val & 0xFFFFFF);
+ }
+ if (cur_val > 0xFFFFFF) {
+ tex_error("Invalid delimiter code", hlp);
+ cur_val = 0;
+ }
+ msfam = (cur_val / 0x100000);
+ mschr = (cur_val % 0x100000) / 0x1000;
+ mlfam = (cur_val & 0xFFF) / 0x100;
+ mlchr = (cur_val % 0x100);
+ } else if (extcode == umath_mathcode) {
+ /*tex
+
+ \.{\\Udelcode}: <0-7>,<0-0xFF>,<0-0x10FFFF> or <0-0xFF>,<0-0x10FFFF>
+
+ */
+ if (doclass) {
+ scan_int();
+ mcls = cur_val;
+ }
+ scan_int();
+ msfam = cur_val;
+ scan_char_num();
+ mschr = cur_val;
+ if (msfam < 0 || msfam > 255) {
+ tex_error("Invalid delimiter code", hlp);
+ msfam = 0;
+ mschr = 0;
+ }
+ mlfam = 0;
+ mlchr = 0;
+ } else if (extcode == umathnum_mathcode) {
+ /*tex
+
+ \.{\\Udelcodenum}:"FF<21bits>; the largest numeric value is $2^29-1$,
+ but the top of bit 21 can't be used as it contains invalid USV's.
+
+ */
+ if (doclass) { /* such a primitive doesn't exist */
+ confusion("umathnum_mathcode");
+ }
+ scan_int();
+ msfam = (cur_val / 0x200000);
+ mschr = cur_val & 0x1FFFFF;
+ if (msfam < 0 || msfam > 255 || mschr > 0x10FFFF) {
+ tex_error("Invalid delimiter code", hlp);
+ msfam = 0;
+ mschr = 0;
+ }
+ mlfam = 0;
+ mlchr = 0;
+ } else {
+ /*tex Something's gone wrong! */
+ confusion("unknown_extcode");
+ }
+ d.class_value = mcls;
+ d.small_family_value = msfam;
+ d.small_character_value = mschr;
+ d.large_family_value = mlfam;
+ d.large_character_value = mlchr;
+ return d;
+}
+
+void scan_extdef_del_code(int level, int extcode)
+{
+ delcodeval d;
+ int p;
+ scan_char_num();
+ p = cur_val;
+ scan_optional_equals();
+ d = do_scan_extdef_del_code(extcode, false);
+ set_del_code(p, d.small_family_value, d.small_character_value,
+ d.large_family_value, d.large_character_value, (quarterword) (level));
+}
+
+mathcodeval scan_mathchar(int extcode)
+{
+ char errstr[255] = { 0 };
+ const char *hlp[] = {
+ "I'm going to use 0 instead of that illegal code value.",
+ NULL
+ };
+ mathcodeval d;
+ int mcls = 0, mfam = 0, mchr = 0;
+ if (extcode == tex_mathcode) {
+ /*tex \.{\\mathcode}: "TFCC */
+ scan_int();
+ if (cur_val > 0x8000) {
+ /*tex Needed for latex: fallback to umathnum_mathcode. */
+ mfam = (cur_val / 0x200000) & 0x7FF;
+ mcls = mfam % 0x08;
+ mfam = mfam / 0x08;
+ mchr = cur_val & 0x1FFFFF;
+ if (mchr > 0x10FFFF) {
+ tex_error("Invalid math code during > 0x8000 mathcode fallback", hlp);
+ mcls = 0;
+ mfam = 0;
+ mchr = 0;
+ }
+ } else {
+ if (cur_val < 0) {
+ snprintf(errstr, 255, "Bad mathchar (%d)", (int)cur_val);
+ tex_error(errstr, hlp);
+ cur_val = 0;
+ }
+ mcls = (cur_val / 0x1000);
+ mfam = ((cur_val % 0x1000) / 0x100);
+ mchr = (cur_val % 0x100);
+ }
+ } else if (extcode == umath_mathcode) {
+ /*tex <0-0x7> <0-0xFF> <0-0x10FFFF> */
+ scan_int();
+ mcls = cur_val;
+ scan_int();
+ mfam = cur_val;
+ scan_char_num();
+ mchr = cur_val;
+ if (mcls < 0 || mcls > 7 || mfam > 255) {
+ tex_error("Invalid math code", hlp);
+ mchr = 0;
+ mfam = 0;
+ mcls = 0;
+ }
+ } else if (extcode == umathnum_mathcode) {
+ /*tex
+
+ "FFT<21bits>: the largest numeric value is $2^32-1$, but the top of
+ bit 21 can't be used as it contains invalid USV's
+
+ Note: |scan_int| won't accept families 128-255 because these use bit 32
+
+ */
+ scan_int();
+ mfam = (cur_val / 0x200000) & 0x7FF;
+ mcls = mfam % 0x08;
+ mfam = mfam / 0x08;
+ mchr = cur_val & 0x1FFFFF;
+ if (mchr > 0x10FFFF) {
+ tex_error("Invalid math code", hlp);
+ mcls = 0;
+ mfam = 0;
+ mchr = 0;
+ }
+ } else {
+ /*tex Something's gone wrong. */
+ confusion("unknown_extcode");
+ }
+ d.class_value = mcls;
+ d.family_value = mfam;
+ d.character_value = mchr;
+ return d;
+}
+
+void scan_extdef_math_code(int level, int extcode)
+{
+ mathcodeval d;
+ int p;
+ scan_char_num();
+ p = cur_val;
+ scan_optional_equals();
+ d = scan_mathchar(extcode);
+ set_math_code(p, d.class_value, d.family_value, d.character_value, (quarterword) (level));
+}
+
+/*tex This reads in a delcode when actually a mathcode is needed. */
+
+mathcodeval scan_delimiter_as_mathchar(int extcode)
+{
+ delcodeval dval;
+ mathcodeval mval;
+ dval = do_scan_extdef_del_code(extcode, true);
+ mval.class_value = dval.class_value;
+ mval.family_value = dval.small_family_value;
+ mval.character_value = dval.small_character_value;
+ return mval;
+}
+
+/*tex
+
+ Recall that the |nucleus|, |subscr|, and |supscr| fields in a noad are broken
+ down into subfields called |type| and either |math_list| or
+ |(math_fam,math_character)|. The job of |scan_math| is to figure out what to
+ place in one of these principal fields; it looks at the subformula that comes
+ next in the input, and places an encoding of that subformula into a given
+ word of |mem|.
+
+*/
+
+#define get_next_nb_nr() do { get_x_token(); } while (cur_cmd==spacer_cmd||cur_cmd==relax_cmd)
+
+int scan_math_style(pointer p, int mstyle)
+{
+ get_next_nb_nr();
+ back_input();
+ scan_left_brace();
+ set_saved_record(0, saved_math, 0, p);
+ incr(save_ptr);
+ push_math(math_group, mstyle);
+ return 1;
+}
+
+int scan_math(pointer p, int mstyle)
+{
+ mathcodeval mval = { 0, 0, 0 };
+ assert(p != null);
+ RESTART:
+ get_next_nb_nr();
+ RESWITCH:
+ switch (cur_cmd) {
+ case letter_cmd:
+ case other_char_cmd:
+ case char_given_cmd:
+ mval = get_math_code(cur_chr);
+ if (mval.class_value == 8) {
+ /*tex An active character that is an |outer_call| is allowed here. */
+ cur_cs = active_to_cs(cur_chr, true);
+ cur_cmd = eq_type(cur_cs);
+ cur_chr = equiv(cur_cs);
+ x_token();
+ back_input();
+ goto RESTART;
+ }
+ break;
+ case char_num_cmd:
+ scan_char_num();
+ cur_chr = cur_val;
+ cur_cmd = char_given_cmd;
+ goto RESWITCH;
+ break;
+ case math_char_num_cmd:
+ if (cur_chr == 0)
+ mval = scan_mathchar(tex_mathcode);
+ else if (cur_chr == 1)
+ mval = scan_mathchar(umath_mathcode);
+ else if (cur_chr == 2)
+ mval = scan_mathchar(umathnum_mathcode);
+ else
+ confusion("scan_math");
+ break;
+ case math_given_cmd:
+ mval = mathchar_from_integer(cur_chr, tex_mathcode);
+ break;
+ case xmath_given_cmd:
+ mval = mathchar_from_integer(cur_chr, umath_mathcode);
+ break;
+ case delim_num_cmd:
+ if (cur_chr == 0)
+ mval = scan_delimiter_as_mathchar(tex_mathcode);
+ else if (cur_chr == 1)
+ mval = scan_delimiter_as_mathchar(umath_mathcode);
+ else
+ confusion("scan_math");
+ break;
+ default:
+ /*tex
+
+ The pointer |p| is placed on |save_stack| while a complex subformula
+ is being scanned.
+
+ */
+ back_input();
+ scan_left_brace();
+ set_saved_record(0, saved_math, 0, p);
+ incr(save_ptr);
+ push_math(math_group, mstyle);
+ return 1;
+ }
+ type(p) = math_char_node;
+ math_character(p) = mval.character_value;
+ if ((mval.class_value == math_use_current_family_code) && cur_fam_par_in_range)
+ math_fam(p) = cur_fam_par;
+ else
+ math_fam(p) = mval.family_value;
+ return 0;
+}
+
+/*tex
+
+ The |set_math_char| procedure creates a new noad appropriate to a given math
+ code, and appends it to the current mlist. However, if the math code is
+ sufficiently large, the |cur_chr| is treated as an active character and
+ nothing is appended.
+
+*/
+
+#define math_class_to_type(target,source) \
+ switch (source) { \
+ case 0: target = ord_noad_type; break; \
+ case 1: target = op_noad_type_normal; break; \
+ case 2: target = bin_noad_type; break; \
+ case 3: target = rel_noad_type; break; \
+ case 4: target = open_noad_type; break; \
+ case 5: target = close_noad_type; break; \
+ case 6: target = punct_noad_type; break; \
+ }
+
+void set_math_char(mathcodeval mval)
+{
+ pointer p;
+ if (mval.class_value == 8) {
+ /*tex An active character that is an |outer_call| is allowed here */
+ cur_cs = active_to_cs(cur_chr, true);
+ cur_cmd = eq_type(cur_cs);
+ cur_chr = equiv(cur_cs);
+ x_token();
+ back_input();
+ } else {
+ pointer q;
+ p = new_noad();
+ q = new_node(math_char_node, 0);
+ nucleus(p) = q;
+ math_character(nucleus(p)) = mval.character_value;
+ math_fam(nucleus(p)) = mval.family_value;
+ if (mval.class_value == math_use_current_family_code) {
+ if (cur_fam_par_in_range)
+ math_fam(nucleus(p)) = cur_fam_par;
+ subtype(p) = ord_noad_type;
+ } else {
+ math_class_to_type(subtype(p),mval.class_value);
+ }
+ vlink(tail) = p;
+ tail = p;
+ }
+}
+
+/*tex
+
+ The |math_char_in_text| procedure creates a new node representing a math char
+ in text code, and appends it to the current list. However, if the math code
+ is sufficiently large, the |cur_chr| is treated as an active character and
+ nothing is appended.
+
+*/
+
+void math_char_in_text(mathcodeval mval)
+{
+ pointer p;
+ if (mval.class_value == 8) {
+ /*tex An active character that is an |outer_call| is allowed here */
+ cur_cs = active_to_cs(cur_chr, true);
+ cur_cmd = eq_type(cur_cs);
+ cur_chr = equiv(cur_cs);
+ x_token();
+ back_input();
+ } else {
+ p = new_char(fam_fnt(mval.family_value, text_size), mval.character_value);
+ vlink(tail) = p;
+ tail = p;
+ }
+}
+
+void math_math_comp(void)
+{
+ pointer q;
+ tail_append(new_noad());
+ subtype(tail) = (quarterword) cur_chr;
+ q = new_node(math_char_node, 0);
+ nucleus(tail) = q;
+ if (cur_chr == over_noad_type)
+ (void) scan_math(nucleus(tail), cramped_style(m_style));
+ else
+ (void) scan_math(nucleus(tail), m_style);
+}
+
+void math_limit_switch(void)
+{
+ const char *hlp[] = {
+ "I'm ignoring this misplaced \\limits or \\nolimits command.",
+ NULL
+ };
+ if (head != tail) {
+ if (type(tail) == simple_noad &&
+ (subtype(tail) == op_noad_type_normal ||
+ subtype(tail) == op_noad_type_limits ||
+ subtype(tail) == op_noad_type_no_limits)) {
+ subtype(tail) = (quarterword) cur_chr;
+ return;
+ }
+ }
+ tex_error("Limit controls must follow a math operator", hlp);
+}
+
+/*tex
+
+ Delimiter fields of noads are filled in by the |scan_delimiter| routine. The
+ first parameter of this procedure is the |mem| address where the delimiter
+ is to be placed; the second tells if this delimiter follows \.{\\radical} or
+ not.
+
+*/
+
+static void scan_delimiter(pointer p, int r)
+{
+ delcodeval dval = { 0, 0, 0, 0, 0 };
+ if (r == tex_mathcode) {
+ /*tex \.{\\radical} */
+ dval = do_scan_extdef_del_code(tex_mathcode, true);
+ } else if (r == umath_mathcode) {
+ /*tex \.{\\Uradical} */
+ dval = do_scan_extdef_del_code(umath_mathcode, false);
+ } else if (r == no_mathcode) {
+ get_next_nb_nr();
+ switch (cur_cmd) {
+ case letter_cmd:
+ case other_char_cmd:
+ dval = get_del_code(cur_chr);
+ break;
+ case delim_num_cmd:
+ if (cur_chr == 0) {
+ /*tex \.{\\delimiter} */
+ dval = do_scan_extdef_del_code(tex_mathcode, true);
+ } else if (cur_chr == 1) {
+ /*tex \.{\\Udelimiter} */
+ dval = do_scan_extdef_del_code(umath_mathcode, true);
+ } else {
+ confusion("scan_delimiter1");
+ }
+ break;
+ default:
+ dval.small_family_value = -1;
+ break;
+ }
+ } else {
+ confusion("scan_delimiter2");
+ }
+ if (p == null)
+ return;
+ if (dval.small_family_value < 0) {
+ const char *hlp[] = {
+ "I was expecting to see something like `(' or `\\{' or",
+ "`\\}' here. If you typed, e.g., `{' instead of `\\{', you",
+ "should probably delete the `{' by typing `1' now, so that",
+ "braces don't get unbalanced. Otherwise just proceed",
+ "Acceptable delimiters are characters whose \\delcode is",
+ "nonnegative, or you can use `\\delimiter <delimiter code>'.",
+ NULL
+ };
+ back_error("Missing delimiter (. inserted)", hlp);
+ small_fam(p) = 0;
+ small_char(p) = 0;
+ large_fam(p) = 0;
+ large_char(p) = 0;
+ } else {
+ small_fam(p) = dval.small_family_value;
+ small_char(p) = dval.small_character_value;
+ large_fam(p) = dval.large_family_value;
+ large_char(p) = dval.large_character_value;
+ }
+ return;
+}
+
+void math_radical(void)
+{
+ halfword q;
+ int chr_code = cur_chr;
+ halfword options = 0;
+ tail_append(new_node(radical_noad, chr_code));
+ q = new_node(delim_node, 0);
+ left_delimiter(tail) = q;
+ while (1) {
+ if (scan_keyword("width")) {
+ scan_dimen(false,false,false);
+ radicalwidth(tail) = cur_val ;
+ } else if (scan_keyword("left")) {
+ options = options | noad_option_left ;
+ } else if (scan_keyword("middle")) {
+ options = options | noad_option_middle ;
+ } else if (scan_keyword("right")) {
+ options = options | noad_option_right ;
+ } else {
+ break;
+ }
+ }
+ radicaloptions(tail) = options;
+ if (chr_code == 0)
+ /*tex \.{\\radical} */
+ scan_delimiter(left_delimiter(tail), tex_mathcode);
+ else if (chr_code == 1)
+ /*tex \.{\\Uradical} */
+ scan_delimiter(left_delimiter(tail), umath_mathcode);
+ else if (chr_code == 2)
+ /*tex \.{\\Uroot} */
+ scan_delimiter(left_delimiter(tail), umath_mathcode);
+ else if (chr_code == 3)
+ /*tex \.{\\Uunderdelimiter} */
+ scan_delimiter(left_delimiter(tail), umath_mathcode);
+ else if (chr_code == 4)
+ /*tex \.{\\Uoverdelimiter} */
+ scan_delimiter(left_delimiter(tail), umath_mathcode);
+ else if (chr_code == 5)
+ /*tex \.{\\Udelimiterunder} */
+ scan_delimiter(left_delimiter(tail), umath_mathcode);
+ else if (chr_code == 6)
+ /*tex \.{\\Udelimiterover} */
+ scan_delimiter(left_delimiter(tail), umath_mathcode);
+ else if (chr_code == 7)
+ /*tex \.{\\Uhextensible} */
+ scan_delimiter(left_delimiter(tail), umath_mathcode);
+ else
+ confusion("math_radical");
+ if (chr_code == 7) {
+ /*tex type will change */
+ q = new_node(sub_box_node, 0);
+ nucleus(tail) = q;
+ return;
+ } else if (chr_code == 2) {
+ /*tex
+
+ The trick with the |vlink(q)| is used by |scan_math| to decide
+ whether it needs to go on.
+
+ */
+ q = new_node(math_char_node, 0);
+ vlink(q) = tail;
+ degree(tail) = q;
+ if (!scan_math(degree(tail), sup_sup_style(m_style))) {
+ vlink(degree(tail)) = null;
+ q = new_node(math_char_node, 0);
+ nucleus(tail) = q;
+ (void) scan_math(nucleus(tail), cramped_style(m_style));
+ }
+ } else {
+ q = new_node(math_char_node, 0);
+ nucleus(tail) = q;
+ (void) scan_math(nucleus(tail), cramped_style(m_style));
+ }
+}
+
+void math_ac(void)
+{
+ halfword q;
+ mathcodeval t = { 0, 0, 0 };
+ mathcodeval b = { 0, 0, 0 };
+ mathcodeval o = { 0, 0, 0 };
+ if (cur_cmd == accent_cmd) {
+ const char *hlp[] = {
+ "I'm changing \\accent to \\mathaccent here; wish me luck.",
+ "(Accents are not the same in formulas as they are in text.)",
+ NULL
+ };
+ tex_error("Please use \\mathaccent for accents in math mode", hlp);
+ }
+ tail_append(new_node(accent_noad, 0));
+ if (cur_chr == 0) {
+ /*tex \.{\\mathaccent} */
+ t = scan_mathchar(tex_mathcode);
+ } else if (cur_chr == 1) {
+ /*tex \.{\\Umathaccent} */
+ if (scan_keyword("fixed")) {
+ /*tex top */
+ subtype(tail) = 1;
+ t = scan_mathchar(umath_mathcode);
+ } else if (scan_keyword("both")) {
+ /*tex top bottom */
+ if (scan_keyword("fixed")) {
+ subtype(tail) = 1;
+ }
+ t = scan_mathchar(umath_mathcode);
+ if (scan_keyword("fixed")) {
+ subtype(tail) += 2;
+ }
+ b = scan_mathchar(umath_mathcode);
+ } else if (scan_keyword("bottom")) {
+ /*tex bottom */
+ if (scan_keyword("fixed")) {
+ subtype(tail) = 2;
+ }
+ b = scan_mathchar(umath_mathcode);
+ } else if (scan_keyword("top")) {
+ /*tex top */
+ if (scan_keyword("fixed")) {
+ subtype(tail) = 1;
+ }
+ t = scan_mathchar(umath_mathcode);
+ } else if (scan_keyword("overlay")) {
+ /* overlay */
+ if (scan_keyword("fixed")) {
+ subtype(tail) = 1;
+ }
+ o = scan_mathchar(umath_mathcode);
+ } else {
+ /*tex top */
+ t = scan_mathchar(umath_mathcode);
+ }
+ if (scan_keyword("fraction")) {
+ scan_int();
+ accentfraction(tail) = cur_val;
+ }
+ } else {
+ confusion("mathaccent");
+ }
+ if (!(t.character_value == 0 && t.family_value == 0)) {
+ q = new_node(math_char_node, 0);
+ top_accent_chr(tail) = q;
+ math_character(top_accent_chr(tail)) = t.character_value;
+ if ((t.class_value == math_use_current_family_code) && cur_fam_par_in_range)
+ math_fam(top_accent_chr(tail)) = cur_fam_par;
+ else
+ math_fam(top_accent_chr(tail)) = t.family_value;
+ }
+ if (!(b.character_value == 0 && b.family_value == 0)) {
+ q = new_node(math_char_node, 0);
+ bot_accent_chr(tail) = q;
+ math_character(bot_accent_chr(tail)) = b.character_value;
+ if ((b.class_value == math_use_current_family_code) && cur_fam_par_in_range)
+ math_fam(bot_accent_chr(tail)) = cur_fam_par;
+ else
+ math_fam(bot_accent_chr(tail)) = b.family_value;
+ }
+ if (!(o.character_value == 0 && o.family_value == 0)) {
+ q = new_node(math_char_node, 0);
+ overlay_accent_chr(tail) = q;
+ math_character(overlay_accent_chr(tail)) = o.character_value;
+ if ((o.class_value == math_use_current_family_code) && cur_fam_par_in_range)
+ math_fam(overlay_accent_chr(tail)) = cur_fam_par;
+ else
+ math_fam(overlay_accent_chr(tail)) = o.family_value;
+ }
+ q = new_node(math_char_node, 0);
+ nucleus(tail) = q;
+ (void) scan_math(nucleus(tail), cramped_style(m_style));
+}
+
+pointer math_vcenter_group(pointer p)
+{
+ pointer q, r;
+ q = new_noad();
+ subtype(q) = vcenter_noad_type;
+ r = new_node(sub_box_node, 0);
+ nucleus(q) = r;
+ math_list(nucleus(q)) = p;
+ return q;
+}
+
+/*tex
+
+ The routine that scans the four mlists of a \.{\\mathchoice} is very much
+ like the routine that builds discretionary nodes.
+
+*/
+
+void append_choices(void)
+{
+ tail_append(new_choice());
+ incr(save_ptr);
+ set_saved_record(-1, saved_choices, 0, 0);
+ push_math(math_choice_group, display_style);
+ scan_left_brace();
+}
+
+void build_choices(void)
+{
+ pointer p;
+ int prev_style;
+ prev_style = m_style;
+ unsave_math();
+ p = fin_mlist(null);
+ assert(saved_type(-1) == saved_choices);
+ switch (saved_value(-1)) {
+ case 0:
+ display_mlist(tail) = p;
+ break;
+ case 1:
+ text_mlist(tail) = p;
+ break;
+ case 2:
+ script_mlist(tail) = p;
+ break;
+ case 3:
+ script_script_mlist(tail) = p;
+ decr(save_ptr);
+ return;
+ break;
+ }
+ set_saved_record(-1, saved_choices, 0, (saved_value(-1) + 1));
+ push_math(math_choice_group, (prev_style + 2));
+ scan_left_brace();
+}
+
+/*tex
+
+ Subscripts and superscripts are attached to the previous nucleus by the
+ action procedure called |sub_sup|.
+
+*/
+
+static void do_sub_sup(int no)
+{
+ pointer q;
+ if (tail == head || (!scripts_allowed(tail))) {
+ tail_append(new_noad());
+ q = new_node(sub_mlist_node, 0);
+ nucleus(tail) = q;
+ }
+ if (cur_cmd == sup_mark_cmd || cur_chr == sup_mark_cmd) {
+ /*tex |super_sub_script| */
+ if (supscr(tail) != null) {
+ const char *hlp[] = {
+ "I treat `x^1^2' essentially like `x^1{}^2'.", NULL
+ };
+ tail_append(new_noad());
+ q = new_node(sub_mlist_node, 0);
+ nucleus(tail) = q;
+ tex_error("Double superscript", hlp);
+ }
+ if (no) {
+ noadoptions(tail) = noadoptions(tail) | noad_option_no_super_script ;
+ }
+ q = new_node(math_char_node, 0);
+ supscr(tail) = q;
+ (void) scan_math(supscr(tail), sup_style(m_style));
+ } else if (cur_cmd == sub_mark_cmd || cur_chr == sub_mark_cmd) {
+ if (subscr(tail) != null) {
+ const char *hlp[] = {
+ "I treat `x_1_2' essentially like `x_1{}_2'.", NULL
+ };
+ tail_append(new_noad());
+ q = new_node(sub_mlist_node, 0);
+ nucleus(tail) = q;
+ tex_error("Double subscript", hlp);
+ }
+ if (no) {
+ noadoptions(tail) = noadoptions(tail) | noad_option_no_sub_script ;
+ }
+ q = new_node(math_char_node, 0);
+ subscr(tail) = q;
+ (void) scan_math(subscr(tail), sub_style(m_style));
+ }
+}
+
+void sub_sup(void)
+{
+ do_sub_sup(0);
+}
+
+void no_sub_sup(void)
+{
+ do_sub_sup(1);
+}
+
+/*tex
+
+ An operation like `\.{\\over}' causes the current mlist to go into a state of
+ suspended animation: |incompleat_noad| points to a |fraction_noad| that
+ contains the mlist-so-far as its numerator, while the denominator is yet to
+ come. Finally when the mlist is finished, the denominator will go into the
+ incompleat fraction noad, and that noad will become the whole formula, unless
+ it is surrounded by `\.{\\left}' and `\.{\\right}' delimiters.
+
+*/
+
+void math_fraction(void)
+{
+ /*tex The type of generalized fraction we are scanning: */
+ halfword c;
+ pointer q;
+ halfword options = 0;
+ halfword temp_value;
+ c = cur_chr;
+ if (incompleat_noad_par != null) {
+ const char *hlp[] = {
+ "I'm ignoring this fraction specification, since I don't",
+ "know whether a construction like `x \\over y \\over z'",
+ "means `{x \\over y} \\over z' or `x \\over {y \\over z}'.",
+ NULL
+ };
+ if (c >= delimited_code) {
+ scan_delimiter(null, no_mathcode);
+ scan_delimiter(null, no_mathcode);
+ }
+ if ((c % delimited_code) == above_code)
+ scan_normal_dimen();
+ tex_error("Ambiguous; you need another { and }", hlp);
+ } else {
+ incompleat_noad_par = new_node(fraction_noad, 0);
+ temp_value = new_node(sub_mlist_node, 0);
+ numerator(incompleat_noad_par) = temp_value;
+ math_list(numerator(incompleat_noad_par)) = vlink(head);
+ vlink(head) = null;
+ tail = head;
+ m_style = cramped_style(m_style);
+
+ if ((c % delimited_code) == skewed_code) {
+ q = new_node(delim_node, 0);
+ middle_delimiter(incompleat_noad_par) = q;
+ scan_delimiter(middle_delimiter(incompleat_noad_par), no_mathcode);
+ }
+ if (c >= delimited_code) {
+ q = new_node(delim_node, 0);
+ left_delimiter(incompleat_noad_par) = q;
+ q = new_node(delim_node, 0);
+ right_delimiter(incompleat_noad_par) = q;
+ scan_delimiter(left_delimiter(incompleat_noad_par), no_mathcode);
+ scan_delimiter(right_delimiter(incompleat_noad_par), no_mathcode);
+ }
+ switch (c % delimited_code) {
+ case above_code:
+ while (1) {
+ if (scan_keyword("exact")) {
+ options = options | noad_option_exact ;
+ } else {
+ break;
+ }
+ }
+ fractionoptions(incompleat_noad_par) = options;
+ scan_normal_dimen();
+ thickness(incompleat_noad_par) = cur_val;
+ break;
+ case over_code:
+ thickness(incompleat_noad_par) = default_code;
+ break;
+ case atop_code:
+ thickness(incompleat_noad_par) = 0;
+ break;
+ case skewed_code:
+ while (1) {
+ if (scan_keyword("exact")) {
+ options = options | noad_option_exact ;
+ } else if (scan_keyword("noaxis")) {
+ options = options | noad_option_no_axis ;
+ } else {
+ break;
+ }
+ }
+ fractionoptions(incompleat_noad_par) = options;
+ thickness(incompleat_noad_par) = 0;
+ break;
+ }
+ }
+}
+
+/*tex
+
+ At the end of a math formula or subformula, the |fin_mlist| routine is called
+ upon to return a pointer to the newly completed mlist, and to pop the nest
+ back to the enclosing semantic level. The parameter to |fin_mlist|, if not
+ null, points to a |fence_noad| that ends the current mlist; this |fence_noad|
+ has not yet been appended.
+
+*/
+
+pointer fin_mlist(pointer p)
+{
+ pointer q;
+ if (incompleat_noad_par != null) {
+ if (denominator(incompleat_noad_par) != null) {
+ type(denominator(incompleat_noad_par)) = sub_mlist_node;
+ } else {
+ q = new_node(sub_mlist_node, 0);
+ denominator(incompleat_noad_par) = q;
+ }
+ math_list(denominator(incompleat_noad_par)) = vlink(head);
+ if (p == null) {
+ q = incompleat_noad_par;
+ } else {
+ q = math_list(numerator(incompleat_noad_par));
+ if ((type(q) != fence_noad) || (subtype(q) != left_noad_side) || (delim_par == null))
+ confusion("right");
+ math_list(numerator(incompleat_noad_par)) = vlink(delim_par);
+ vlink(delim_par) = incompleat_noad_par;
+ vlink(incompleat_noad_par) = p;
+ }
+ } else {
+ vlink(tail) = p;
+ q = vlink(head);
+ }
+ pop_nest();
+ return q;
+}
+
+/*tex
+
+ Now at last we're ready to see what happens when a right brace occurs in a
+ math formula. Two special cases are simplified here: Braces are effectively
+ removed when they surround a single Ord without sub/superscripts, or when
+ they surround an accent that is the nucleus of an Ord atom.
+
+*/
+
+void close_math_group(pointer p)
+{
+ int old_style = m_style;
+ unsave_math();
+ decr(save_ptr);
+ assert(saved_type(0) == saved_math);
+ type(saved_value(0)) = sub_mlist_node;
+ p = fin_mlist(null);
+ math_list(saved_value(0)) = p;
+ if (p != null && vlink(p) == null) {
+ if (type(p) == simple_noad) {
+ if (subscr(p) == null && supscr(p) == null) {
+ /*tex (subtype(p) == ord_noad_type) */
+ int flatten = 0;
+ int modepar = math_flatten_mode_par;
+ switch (subtype(p)) {
+ case ord_noad_type :
+ flatten = (modepar & 1) == 1;
+ break;
+ case bin_noad_type :
+ flatten = (modepar & 2) == 2;
+ break;
+ case rel_noad_type :
+ flatten = (modepar & 4) == 4;
+ break;
+ case punct_noad_type :
+ flatten = (modepar & 8) == 8;
+ break;
+ case inner_noad_type :
+ flatten = (modepar & 16) == 16;
+ break;
+ default:
+ break;
+ }
+ if (flatten) {
+ type(saved_value(0)) = type(nucleus(p));
+ if (type(nucleus(p)) == math_char_node) {
+ math_fam(saved_value(0)) = math_fam(nucleus(p));
+ math_character(saved_value(0)) =
+ math_character(nucleus(p));
+ } else {
+ math_list(saved_value(0)) = math_list(nucleus(p));
+ math_list(nucleus(p)) = null;
+ }
+ delete_attribute_ref(node_attr(saved_value(0)));
+ node_attr(saved_value(0)) = node_attr(nucleus(p));
+ node_attr(nucleus(p)) = null;
+ flush_node(p);
+ }
+ }
+ } else if (type(p) == accent_noad) {
+ if (saved_value(0) == nucleus(tail) && type(tail) == simple_noad && subtype(tail) == ord_noad_type) {
+ pointer q = head;
+ while (vlink(q) != tail)
+ q = vlink(q);
+ vlink(q) = p;
+ nucleus(tail) = null;
+ subscr(tail) = null;
+ supscr(tail) = null;
+ delete_attribute_ref(node_attr(p));
+ node_attr(p) = node_attr(tail);
+ node_attr(tail) = null;
+ flush_node(tail);
+ tail = p;
+ }
+ }
+ }
+ if (vlink(saved_value(0)) > 0) {
+ pointer q;
+ q = new_node(math_char_node, 0);
+ nucleus(vlink(saved_value(0))) = q;
+ vlink(saved_value(0)) = null;
+ saved_value(0) = q;
+ (void) scan_math(saved_value(0), old_style);
+ /*tex restart */
+ }
+}
+
+/*tex
+
+ We have dealt with all constructions of math mode except `\.{\\left}' and
+ `\.{\\right}', so the picture is completed by the following sections of the
+ program. The |middle| feature of eTeX allows one ore several \.{\\middle}
+ delimiters to appear between \.{\\left} and \.{\\right}.
+
+*/
+
+void math_left_right(void)
+{
+ /*tex |left_noad_side| .. |right_noad_side| */
+ halfword t;
+ /*tex new noad */
+ pointer p;
+ /*tex resulting mlist */
+ pointer q;
+ /*tex temporary */
+ pointer r;
+ halfword ht = 0;
+ halfword dp = 0;
+ halfword options = 0;
+ halfword type = -1 ;
+ t = cur_chr;
+ if (t > 10) {
+ /*tex we have \Uleft \Uright \Umiddle */
+ t = t - 10;
+ while (1) {
+ if (scan_keyword("height")) {
+ scan_dimen(false,false,false);
+ ht = cur_val ;
+ } else if (scan_keyword("depth")) {
+ scan_dimen(false,false,false);
+ dp = cur_val ;
+ } else if (scan_keyword("axis")) {
+ options = options | noad_option_axis ;
+ } else if (scan_keyword("noaxis")) {
+ options = options | noad_option_no_axis ;
+ } else if (scan_keyword("exact")) {
+ options = options | noad_option_exact ;
+ } else if (scan_keyword("class")) {
+ scan_int();
+ math_class_to_type(type,cur_val);
+ } else {
+ break;
+ }
+ }
+ }
+ if ((t != no_noad_side) && (t != left_noad_side) && (cur_group != math_left_group)) {
+ if (cur_group == math_shift_group) {
+ scan_delimiter(null, no_mathcode);
+ if (t == middle_noad_side) {
+ const char *hlp[] = {
+ "I'm ignoring a \\middle that had no matching \\left.",
+ NULL
+ };
+ tex_error("Extra \\middle", hlp);
+ } else {
+ const char *hlp[] = {
+ "I'm ignoring a \\right that had no matching \\left.",
+ NULL
+ };
+ tex_error("Extra \\right", hlp);
+ }
+ } else {
+ off_save();
+ }
+ } else {
+ p = new_noad();
+ type(p) = fence_noad;
+ subtype(p) = (quarterword) t;
+ r = new_node(delim_node, 0);
+ delimiter(p) = r;
+ delimiterheight(p) = ht;
+ delimiterdepth(p) = dp;
+ delimiteroptions(p) = options;
+ delimiterclass(p) = type;
+ delimiteritalic(p) = 0;
+ delimitersamesize(p) = 0;
+ scan_delimiter(delimiter(p), no_mathcode);
+ if (t == no_noad_side) {
+ tail_append(new_noad());
+ subtype(tail) = inner_noad_type;
+ r = new_node(sub_mlist_node, 0);
+ nucleus(tail) = r;
+ math_list(nucleus(tail)) = p;
+ return ;
+ }
+ if (t == left_noad_side) {
+ q = p;
+ } else {
+ q = fin_mlist(p);
+ unsave_math();
+ }
+ if (t != right_noad_side) {
+ push_math(math_left_group, m_style);
+ vlink(head) = q;
+ tail = p;
+ delim_par = p;
+ } else {
+ tail_append(new_noad());
+ subtype(tail) = inner_noad_type;
+ r = new_node(sub_mlist_node, 0);
+ nucleus(tail) = r;
+ math_list(nucleus(tail)) = q;
+ }
+ }
+}
+
+/*tex
+
+ \TeX\ gets to the following part of the program when the first `\.\$' ending
+ a display has been scanned.
+
+*/
+
+static void check_second_math_shift(void)
+{
+ get_x_token();
+ if (cur_cmd != math_shift_cmd) {
+ const char *hlp[] = {
+ "The `$' that I just saw supposedly matches a previous `$$'.",
+ "So I shall assume that you typed `$$' both times.",
+ NULL
+ };
+ back_error("Display math should end with $$", hlp);
+ }
+}
+
+static void check_display_math_end(void)
+{
+ if (cur_chr != cramped_display_style) {
+ const char *hlp[] = {
+ "I shall assume that you typed that.",
+ NULL
+ };
+ tex_error("Display math should end with \\Ustopdisplaymath", hlp);
+ }
+}
+
+static void check_inline_math_end(void)
+{
+ if (cur_chr != cramped_text_style) {
+ const char *hlp[] = {
+ "I shall assume that you typed that.",
+ NULL
+ };
+ tex_error("Inline math should end with \\Ustopmath", hlp);
+ }
+}
+
+static void resume_after_display(void)
+{
+ if (cur_group != math_shift_group)
+ confusion("display");
+ unsave_math();
+ prev_graf_par = prev_graf_par + 3;
+ push_nest();
+ mode = hmode;
+ space_factor_par = 1000;
+ /*tex This needs to be intercepted in the display math start! */
+ tail_append(make_local_par_node(penalty_par_code));
+ get_x_token();
+ if (cur_cmd != spacer_cmd)
+ back_input();
+ if (nest_ptr == 1) {
+ normal_page_filter(after_display);
+ build_page();
+ }
+}
+
+/*tex
+
+ The fussiest part of math mode processing occurs when a displayed formula is
+ being centered and placed with an optional equation number.
+
+ At this time we are in vertical mode (or internal vertical mode).
+
+ \starttabulate
+ \NC \type {p} \NC points to the mlist for the formula \NC \NR
+ \NC \type {a} \NC is either |null| or it points to a box containing the equation number \NC \NR
+ \NC \type {l} \NC is true if there was an \.{\\leqno}/ (so |a| is a horizontal box) \NC \NR
+ \stoptabulate
+
+*/
+
+#define inject_display_skip_before(g) \
+ if (g > 0) { \
+ switch (display_skip_mode_par) { \
+ case 0 : \
+ /*tex normal tex | always */ \
+ case 1 : \
+ /*tex always */ \
+ tail_append(new_param_glue(g)); \
+ break; \
+ case 2 : \
+ /*tex non-zero */ \
+ if (! glue_is_zero(glue_par(g))) \
+ tail_append(new_param_glue(g)); \
+ break; \
+ case 3: \
+ /*tex ignore */ \
+ break; \
+ default: \
+ /*tex > 3 reserved for future use */ \
+ tail_append(new_param_glue(g)); \
+ break; \
+ } \
+ }
+
+#define inject_display_skip_after(g) \
+ if (g > 0) { \
+ switch (display_skip_mode_par) { \
+ case 0 : \
+ /*tex normal tex | always */ \
+ case 1 : \
+ /*tex always */ \
+ tail_append(new_param_glue(g)); \
+ break; \
+ case 2 : \
+ /*tex non-zero */ \
+ if (! glue_is_zero(glue_par(g))) \
+ tail_append(new_param_glue(g)); \
+ break; \
+ case 3: \
+ /*tex ignore */ \
+ break; \
+ default: \
+ /*tex > 3 reserved for future use */ \
+ tail_append(new_param_glue(g)); \
+ break; \
+ } \
+ }
+
+static void finish_displayed_math(boolean l, pointer eqno_box, pointer p)
+{
+ /*tex box containing the equation */
+ pointer eq_box;
+ /*tex width of the equation */
+ scaled eq_w;
+ /*tex width of the line */
+ scaled line_w;
+ /*tex width of equation number */
+ scaled eqno_w;
+ /*tex width of equation number plus space to separate from equation */
+ scaled eqno_w2;
+ /*tex move the line right this much */
+ scaled line_s;
+ /*tex displacement of equation in the line */
+ scaled d;
+ /*tex glue parameter codes for before and after */
+ small_number g1, g2;
+ /*tex kern nodes used to position the display */
+ pointer r,s;
+ /*tex tail of adjustment list */
+ pointer t;
+ /*tex tail of pre-adjustment list */
+ pointer pre_t;
+ /*tex true if the math and surrounding text dirs are opposed */
+ boolean swap_dir;
+ scaled eqno_width;
+ swap_dir = (pre_display_direction_par < 0 ? true : false );
+ if (eqno_box != null && swap_dir)
+ l = !l;
+ adjust_tail = adjust_head;
+ pre_adjust_tail = pre_adjust_head;
+ eq_box = hpack(p, 0, additional, -1);
+ subtype(eq_box) = equation_list;
+ build_attribute_list(eq_box);
+ p = list_ptr(eq_box);
+ t = adjust_tail;
+ adjust_tail = null;
+ pre_t = pre_adjust_tail;
+ pre_adjust_tail = null;
+ eq_w = width(eq_box);
+ line_w = display_width_par;
+ line_s = display_indent_par;
+ if (eqno_box == null) {
+ eqno_w = 0;
+ eqno_width = 0;
+ eqno_w2 = 0;
+ } else {
+ eqno_w = width(eqno_box);
+ eqno_width = eqno_w;
+ eqno_w2 = eqno_w + round_xn_over_d(math_eqno_gap_step_par, get_math_quad_style(text_style), 1000);
+ subtype(eqno_box) = equation_number_list;
+ /*tex build_attribute_list(eqno_box); */
+ }
+ if (eq_w + eqno_w2 > line_w) {
+ /*tex
+
+ The user can force the equation number to go on a separate line by
+ causing its width to be zero.
+
+ */
+ if ((eqno_w != 0) && ((eq_w - total_shrink[normal] + eqno_w2 <= line_w)
+ || (total_shrink[sfi] != 0) || (total_shrink[fil] != 0)
+ || (total_shrink[fill] != 0) || (total_shrink[filll] != 0))) {
+ list_ptr(eq_box) = null;
+ flush_node(eq_box);
+ eq_box = hpack(p, line_w - eqno_w2, exactly, -1);
+ subtype(eq_box) = equation_list;
+ build_attribute_list(eq_box);
+ } else {
+ eqno_w = 0;
+ if (eq_w > line_w) {
+ list_ptr(eq_box) = null;
+ flush_node(eq_box);
+ eq_box = hpack(p, line_w, exactly, -1);
+ subtype(eq_box) = equation_list;
+ build_attribute_list(eq_box);
+ }
+ }
+ eq_w = width(eq_box);
+ }
+ /*tex
+
+ We try first to center the display without regard to the existence of the
+ equation number. If that would make it too close (where ``too close''
+ means that the space between display and equation number is less than the
+ width of the equation number), we either center it in the remaining space
+ or move it as far from the equation number as possible. The latter
+ alternative is taken only if the display begins with glue, since we
+ assume that the user put glue there to control the spacing precisely.
+
+ */
+ d = half(line_w - eq_w);
+ if ((eqno_w > 0) && (d < 2 * eqno_w)) {
+ /*tex too close */
+ d = half(line_w - eq_w - eqno_w);
+ if (p != null)
+ if (!is_char_node(p))
+ if (type(p) == glue_node)
+ d = 0;
+ }
+ tail_append(new_penalty(pre_display_penalty_par,after_display_penalty));
+ if ((d + line_s <= pre_display_size_par) || l) {
+ /*tex not enough clearance */
+ g1 = above_display_skip_code;
+ g2 = below_display_skip_code;
+ } else {
+ g1 = above_display_short_skip_code;
+ g2 = below_display_short_skip_code;
+ }
+ /*tex
+
+ If the equation number is set on a line by itself, either before or after
+ the formula, we append an infinite penalty so that no page break will
+ separate the display from its number; and we use the same size and
+ displacement for all three potential lines of the display, even though
+ `\.{\\parshape}' may specify them differently.
+
+ \.{\\leqno} on a forced single line due to |width=0|; it follows that |type(a)=hlist_node|
+
+ */
+ if (eqno_box && l && (eqno_w == 0)) {
+ /* if (math_direction_par==dir_TLT) { */
+ shift_amount(eqno_box) = 0;
+ /* } else { */
+ /* } */
+ append_to_vlist(eqno_box,lua_key_index(equation_number));
+ tail_append(new_penalty(inf_penalty,equation_number_penalty));
+ } else {
+ inject_display_skip_before(g1);
+ }
+ if (eqno_w != 0) {
+ r = new_kern(line_w - eq_w - eqno_w - d);
+ if (l) {
+ if (swap_dir) {
+ if (math_direction_par==dir_TLT) {
+ /*tex TRT + TLT + \eqno: (swap_dir=true, math_direction_par=TLT, l=true) */
+ s = new_kern(width(r) + eqno_w);
+ try_couple_nodes(eqno_box,r);
+ try_couple_nodes(r,eq_box);
+ try_couple_nodes(eq_box,s);
+ } else {
+ /*tex TLT + TRT + \eqno: (swap_dir=true, math_direction_par=TRT, l=true) */
+ try_couple_nodes(eqno_box,r);
+ try_couple_nodes(r,eq_box);
+ }
+ } else {
+ if (math_direction_par==dir_TLT) {
+ /*tex TLT + TLT + \leqno: (swap_dir=false, math_direction_par=TLT, l=true) */
+ s = new_kern(width(r) + eqno_w);
+ } else {
+ /*tex TRT + TRT + \leqno: (swap_dir=false, math_direction_par=TRT, l=true) */
+ s = new_kern(width(r));
+ }
+ try_couple_nodes(eqno_box,r);
+ try_couple_nodes(r,eq_box);
+ try_couple_nodes(eq_box,s);
+ }
+ eq_box = eqno_box;
+ } else {
+ if (swap_dir) {
+ if (math_direction_par==dir_TLT) {
+ /*tex TRT + TLT + \leqno: (swap_dir=true, math_direction_par=TLT, l=false) */
+ } else {
+ /*tex TLT + TRT + \leqno: (swap_dir=true, math_direction_par=TRT, l=false) */
+ }
+ try_couple_nodes(eq_box,r);
+ try_couple_nodes(r,eqno_box);
+ } else {
+ if (math_direction_par==dir_TLT) {
+ /*tex TLT + TLT + \eqno: (swap_dir=false, math_direction_par=TLT, l=false) */
+ s = new_kern(d);
+ } else {
+ /*tex TRT + TRT + \eqno: (swap_dir=false, math_direction_par=TRT, l=false) */
+ s = new_kern(width(r) + eqno_w);
+ }
+ try_couple_nodes(s,eq_box);
+ try_couple_nodes(eq_box,r);
+ try_couple_nodes(r,eqno_box);
+ eq_box = s;
+ }
+ }
+ eq_box = hpack(eq_box, 0, additional, -1);
+ subtype(eq_box) = equation_list; /* new */
+ build_attribute_list(eq_box);
+ shift_amount(eq_box) = line_s;
+ } else {
+ shift_amount(eq_box) = line_s + d;
+ }
+ /*tex check for prev: */
+ append_to_vlist(eq_box,lua_key_index(equation));
+ if ((eqno_box != null) && (eqno_w == 0) && !l) {
+ tail_append(new_penalty(inf_penalty,equation_number_penalty));
+ /* if (math_direction_par==dir_TLT) { */
+ shift_amount(eqno_box) = line_s + line_w - eqno_width ;
+ /* } else { */
+ /* } */
+ append_to_vlist(eqno_box,lua_key_index(equation_number));
+ g2 = 0;
+ }
+ if (t != adjust_head) {
+ /*tex migrating material comes after equation number */
+ vlink(tail) = vlink(adjust_head);
+ alink(adjust_tail) = alink(tail);
+ tail = t;
+ }
+ if (pre_t != pre_adjust_head) {
+ vlink(tail) = vlink(pre_adjust_head);
+ alink(pre_adjust_tail) = alink(tail);
+ tail = pre_t;
+ }
+ tail_append(new_penalty(post_display_penalty_par,after_display_penalty));
+ inject_display_skip_after(g2);
+ resume_after_display();
+}
+
+void after_math(void)
+{
+ /*tex |mmode| or |-mmode| */
+ int m;
+ /*tex the formula */
+ pointer p;
+ /*tex box containing equation number */
+ pointer a = null;
+ /*tex `\.{\\leqno}' instead of `\.{\\eqno}' */
+ boolean l = false;
+ m = mode;
+ /*tex this pops the nest */
+ p = fin_mlist(null);
+ if (cur_cmd == math_shift_cs_cmd &&
+ (cur_chr == text_style || cur_chr == display_style)) {
+ you_cant();
+ }
+ if (mode == -m) {
+ /*tex end of equation number */
+ if (cur_cmd == math_shift_cmd) {
+ check_second_math_shift();
+ } else {
+ check_display_math_end();
+ }
+ run_mlist_to_hlist(p, false, text_style);
+ a = hpack(vlink(temp_head), 0, additional, -1);
+ build_attribute_list(a);
+ unsave_math();
+ /*tex now |cur_group=math_shift_group| */
+ decr(save_ptr);
+ assert(saved_type(0) == saved_eqno);
+ if (saved_value(0) == 1)
+ l = true;
+ m = mode;
+ p = fin_mlist(null);
+
+ }
+ if (m < 0) {
+ /*tex
+
+ The |unsave| is done after everything else here; hence an appearance
+ of `\.{\\mathsurround}' inside of `\.{\$...\$}' affects the spacing
+ at these particular \.\$'s. This is consistent with the conventions
+ of `\.{\$\$...\$\$}', since `\.{\\abovedisplayskip}' inside a display
+ affects the space above that display.
+
+ */
+ if (cur_cmd == math_shift_cs_cmd) {
+ check_inline_math_end();
+ }
+ tail_append(new_math(math_surround_par, before));
+ /*tex begin mathskip code */
+ switch (math_skip_mode) {
+ case 0 :
+ /*tex obey mathsurround when zero glue */
+ if (! glue_is_zero(math_skip_par)) {
+ copy_glue_values(tail,math_skip_par);
+ surround(tail) = 0;
+ }
+ break ;
+ case 1 :
+ /*tex always left */
+ case 3 :
+ /*tex always both */
+ case 6 :
+ /*tex only when skip */
+ copy_glue_values(tail,math_skip_par);
+ surround(tail) = 0;
+ break ;
+ case 2 :
+ /*tex only right */
+ surround(tail) = 0;
+ break ;
+ case 4 :
+ /*tex ignore, obey marthsurround */
+ break ;
+ case 5:
+ /*tex all spacing disabled */
+ surround(tail) = 0;
+ break ;
+ }
+ /*tex end mathskip code */
+ if (dir_math_save) {
+ tail_append(new_dir(math_direction_par));
+ }
+ run_mlist_to_hlist(p, (mode > 0), text_style);
+ vlink(tail) = vlink(temp_head);
+ while (vlink(tail) != null) {
+ tail = vlink(tail);
+ }
+ if (dir_math_save) {
+ tail_append(new_dir(math_direction_par));
+ subtype(tail) = cancel_dir;
+ }
+ dir_math_save = false;
+ tail_append(new_math(math_surround_par, after));
+ /*tex begin mathskip code */
+ switch (math_skip_mode) {
+ case 0 :
+ /*tex obey mathsurround when zero glue */
+ if (! glue_is_zero(math_skip_par)) {
+ copy_glue_values(tail,math_skip_par);
+ surround(tail) = 0;
+ }
+ break ;
+ case 2 :
+ /*tex always right */
+ case 3 :
+ /*tex always both */
+ case 6 :
+ /*tex only when skip */
+ copy_glue_values(tail,math_skip_par);
+ surround(tail) = 0;
+ break ;
+ case 1 :
+ /*tex only left */
+ surround(tail) = 0;
+ break ;
+ case 4 :
+ /*tex ignore, obey marthsurround */
+ break ;
+ case 5:
+ /*tex all spacing disabled */
+ surround(tail) = 0;
+ break ;
+ }
+ /*tex end mathskip code */
+ space_factor_par = 1000;
+ unsave_math();
+ } else {
+ if (a == null) {
+ if (cur_cmd == math_shift_cmd) {
+ check_second_math_shift();
+ } else {
+ check_display_math_end();
+ }
+ }
+ run_mlist_to_hlist(p, false, display_style);
+ finish_displayed_math(l, a, vlink(temp_head));
+ }
+}
+
+/*tex
+
+ When \.{\\halign} appears in a display, the alignment routines operate
+ essentially as they do in vertical mode. Then the following program is
+ activated, with |p| and |q| pointing to the beginning and end of the
+ resulting list, and with |aux_save| holding the |prev_depth| value.
+
+*/
+
+void finish_display_alignment(pointer p, pointer q, halfword saved_prevdepth)
+{
+ do_assignments();
+ if (cur_cmd == math_shift_cmd) {
+ check_second_math_shift();
+ } else {
+ check_display_math_end();
+ }
+ pop_nest();
+ tail_append(new_penalty(pre_display_penalty_par,before_display_penalty));
+ inject_display_skip_before(above_display_skip_code);
+ vlink(tail) = p;
+ if (p != null)
+ tail = q;
+ tail_append(new_penalty(post_display_penalty_par,after_display_penalty));
+ inject_display_skip_after(below_display_skip_code);
+ cur_list.prev_depth_field = saved_prevdepth;
+ resume_after_display();
+}
+
+/*tex Interface to \.{\\Umath} and \.{\\mathstyle}: */
+
+void setup_math_style(void)
+{
+ pointer q;
+ tail_append(new_noad());
+ q = new_node(math_char_node, 0);
+ nucleus(tail) = q;
+ (void) scan_math_style(nucleus(tail), num_style(m_style));
+}
+
+void print_math_style(void)
+{
+ if (abs(mode) == mmode)
+ print_int(m_style);
+ else
+ print_int(-1);
+}