diff options
Diffstat (limited to 'Build/source/texk/web2c/luatexdir/tex/texmath.c')
-rw-r--r-- | Build/source/texk/web2c/luatexdir/tex/texmath.c | 2723 |
1 files changed, 2723 insertions, 0 deletions
diff --git a/Build/source/texk/web2c/luatexdir/tex/texmath.c b/Build/source/texk/web2c/luatexdir/tex/texmath.c new file mode 100644 index 00000000000..69e58b0ea77 --- /dev/null +++ b/Build/source/texk/web2c/luatexdir/tex/texmath.c @@ -0,0 +1,2723 @@ +/* + +Copyright 2008-2010 Taco Hoekwater <taco@luatex.org> + +This file is part of LuaTeX. + +LuaTeX is free software; you can redistribute it and/or modify it under the terms +of the GNU General Public License as published by the Free Software Foundation; +either version 2 of the License, or (at your option) any later version. + +LuaTeX is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A +PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. + +You should have received a copy of the GNU General Public License along with +LuaTeX; if not, see <http://www.gnu.org/licenses/>. + +*/ + +#include "ptexlib.h" + +#define mode mode_par +#define tail tail_par +#define head head_par +#define dir_save dirs_par + +/*tex + + Concerning display skips, \TEX\ normally always inserts before and only after + when larger than zero. THis can ow be controlled with |\mathdisplayskipmode|: + + \starttabulate + \NC 0 \NC normal \TEX \NC \NR + \NC 1 \NC always \NC \NR + \NC 2 \NC non-zero \NC \NR + \NC 3 \NC ignore \NC \NR + \stoptabulate + +*/ + +#define back_error(A,B) do { \ + OK_to_interrupt=false; \ + back_input(); \ + OK_to_interrupt=true; \ + tex_error(A,B); \ + } while (0) + +int scan_math(pointer, int); +int scan_math_style(pointer, int); +pointer fin_mlist(pointer); + +/*tex + + When \TeX\ reads a formula that is enclosed between \.\$'s, it constructs an + {\sl mlist}, which is essentially a tree structure representing that formula. + An mlist is a linear sequence of items, but we can regard it as a tree + structure because mlists can appear within mlists. For example, many of the + entries can be subscripted or superscripted, and such ``scripts'' are mlists + in their own right. + + An entire formula is parsed into such a tree before any of the actual + typesetting is done, because the current style of type is usually not known + until the formula has been fully scanned. For example, when the formula + `\.{\$a+b \\over c+d\$}' is being read, there is no way to tell that + `\.{a+b}' will be in script size until `\.{\\over}' has appeared. + + During the scanning process, each element of the mlist being built is + classified as a relation, a binary operator, an open parenthesis, etc., or as + a construct like `\.{\\sqrt}' that must be built up. This classification + appears in the mlist data structure. + + After a formula has been fully scanned, the mlist is converted to an hlist so + that it can be incorporated into the surrounding text. This conversion is + controlled by a recursive procedure that decides all of the appropriate + styles by a ``top-down'' process starting at the outermost level and working + in towards the subformulas. The formula is ultimately pasted together using + combinations of horizontal and vertical boxes, with glue and penalty nodes + inserted as necessary. + + An mlist is represented internally as a linked list consisting chiefly of + ``noads'' (pronounced ``no-adds''), to distinguish them from the somewhat + similar ``nodes'' in hlists and vlists. Certain kinds of ordinary nodes are + allowed to appear in mlists together with the noads; \TeX\ tells the + difference by means of the |type| field, since a noad's |type| is always + greater than that of a node. An mlist does not contain character nodes, hlist + nodes, vlist nodes, math nodes or unset nodes; in particular, each mlist item + appears in the variable-size part of |mem|, so the |type| field is always + present. + + Each noad is five or more words long. The first word contains the |type| and + |subtype| and |link| fields that are already so familiar to us; the second + contains the attribute list pointer, and the third, fourth an fifth words are + called the noad's |nucleus|, |subscr|, and |supscr| fields. (This use of a + combined attribute list is temporary. Eventually, each of fields need their + own list) + + Consider, for example, the simple formula `\.{\$x\^2\$}', which would be + parsed into an mlist containing a single element called an |ord_noad|. The + |nucleus| of this noad is a representation of `\.x', the |subscr| is empty, + and the |supscr| is a representation of `\.2'. + + The |nucleus|, |subscr|, and |supscr| fields are further broken into + subfields. If |p| points to a noad, and if |q| is one of its principal fields + (e.g., |q=subscr(p)|), |q=null| indicates a field with no value (the + corresponding attribute of noad |p| is not present). Otherwise, there are + several possibilities for the subfields, depending on the |type| of |q|. + + \startitemize + + \startitem + |type(q)=math_char_node| means that |math_fam(q)| refers to one of + the sixteen font families, and |character(q)| is the number of a + character within a font of that family, as in a character node. + \stopitem + + \startitem + |type(q)=math_text_char_node| is similar, but the character is + unsubscripted and unsuperscripted and it is followed immediately by + another character from the same font. (This |type| setting appears + only briefly during the processing; it is used to suppress unwanted + italic corrections.) + \stopitem + + \startitem + |type(q)=sub_box_node| means that |math_list(q)| points to a box node + (either an |hlist_node| or a |vlist_node|) that should be used as the + value of the field. The |shift_amount| in the subsidiary box node is + the amount by which that box will be shifted downward. + \stopitem + + \startitem + |type(q)=sub_mlist_node| means that |math_list(q)| points to an + mlist; the mlist must be converted to an hlist in order to obtain the + value of this field. + \stopitem + + \startitem + In the latter case, we might have |math_list(q)=null|. This is not + the same as |q=null|; for example, `\.{\$P\_\{\}\$}' and `\.{\$P\$}' + produce different results (the former will not have the ``italic + correction'' added to the width of |P|, but the ``script skip'' will + be added). + \stopitem + + \startitemize + +*/ + +static void unsave_math(void) +{ + unsave(); + decr(save_ptr); + flush_node_list(text_dir_ptr); + assert(saved_type(0) == saved_textdir); + text_dir_ptr = saved_value(0); +} + +/*tex + + Sometimes it is necessary to destroy an mlist. The following subroutine + empties the current list, assuming that |abs(mode)=mmode|. + +*/ + +void flush_math(void) +{ + flush_node_list(vlink(head)); + flush_node_list(incompleat_noad_par); + vlink(head) = null; + tail = head; + incompleat_noad_par = null; +} + +/*tex Before we can do anything in math mode, we need fonts. */ + +#define MATHFONTSTACK 8 +#define MATHFONTDEFAULT 0 + +static sa_tree math_fam_head = NULL; + +int fam_fnt(int fam_id, int size_id) +{ + int n = fam_id + (256 * size_id); + return (int) get_sa_item(math_fam_head, n).int_value; +} + +void def_fam_fnt(int fam_id, int size_id, int f, int lvl) +{ + int n = fam_id + (256 * size_id); + sa_tree_item sa_value = { 0 }; + sa_value.int_value = f; + set_sa_item(math_fam_head, n, sa_value, lvl); + fixup_math_parameters(fam_id, size_id, f, lvl); + if (tracing_assigns_par > 1) { + begin_diagnostic(); + tprint("{assigning"); + print_char(' '); + print_cmd_chr(def_family_cmd, size_id); + print_int(fam_id); + print_char('='); + print_font_identifier(fam_fnt(fam_id, size_id)); + print_char('}'); + end_diagnostic(false); + } +} + +static void unsave_math_fam_data(int gl) +{ + sa_stack_item st; + if (math_fam_head->stack == NULL) + return; + while (math_fam_head->stack_ptr > 0 && + abs(math_fam_head->stack[math_fam_head->stack_ptr].level) + >= (int) gl) { + st = math_fam_head->stack[math_fam_head->stack_ptr]; + if (st.level > 0) { + rawset_sa_item(math_fam_head, st.code, st.value); + /*tex Now do a trace message, if requested. */ + if (tracing_restores_par > 1) { + int size_id = st.code / 256; + int fam_id = st.code % 256; + begin_diagnostic(); + tprint("{restoring"); + print_char(' '); + print_cmd_chr(def_family_cmd, size_id); + print_int(fam_id); + print_char('='); + print_font_identifier(fam_fnt(fam_id, size_id)); + print_char('}'); + end_diagnostic(false); + } + } + (math_fam_head->stack_ptr)--; + } +} + +/*tex Parameters */ + +#define MATHPARAMSTACK 8 +#define MATHPARAMDEFAULT undefined_math_parameter + +static sa_tree math_param_head = NULL; + +void def_math_param(int param_id, int style_id, scaled value, int lvl) +{ + int n = param_id + (256 * style_id); + sa_tree_item sa_value = { 0 }; + sa_value.int_value = (int) value; + set_sa_item(math_param_head, n, sa_value, lvl); + if (tracing_assigns_par > 1) { + begin_diagnostic(); + tprint("{assigning"); + print_char(' '); + print_cmd_chr(set_math_param_cmd, param_id); + print_cmd_chr(math_style_cmd, style_id); + print_char('='); + print_int(value); + print_char('}'); + end_diagnostic(false); + } +} + +scaled get_math_param(int param_id, int style_id) +{ + int n = param_id + (256 * style_id); + return (scaled) get_sa_item(math_param_head, n).int_value; +} + +static void unsave_math_param_data(int gl) +{ + sa_stack_item st; + if (math_param_head->stack == NULL) + return; + while (math_param_head->stack_ptr > 0 && + abs(math_param_head->stack[math_param_head->stack_ptr].level) + >= (int) gl) { + st = math_param_head->stack[math_param_head->stack_ptr]; + if (st.level > 0) { + rawset_sa_item(math_param_head, st.code, st.value); + /*tex Do a trace message, if requested. */ + if (tracing_restores_par > 1) { + int param_id = st.code % 256; + int style_id = st.code / 256; + begin_diagnostic(); + tprint("{restoring"); + print_char(' '); + print_cmd_chr(set_math_param_cmd, param_id); + print_cmd_chr(math_style_cmd, style_id); + print_char('='); + print_int(get_math_param(param_id, style_id)); + print_char('}'); + end_diagnostic(false); + } + } + (math_param_head->stack_ptr)--; + } +} + +/*tex Saving and unsaving of both: */ + +void unsave_math_data(int gl) +{ + unsave_math_fam_data(gl); + unsave_math_param_data(gl); +} + +/*tex Dumping and undumping: */ + +void dump_math_data(void) +{ + sa_tree_item sa_value = { 0 }; + if (math_fam_head == NULL) { + sa_value.int_value = MATHFONTDEFAULT; + math_fam_head = new_sa_tree(MATHFONTSTACK, 1, sa_value); + } + dump_sa_tree(math_fam_head, "mathfonts"); + if (math_param_head == NULL) { + sa_value.int_value = MATHPARAMDEFAULT; + math_param_head = new_sa_tree(MATHPARAMSTACK, 1, sa_value); + } + dump_sa_tree(math_param_head, "mathparameters"); +} + +void undump_math_data(void) +{ + math_fam_head = undump_sa_tree("mathfonts"); + math_param_head = undump_sa_tree("mathparameters"); +} + +void initialize_math(void) +{ + sa_tree_item sa_value = { 0 }; + if (math_fam_head == NULL) { + sa_value.int_value = MATHFONTDEFAULT; + math_fam_head = new_sa_tree(MATHFONTSTACK, 1, sa_value); + } + if (math_param_head == NULL) { + sa_value.int_value = MATHPARAMDEFAULT; + math_param_head = new_sa_tree(MATHPARAMSTACK, 1, sa_value); + initialize_math_spacing(); + } + return; +} + +/*tex + + Each portion of a formula is classified as Ord, Op, Bin, Rel, Ope, Clo, Pun, + or Inn, for purposes of spacing and line breaking. An |ord_noad|, |op_noad|, + |bin_noad|, |rel_noad|, |open_noad|, |close_noad|, |punct_noad|, or + |inner_noad| is used to represent portions of the various types. For example, + an `\.=' sign in a formula leads to the creation of a |rel_noad| whose + |nucleus| field is a representation of an equals sign (usually |fam=0|, + |character=075|). A formula preceded by \.{\\mathrel} also results in a + |rel_noad|. When a |rel_noad| is followed by an |op_noad|, say, and possibly + separated by one or more ordinary nodes (not noads), \TeX\ will insert a + penalty node (with the current |rel_penalty|) just after the formula that + corresponds to the |rel_noad|, unless there already was a penalty immediately + following; and a ``thick space'' will be inserted just before the formula + that corresponds to the |op_noad|. + + A noad of type |ord_noad|, |op_noad|, \dots, |inner_noad| usually has a + |subtype=normal|. The only exception is that an |op_noad| might have + |subtype=limits| or |no_limits|, if the normal positioning of limits has been + overridden for this operator. + + A |radical_noad| also has a |left_delimiter| field, which usually represents + a square root sign. + + A |fraction_noad| has a |right_delimiter| field as well as a + |left_delimiter|. + + Delimiter fields have four subfields called |small_fam|, |small_char|, + |large_fam|, |large_char|. These subfields represent variable-size delimiters + by giving the ``small'' and ``large'' starting characters, as explained in + Chapter~17 of {\sl The \TeX book}. + + A |fraction_noad| is actually quite different from all other noads. It has + |thickness|, |denominator|, and |numerator| fields instead of |nucleus|, + |subscr|, and |supscr|. The |thickness| is a scaled value that tells how + thick to make a fraction rule; however, the special value |default_code| is + used to stand for the |default_rule_thickness| of the current size. The + |numerator| and |denominator| point to mlists that define a fraction; we + always have $$\hbox{|type(numerator)=type(denominator)=sub_mlist|}.$$ The + |left_delimiter| and |right_delimiter| fields specify delimiters that will be + placed at the left and right of the fraction. In this way, a |fraction_noad| + is able to represent all of \TeX's operators \.{\\over}, \.{\\atop}, + \.{\\above}, \.{\\overwithdelims}, \.{\\atopwithdelims}, and + \.{\\abovewithdelims}. + + The |new_noad| function creates an |ord_noad| that is completely null + +*/ + +pointer new_noad(void) +{ + pointer p; + p = new_node(simple_noad, ord_noad_type); + /*tex All noad fields are zero after this. */ + return p; +} + +pointer new_sub_box(pointer curbox) +{ + pointer p, q; + p = new_noad(); + q = new_node(sub_box_node, 0); + nucleus(p) = q; + math_list(nucleus(p)) = curbox; + return p; +} + +/*tex + + A few more kinds of noads will complete the set: An |under_noad| has its + nucleus underlined; an |over_noad| has it overlined. An |accent_noad| places + an accent over its nucleus; the accent character appears as + |math_fam(accent_chr(p))| and |math_character(accent_chr(p))|. A + |vcenter_noad| centers its nucleus vertically with respect to the axis of the + formula; in such noads we always have |type(nucleus(p))=sub_box|. + + And finally, we have the |fence_noad| type, to implement \TeX's \.{\\left} + and \.{\\right} as well as eTeX's \.{\\middle}. The |nucleus| of such noads + is replaced by a |delimiter| field; thus, for example, `\.{\\left(}' produces + a |fence_noad| such that |delimiter(p)| holds the family and character codes + for all left parentheses. A |fence_noad| of subtype |left_noad_side| never + appears in an mlist except as the first element, and a |fence_noad| with + subtype |right_noad_side| never appears in an mlist except as the last + element; furthermore, we either have both a |left_noad_side| and a + |right_noad_side|, or neither one is present. + + Math formulas can also contain instructions like \.{\\textstyle} that + override \TeX's normal style rules. A |style_node| is inserted into the data + structure to record such instructions; it is three words long, so it is + considered a node instead of a noad. The |subtype| is either |display_style| + or |text_style| or |script_style| or |script_script_style|. The second and + third words of a |style_node| are not used, but they are present because a + |choice_node| is converted to a |style_node|. + + \TeX\ uses even numbers 0, 2, 4, 6 to encode the basic styles + |display_style|, \dots, |script_script_style|, and adds~1 to get the + ``cramped'' versions of these styles. This gives a numerical order that is + backwards from the convention of Appendix~G in {\sl The \TeX book\/}; i.e., a + smaller style has a larger numerical value. + +*/ + +const char *math_style_names[] = { + "display", "crampeddisplay", + "text", "crampedtext", + "script", "crampedscript", + "scriptscript", "crampedscriptscript", + NULL +}; + +const char *math_param_names[] = { + "quad", "axis", "operatorsize", + "overbarkern", "overbarrule", "overbarvgap", + "underbarkern", "underbarrule", "underbarvgap", + "radicalkern", "radicalrule", "radicalvgap", + "radicaldegreebefore", "radicaldegreeafter", "radicaldegreeraise", + "stackvgap", "stacknumup", "stackdenomdown", + "fractionrule", "fractionnumvgap", "fractionnumup", + "fractiondenomvgap", "fractiondenomdown", "fractiondelsize", + "limitabovevgap", "limitabovebgap", "limitabovekern", + "limitbelowvgap", "limitbelowbgap", "limitbelowkern", + "nolimitsubfactor", "nolimitsupfactor", /* bonus */ + "underdelimitervgap", "underdelimiterbgap", + "overdelimitervgap", "overdelimiterbgap", + "subshiftdrop", "supshiftdrop", "subshiftdown", + "subsupshiftdown", "subtopmax", "supshiftup", + "supbottommin", "supsubbottommax", "subsupvgap", + "spaceafterscript", "connectoroverlapmin", + "ordordspacing", "ordopspacing", "ordbinspacing", "ordrelspacing", + "ordopenspacing", "ordclosespacing", "ordpunctspacing", "ordinnerspacing", + "opordspacing", "opopspacing", "opbinspacing", "oprelspacing", + "opopenspacing", "opclosespacing", "oppunctspacing", "opinnerspacing", + "binordspacing", "binopspacing", "binbinspacing", "binrelspacing", + "binopenspacing", "binclosespacing", "binpunctspacing", "bininnerspacing", + "relordspacing", "relopspacing", "relbinspacing", "relrelspacing", + "relopenspacing", "relclosespacing", "relpunctspacing", "relinnerspacing", + "openordspacing", "openopspacing", "openbinspacing", "openrelspacing", + "openopenspacing", "openclosespacing", "openpunctspacing", + "openinnerspacing", + "closeordspacing", "closeopspacing", "closebinspacing", "closerelspacing", + "closeopenspacing", "closeclosespacing", "closepunctspacing", + "closeinnerspacing", + "punctordspacing", "punctopspacing", "punctbinspacing", "punctrelspacing", + "punctopenspacing", "punctclosespacing", "punctpunctspacing", + "punctinnerspacing", + "innerordspacing", "inneropspacing", "innerbinspacing", "innerrelspacing", + "inneropenspacing", "innerclosespacing", "innerpunctspacing", + "innerinnerspacing", + NULL +}; + +pointer new_style(small_number s) +{ + m_style = s; + return new_node(style_node, s); +} + +/*tex + + Finally, the \.{\\mathchoice} primitive creates a |choice_node|, which has + special subfields |display_mlist|, |text_mlist|, |script_mlist|, and + |script_script_mlist| pointing to the mlists for each style. + +*/ + +static pointer new_choice(void) +{ + return new_node(choice_node, 0); +} + +/*tex + + Let's consider now the previously unwritten part of |show_node_list| that + displays the things that can only be present in mlists; this program + illustrates how to access the data structures just defined. + + In the context of the following program, |p| points to a node or noad that + should be displayed, and the current string contains the ``recursion + history'' that leads to this point. The recursion history consists of a dot + for each outer level in which |p| is subsidiary to some node, or in which |p| + is subsidiary to the |nucleus| field of some noad; the dot is replaced by + `\.\_' or `\.\^' or `\./' or `\.\\' if |p| is descended from the |subscr| or + |supscr| or |denominator| or |numerator| fields of noads. For example, the + current string would be `\.{.\^.\_/}' if |p| points to the |ord_noad| for |x| + in the (ridiculous) formula `\.{\$\\sqrt\{a\^\{\\mathinner\{b\_\{c\\over + x+y\}\}\}\}\$}'. + +*/ + +void display_normal_noad(pointer p); +void display_fence_noad(pointer p); +void display_fraction_noad(pointer p); + +void show_math_node(pointer p) +{ + switch (type(p)) { + case style_node: + print_cmd_chr(math_style_cmd, subtype(p)); + break; + case choice_node: + tprint_esc("mathchoice"); + append_char('D'); + show_node_list(display_mlist(p)); + flush_char(); + append_char('T'); + show_node_list(text_mlist(p)); + flush_char(); + append_char('S'); + show_node_list(script_mlist(p)); + flush_char(); + append_char('s'); + show_node_list(script_script_mlist(p)); + flush_char(); + break; + case simple_noad: + case radical_noad: + case accent_noad: + display_normal_noad(p); + break; + case fence_noad: + display_fence_noad(p); + break; + case fraction_noad: + display_fraction_noad(p); + break; + default: + tprint("Unknown node type!"); + break; + } +} + +/*tex Here are some simple routines used in the display of noads. */ + +static void print_fam_and_char(pointer p) +{ + tprint_esc("fam"); + print_int(math_fam(p)); + print_char(' '); + print(math_character(p)); +} + +static void print_delimiter(pointer p) +{ + int a; + if (delimiteroptionset(p)) { + tprint(" [ "); + if (delimiteraxis(p)) + tprint("axis "); + if (delimiternoaxis(p)) + tprint("noaxis "); + if (delimiterexact(p)) + tprint("exact "); + tprint("]"); + } + if (delimiterheight(p)) { + tprint("height="); + print_scaled(delimiterheight(p)); + tprint(" "); + } + if (delimiterdepth(p)) { + tprint("depth="); + print_scaled(delimiterdepth(p)); + tprint(" "); + } + if (delimiterclass(p)) { + tprint("class="); + print_int(delimiterclass(p)); + tprint(" "); + } + if (small_fam(p) < 0) { + /*tex This should never happen. */ + print_int(-1); + } else if (small_fam(p) < 16 && large_fam(p) < 16 && small_char(p) < 256 && large_char(p) < 256) { + /*tex Traditional tex style. */ + a = small_fam(p) * 256 + small_char(p); + a = a * 0x1000 + large_fam(p) * 256 + large_char(p); + print_qhex(a); + } else if ((large_fam(p) == 0 && large_char(p) == 0) || small_char(p) > 65535 || large_char(p) > 65535) { + /*tex \LUATEX\ style. */ + print_qhex(small_fam(p)); + print_qhex(small_char(p)); + } +} + +/*tex + + The next subroutine will descend to another level of recursion when a + subsidiary mlist needs to be displayed. The parameter |c| indicates what + character is to become part of the recursion history. An empty mlist is + distinguished from a missing field, because these are not equivalent (as + explained above). + +*/ + +static void print_subsidiary_data(pointer p, ASCII_code c) +{ + if ((int) cur_length >= depth_threshold) { + if (p != null) + tprint(" []"); + } else { + /*tex Include |c| in the recursion history. */ + append_char(c); + if (p != null) { + switch (type(p)) { + case math_char_node: + print_ln(); + print_current_string(); + print_fam_and_char(p); + break; + case sub_box_node: + show_node_list(math_list(p)); + break; + case sub_mlist_node: + if (math_list(p) == null) { + print_ln(); + print_current_string(); + tprint("{}"); + } else { + show_node_list(math_list(p)); + } + break; + } + } + /*tex Remove |c| from the recursion history. */ + flush_char(); + } +} + +void display_normal_noad(pointer p) +{ + switch (type(p)) { + case simple_noad: + switch (subtype(p)) { + case ord_noad_type: + tprint_esc("mathord"); + break; + case op_noad_type_normal: + case op_noad_type_limits: + case op_noad_type_no_limits: + tprint_esc("mathop"); + if (subtype(p) == op_noad_type_limits) + tprint_esc("limits"); + else if (subtype(p) == op_noad_type_no_limits) + tprint_esc("nolimits"); + break; + case bin_noad_type: + tprint_esc("mathbin"); + break; + case rel_noad_type: + tprint_esc("mathrel"); + break; + case open_noad_type: + tprint_esc("mathopen"); + break; + case close_noad_type: + tprint_esc("mathclose"); + break; + case punct_noad_type: + tprint_esc("mathpunct"); + break; + case inner_noad_type: + tprint_esc("mathinner"); + break; + case over_noad_type: + tprint_esc("overline"); + break; + case under_noad_type: + tprint_esc("underline"); + break; + case vcenter_noad_type: + tprint_esc("vcenter"); + break; + default: + tprint("<unknown noad type!>"); + break; + } + break; + case radical_noad: + if (subtype(p) == 6) + tprint_esc("Udelimiterover"); + else if (subtype(p) == 5) + tprint_esc("Udelimiterunder"); + else if (subtype(p) == 4) + tprint_esc("Uoverdelimiter"); + else if (subtype(p) == 3) + tprint_esc("Uunderdelimiter"); + else if (subtype(p) == 2) + tprint_esc("Uroot"); + else + tprint_esc("radical"); + print_delimiter(left_delimiter(p)); + if (degree(p) != null) { + print_subsidiary_data(degree(p), '/'); + } + if (radicalwidth(p)) { + tprint("width="); + print_scaled(radicalwidth(p)); + tprint(" "); + } + if (radicaloptionset(p)) { + tprint(" [ "); + if (radicalexact(p)) + tprint("exact "); + if (radicalleft(p)) + tprint("left "); + if (radicalmiddle(p)) + tprint("middle "); + if (radicalright(p)) + tprint("right "); + tprint("]"); + } + break; + case accent_noad: + if (top_accent_chr(p) != null) { + if (bot_accent_chr(p) != null) { + tprint_esc("Umathaccent both"); + } else { + tprint_esc("Umathaccent"); + } + } else if (bot_accent_chr(p) != null) { + tprint_esc("Umathaccent bottom"); + } else { + tprint_esc("Umathaccent overlay"); + } + if (accentfraction(p)) { + tprint(" fraction="); + print_int(accentfraction(p)); + tprint(" "); + } + switch (subtype(p)) { + case 0: + if (top_accent_chr(p) != null) { + if (bot_accent_chr(p) != null) { + print_fam_and_char(top_accent_chr(p)); + print_fam_and_char(bot_accent_chr(p)); + } else { + print_fam_and_char(top_accent_chr(p)); + } + } else if (bot_accent_chr(p) != null) { + print_fam_and_char(bot_accent_chr(p)); + } else { + print_fam_and_char(overlay_accent_chr(p)); + } + break; + case 1: + if (top_accent_chr(p) != null) { + tprint(" fixed "); + print_fam_and_char(top_accent_chr(p)); + if (bot_accent_chr(p) != null) { + print_fam_and_char(bot_accent_chr(p)); + } + } else { + confusion("display_accent_noad"); + } + break; + case 2: + if (bot_accent_chr(p) != null) { + if (top_accent_chr(p) != null) { + print_fam_and_char(top_accent_chr(p)); + } + tprint(" fixed "); + print_fam_and_char(bot_accent_chr(p)); + } else{ + confusion("display_accent_noad"); + } + break; + case 3: + if (top_accent_chr(p) != null && bot_accent_chr(p) != null) { + tprint(" fixed "); + print_fam_and_char(top_accent_chr(p)); + tprint(" fixed "); + print_fam_and_char(bot_accent_chr(p)); + } else { + confusion("display_accent_noad"); + } + break; + } + break; + } + print_subsidiary_data(nucleus(p), '.'); + print_subsidiary_data(supscr(p), '^'); + print_subsidiary_data(subscr(p), '_'); +} + +void display_fence_noad(pointer p) +{ + if (subtype(p) == right_noad_side) + tprint_esc("right"); + else if (subtype(p) == left_noad_side) + tprint_esc("left"); + else + tprint_esc("middle"); + print_delimiter(delimiter(p)); +} + +void display_fraction_noad(pointer p) +{ + tprint_esc("fraction, thickness "); + if (thickness(p) == default_code) + tprint("= default"); + else + print_scaled(thickness(p)); + if ((left_delimiter(p) != null) && + ((small_fam(left_delimiter(p)) != 0) || (small_char(left_delimiter(p)) != 0) || + (large_fam(left_delimiter(p)) != 0) || (large_char(left_delimiter(p)) != 0))) { + tprint(", left-delimiter "); + print_delimiter(left_delimiter(p)); + } + if ((right_delimiter(p) != null) && + ((small_fam(right_delimiter(p)) != 0) || (small_char(right_delimiter(p)) != 0) || + (large_fam(right_delimiter(p)) != 0) || (large_char(right_delimiter(p)) != 0))) { + tprint(", right-delimiter "); + print_delimiter(right_delimiter(p)); + } + print_subsidiary_data(numerator(p), '\\'); + print_subsidiary_data(denominator(p), '/'); +} + +/*tex + + The routines that \TeX\ uses to create mlists are similar to those we have + just seen for the generation of hlists and vlists. But it is necessary to + make ``noads'' as well as nodes, so the reader should review the discussion + of math mode data structures before trying to make sense out of the following + program. + + Here is a little routine that needs to be done whenever a subformula is about + to be processed. The parameter is a code like |math_group|. + +*/ + +static void new_save_level_math(group_code c) +{ + set_saved_record(0, saved_textdir, 0, text_dir_ptr); + text_dir_ptr = new_dir(math_direction_par); + incr(save_ptr); + new_save_level(c); + eq_word_define(int_base + body_direction_code, math_direction_par); + eq_word_define(int_base + par_direction_code, math_direction_par); + eq_word_define(int_base + text_direction_code, math_direction_par); +} + +static void push_math(group_code c, int mstyle) +{ + if (math_direction_par != text_direction_par) + dir_math_save = true; + push_nest(); + mode = -mmode; + incompleat_noad_par = null; + m_style = mstyle; + new_save_level_math(c); +} + +static void enter_ordinary_math(void) +{ + push_math(math_shift_group, text_style); + eq_word_define(int_base + cur_fam_code, -1); + if (every_math_par != null) + begin_token_list(every_math_par, every_math_text); +} + +void enter_display_math(void); + +/*tex + + We get into math mode from horizontal mode when a `\.\$' (i.e., a + |math_shift| character) is scanned. We must check to see whether this `\.\$' + is immediately followed by another, in case display math mode is called for. + +*/ + +void init_math(void) +{ + if (cur_cmd == math_shift_cmd) { + /*tex |get_x_token| would fail on \.{\\ifmmode}\thinspace! */ + get_token(); + if ((cur_cmd == math_shift_cmd) && (mode > 0)) { + enter_display_math(); + } else { + back_input(); + enter_ordinary_math(); + } + } else if (cur_cmd == math_shift_cs_cmd && cur_chr == display_style && (mode > 0)) { + enter_display_math(); + } else if (cur_cmd == math_shift_cs_cmd && cur_chr == text_style) { + enter_ordinary_math(); + } else { + you_cant(); + } +} + +/*tex + + We get into ordinary math mode from display math mode when `\.{\\eqno}' or + `\.{\\leqno}' appears. In such cases |cur_chr| will be 0 or~1, respectively; + the value of |cur_chr| is placed onto |save_stack| for safe keeping. + + When \TeX\ is in display math mode, |cur_group=math_shift_group|, so it is + not necessary for the |start_eq_no| procedure to test for this condition. + +*/ + +void start_eq_no(void) +{ + set_saved_record(0, saved_eqno, 0, cur_chr); + incr(save_ptr); + enter_ordinary_math(); +} + +/*tex + + Subformulas of math formulas cause a new level of math mode to be entered, on + the semantic nest as well as the save stack. These subformulas arise in + several ways: (1)~A left brace by itself indicates the beginning of a + subformula that will be put into a box, thereby freezing its glue and + preventing line breaks. (2)~A subscript or superscript is treated as a + subformula if it is not a single character; the same applies to the nucleus + of things like \.{\\underline}. (3)~The \.{\\left} primitive initiates a + subformula that will be terminated by a matching \.{\\right}. The group codes + placed on |save_stack| in these three cases are |math_group|, |math_group|, + and |math_left_group|, respectively. + + Here is the code that handles case (1); the other cases are not quite as + trivial, so we shall consider them later. + +*/ + +void math_left_brace(void) +{ + pointer q; + tail_append(new_noad()); + q = new_node(math_char_node, 0); + nucleus(tail) = q; + back_input(); + (void) scan_math(nucleus(tail), m_style); +} + +/*tex + + If the inline directions of \.{\\pardir} and \.{\\mathdir} are opposite, then + this function will return true. Discovering that fact is somewhat odd because + it needs traversal of the |save_stack|. The occurance of displayed equations + is weird enough that this is probably still better than having yet another + field in the |input_stack| structures. + + None of this makes much sense if the inline direction of either one of + \.{\\pardir} or \.{\\mathdir} is vertical, but in that case the current math + machinery is ill suited anyway so I do not bother to test that. + +*/ + +static boolean math_and_text_reversed_p(void) +{ + int i = save_ptr - 1; + while (save_type(i) != level_boundary) + i--; + while (i < save_ptr) { + if (save_type(i) == restore_old_value && + save_value(i) == int_base + par_direction_code) { + if (textdir_opposite(math_direction_par, save_value(i - 1))) + return true; + } + i++; + } + return false; +} + +/*tex + + When we enter display math mode, we need to call |line_break| to process the + partial paragraph that has just been interrupted by the display. Then we can + set the proper values of |display_width| and |display_indent| and + |pre_display_size|. + +*/ + +void enter_display_math(void) +{ + /*tex new or partial |pre_display_size| */ + scaled w; + /*tex new |display_width| */ + scaled l; + /*tex new |display_indent| */ + scaled s; + pointer p; + /*tex scope of paragraph shape specification */ + int n; + /*tex + + `\.{\\noindent\$\$}' or `\.{\$\${ }\$\$}' or the 2nd of \.{\$\${ }\$\$} + \.{\$\${ }\$\$} + + */ + if (head == tail || + (vlink(head) == tail && + type(tail) == local_par_node && vlink(tail) == null)) { + if (vlink(head) == tail) { + /*tex + + |resume_after_display| inserts a |local_par_node|, but if there + is another display immediately following, we have to get rid of + that node. + + */ + flush_node(tail); + } + pop_nest(); + w = -max_dimen; + } else { + line_break(true, math_shift_group); + w = actual_box_width(just_box, x_over_n(quad(get_cur_font()),1000) * math_pre_display_gap_factor_par); + } + /*tex + + Now we are in vertical mode, working on the list that will contain the + display. A displayed equation is considered to be three lines long, so we + calculate the length and offset of line number |prev_graf+2|. + + */ + if (par_shape_par_ptr == null) { + if ((hang_indent_par != 0) && (((hang_after_par >= 0) && (prev_graf_par + 2 > hang_after_par)) || (prev_graf_par + 1 < -hang_after_par))) { + halfword used_hang_indent = swap_hang_indent(hang_indent_par); + l = hsize_par - abs(used_hang_indent); + if (used_hang_indent > 0) + s = used_hang_indent; + else + s = 0; + } else { + l = hsize_par; + s = 0; + } + } else { + n = vinfo(par_shape_par_ptr + 1); + if (prev_graf_par + 2 >= n) + p = par_shape_par_ptr + 2 * n + 1; + else + p = par_shape_par_ptr + 2 * (prev_graf_par + 2) + 1; + s = varmem[(p - 1)].cint; + l = varmem[p].cint; + s = swap_parshape_indent(s,l); + } + push_math(math_shift_group, display_style); + mode = mmode; + eq_word_define(int_base + cur_fam_code, -1); + eq_word_define(dimen_base + pre_display_size_code, w); + eq_word_define(dimen_base + display_width_code, l); + eq_word_define(dimen_base + display_indent_code, s); + eq_word_define(int_base + pre_display_direction_code, (math_and_text_reversed_p() ? -1 : 0)); + if (every_display_par != null) + begin_token_list(every_display_par, every_display_text); + if (nest_ptr == 1) { + checked_page_filter(before_display); + build_page(); + } +} + +/*tex + + The next routine parses all variations of a delimiter code. The |extcode| + tells what syntax form to use (\TeX, XeTeX, XeTeXnum, ...) , the |doclass| + tells whether or not read a math class also (for \.{\\delimiter} c.s.). (the + class is passed on for conversion to \.{\\mathchar}). + +*/ + +static delcodeval do_scan_extdef_del_code(int extcode, boolean doclass) +{ + const char *hlp[] = { + "I'm going to use 0 instead of that illegal code value.", + NULL + }; + delcodeval d; + int mcls = 0, msfam = 0, mschr = 0, mlfam = 0, mlchr = 0; + if (extcode == tex_mathcode) { + /*tex + + \.{\\delcode}, this is the easiest + + */ + scan_int(); + /*tex "MFCCFCC or "FCCFCC */ + if (doclass) { + mcls = (cur_val / 0x1000000); + cur_val = (cur_val & 0xFFFFFF); + } + if (cur_val > 0xFFFFFF) { + tex_error("Invalid delimiter code", hlp); + cur_val = 0; + } + msfam = (cur_val / 0x100000); + mschr = (cur_val % 0x100000) / 0x1000; + mlfam = (cur_val & 0xFFF) / 0x100; + mlchr = (cur_val % 0x100); + } else if (extcode == umath_mathcode) { + /*tex + + \.{\\Udelcode}: <0-7>,<0-0xFF>,<0-0x10FFFF> or <0-0xFF>,<0-0x10FFFF> + + */ + if (doclass) { + scan_int(); + mcls = cur_val; + } + scan_int(); + msfam = cur_val; + scan_char_num(); + mschr = cur_val; + if (msfam < 0 || msfam > 255) { + tex_error("Invalid delimiter code", hlp); + msfam = 0; + mschr = 0; + } + mlfam = 0; + mlchr = 0; + } else if (extcode == umathnum_mathcode) { + /*tex + + \.{\\Udelcodenum}:"FF<21bits>; the largest numeric value is $2^29-1$, + but the top of bit 21 can't be used as it contains invalid USV's. + + */ + if (doclass) { /* such a primitive doesn't exist */ + confusion("umathnum_mathcode"); + } + scan_int(); + msfam = (cur_val / 0x200000); + mschr = cur_val & 0x1FFFFF; + if (msfam < 0 || msfam > 255 || mschr > 0x10FFFF) { + tex_error("Invalid delimiter code", hlp); + msfam = 0; + mschr = 0; + } + mlfam = 0; + mlchr = 0; + } else { + /*tex Something's gone wrong! */ + confusion("unknown_extcode"); + } + d.class_value = mcls; + d.small_family_value = msfam; + d.small_character_value = mschr; + d.large_family_value = mlfam; + d.large_character_value = mlchr; + return d; +} + +void scan_extdef_del_code(int level, int extcode) +{ + delcodeval d; + int p; + scan_char_num(); + p = cur_val; + scan_optional_equals(); + d = do_scan_extdef_del_code(extcode, false); + set_del_code(p, d.small_family_value, d.small_character_value, + d.large_family_value, d.large_character_value, (quarterword) (level)); +} + +mathcodeval scan_mathchar(int extcode) +{ + char errstr[255] = { 0 }; + const char *hlp[] = { + "I'm going to use 0 instead of that illegal code value.", + NULL + }; + mathcodeval d; + int mcls = 0, mfam = 0, mchr = 0; + if (extcode == tex_mathcode) { + /*tex \.{\\mathcode}: "TFCC */ + scan_int(); + if (cur_val > 0x8000) { + /*tex Needed for latex: fallback to umathnum_mathcode. */ + mfam = (cur_val / 0x200000) & 0x7FF; + mcls = mfam % 0x08; + mfam = mfam / 0x08; + mchr = cur_val & 0x1FFFFF; + if (mchr > 0x10FFFF) { + tex_error("Invalid math code during > 0x8000 mathcode fallback", hlp); + mcls = 0; + mfam = 0; + mchr = 0; + } + } else { + if (cur_val < 0) { + snprintf(errstr, 255, "Bad mathchar (%d)", (int)cur_val); + tex_error(errstr, hlp); + cur_val = 0; + } + mcls = (cur_val / 0x1000); + mfam = ((cur_val % 0x1000) / 0x100); + mchr = (cur_val % 0x100); + } + } else if (extcode == umath_mathcode) { + /*tex <0-0x7> <0-0xFF> <0-0x10FFFF> */ + scan_int(); + mcls = cur_val; + scan_int(); + mfam = cur_val; + scan_char_num(); + mchr = cur_val; + if (mcls < 0 || mcls > 7 || mfam > 255) { + tex_error("Invalid math code", hlp); + mchr = 0; + mfam = 0; + mcls = 0; + } + } else if (extcode == umathnum_mathcode) { + /*tex + + "FFT<21bits>: the largest numeric value is $2^32-1$, but the top of + bit 21 can't be used as it contains invalid USV's + + Note: |scan_int| won't accept families 128-255 because these use bit 32 + + */ + scan_int(); + mfam = (cur_val / 0x200000) & 0x7FF; + mcls = mfam % 0x08; + mfam = mfam / 0x08; + mchr = cur_val & 0x1FFFFF; + if (mchr > 0x10FFFF) { + tex_error("Invalid math code", hlp); + mcls = 0; + mfam = 0; + mchr = 0; + } + } else { + /*tex Something's gone wrong. */ + confusion("unknown_extcode"); + } + d.class_value = mcls; + d.family_value = mfam; + d.character_value = mchr; + return d; +} + +void scan_extdef_math_code(int level, int extcode) +{ + mathcodeval d; + int p; + scan_char_num(); + p = cur_val; + scan_optional_equals(); + d = scan_mathchar(extcode); + set_math_code(p, d.class_value, d.family_value, d.character_value, (quarterword) (level)); +} + +/*tex This reads in a delcode when actually a mathcode is needed. */ + +mathcodeval scan_delimiter_as_mathchar(int extcode) +{ + delcodeval dval; + mathcodeval mval; + dval = do_scan_extdef_del_code(extcode, true); + mval.class_value = dval.class_value; + mval.family_value = dval.small_family_value; + mval.character_value = dval.small_character_value; + return mval; +} + +/*tex + + Recall that the |nucleus|, |subscr|, and |supscr| fields in a noad are broken + down into subfields called |type| and either |math_list| or + |(math_fam,math_character)|. The job of |scan_math| is to figure out what to + place in one of these principal fields; it looks at the subformula that comes + next in the input, and places an encoding of that subformula into a given + word of |mem|. + +*/ + +#define get_next_nb_nr() do { get_x_token(); } while (cur_cmd==spacer_cmd||cur_cmd==relax_cmd) + +int scan_math_style(pointer p, int mstyle) +{ + get_next_nb_nr(); + back_input(); + scan_left_brace(); + set_saved_record(0, saved_math, 0, p); + incr(save_ptr); + push_math(math_group, mstyle); + return 1; +} + +int scan_math(pointer p, int mstyle) +{ + mathcodeval mval = { 0, 0, 0 }; + assert(p != null); + RESTART: + get_next_nb_nr(); + RESWITCH: + switch (cur_cmd) { + case letter_cmd: + case other_char_cmd: + case char_given_cmd: + mval = get_math_code(cur_chr); + if (mval.class_value == 8) { + /*tex An active character that is an |outer_call| is allowed here. */ + cur_cs = active_to_cs(cur_chr, true); + cur_cmd = eq_type(cur_cs); + cur_chr = equiv(cur_cs); + x_token(); + back_input(); + goto RESTART; + } + break; + case char_num_cmd: + scan_char_num(); + cur_chr = cur_val; + cur_cmd = char_given_cmd; + goto RESWITCH; + break; + case math_char_num_cmd: + if (cur_chr == 0) + mval = scan_mathchar(tex_mathcode); + else if (cur_chr == 1) + mval = scan_mathchar(umath_mathcode); + else if (cur_chr == 2) + mval = scan_mathchar(umathnum_mathcode); + else + confusion("scan_math"); + break; + case math_given_cmd: + mval = mathchar_from_integer(cur_chr, tex_mathcode); + break; + case xmath_given_cmd: + mval = mathchar_from_integer(cur_chr, umath_mathcode); + break; + case delim_num_cmd: + if (cur_chr == 0) + mval = scan_delimiter_as_mathchar(tex_mathcode); + else if (cur_chr == 1) + mval = scan_delimiter_as_mathchar(umath_mathcode); + else + confusion("scan_math"); + break; + default: + /*tex + + The pointer |p| is placed on |save_stack| while a complex subformula + is being scanned. + + */ + back_input(); + scan_left_brace(); + set_saved_record(0, saved_math, 0, p); + incr(save_ptr); + push_math(math_group, mstyle); + return 1; + } + type(p) = math_char_node; + math_character(p) = mval.character_value; + if ((mval.class_value == math_use_current_family_code) && cur_fam_par_in_range) + math_fam(p) = cur_fam_par; + else + math_fam(p) = mval.family_value; + return 0; +} + +/*tex + + The |set_math_char| procedure creates a new noad appropriate to a given math + code, and appends it to the current mlist. However, if the math code is + sufficiently large, the |cur_chr| is treated as an active character and + nothing is appended. + +*/ + +#define math_class_to_type(target,source) \ + switch (source) { \ + case 0: target = ord_noad_type; break; \ + case 1: target = op_noad_type_normal; break; \ + case 2: target = bin_noad_type; break; \ + case 3: target = rel_noad_type; break; \ + case 4: target = open_noad_type; break; \ + case 5: target = close_noad_type; break; \ + case 6: target = punct_noad_type; break; \ + } + +void set_math_char(mathcodeval mval) +{ + pointer p; + if (mval.class_value == 8) { + /*tex An active character that is an |outer_call| is allowed here */ + cur_cs = active_to_cs(cur_chr, true); + cur_cmd = eq_type(cur_cs); + cur_chr = equiv(cur_cs); + x_token(); + back_input(); + } else { + pointer q; + p = new_noad(); + q = new_node(math_char_node, 0); + nucleus(p) = q; + math_character(nucleus(p)) = mval.character_value; + math_fam(nucleus(p)) = mval.family_value; + if (mval.class_value == math_use_current_family_code) { + if (cur_fam_par_in_range) + math_fam(nucleus(p)) = cur_fam_par; + subtype(p) = ord_noad_type; + } else { + math_class_to_type(subtype(p),mval.class_value); + } + vlink(tail) = p; + tail = p; + } +} + +/*tex + + The |math_char_in_text| procedure creates a new node representing a math char + in text code, and appends it to the current list. However, if the math code + is sufficiently large, the |cur_chr| is treated as an active character and + nothing is appended. + +*/ + +void math_char_in_text(mathcodeval mval) +{ + pointer p; + if (mval.class_value == 8) { + /*tex An active character that is an |outer_call| is allowed here */ + cur_cs = active_to_cs(cur_chr, true); + cur_cmd = eq_type(cur_cs); + cur_chr = equiv(cur_cs); + x_token(); + back_input(); + } else { + p = new_char(fam_fnt(mval.family_value, text_size), mval.character_value); + vlink(tail) = p; + tail = p; + } +} + +void math_math_comp(void) +{ + pointer q; + tail_append(new_noad()); + subtype(tail) = (quarterword) cur_chr; + q = new_node(math_char_node, 0); + nucleus(tail) = q; + if (cur_chr == over_noad_type) + (void) scan_math(nucleus(tail), cramped_style(m_style)); + else + (void) scan_math(nucleus(tail), m_style); +} + +void math_limit_switch(void) +{ + const char *hlp[] = { + "I'm ignoring this misplaced \\limits or \\nolimits command.", + NULL + }; + if (head != tail) { + if (type(tail) == simple_noad && + (subtype(tail) == op_noad_type_normal || + subtype(tail) == op_noad_type_limits || + subtype(tail) == op_noad_type_no_limits)) { + subtype(tail) = (quarterword) cur_chr; + return; + } + } + tex_error("Limit controls must follow a math operator", hlp); +} + +/*tex + + Delimiter fields of noads are filled in by the |scan_delimiter| routine. The + first parameter of this procedure is the |mem| address where the delimiter + is to be placed; the second tells if this delimiter follows \.{\\radical} or + not. + +*/ + +static void scan_delimiter(pointer p, int r) +{ + delcodeval dval = { 0, 0, 0, 0, 0 }; + if (r == tex_mathcode) { + /*tex \.{\\radical} */ + dval = do_scan_extdef_del_code(tex_mathcode, true); + } else if (r == umath_mathcode) { + /*tex \.{\\Uradical} */ + dval = do_scan_extdef_del_code(umath_mathcode, false); + } else if (r == no_mathcode) { + get_next_nb_nr(); + switch (cur_cmd) { + case letter_cmd: + case other_char_cmd: + dval = get_del_code(cur_chr); + break; + case delim_num_cmd: + if (cur_chr == 0) { + /*tex \.{\\delimiter} */ + dval = do_scan_extdef_del_code(tex_mathcode, true); + } else if (cur_chr == 1) { + /*tex \.{\\Udelimiter} */ + dval = do_scan_extdef_del_code(umath_mathcode, true); + } else { + confusion("scan_delimiter1"); + } + break; + default: + dval.small_family_value = -1; + break; + } + } else { + confusion("scan_delimiter2"); + } + if (p == null) + return; + if (dval.small_family_value < 0) { + const char *hlp[] = { + "I was expecting to see something like `(' or `\\{' or", + "`\\}' here. If you typed, e.g., `{' instead of `\\{', you", + "should probably delete the `{' by typing `1' now, so that", + "braces don't get unbalanced. Otherwise just proceed", + "Acceptable delimiters are characters whose \\delcode is", + "nonnegative, or you can use `\\delimiter <delimiter code>'.", + NULL + }; + back_error("Missing delimiter (. inserted)", hlp); + small_fam(p) = 0; + small_char(p) = 0; + large_fam(p) = 0; + large_char(p) = 0; + } else { + small_fam(p) = dval.small_family_value; + small_char(p) = dval.small_character_value; + large_fam(p) = dval.large_family_value; + large_char(p) = dval.large_character_value; + } + return; +} + +void math_radical(void) +{ + halfword q; + int chr_code = cur_chr; + halfword options = 0; + tail_append(new_node(radical_noad, chr_code)); + q = new_node(delim_node, 0); + left_delimiter(tail) = q; + while (1) { + if (scan_keyword("width")) { + scan_dimen(false,false,false); + radicalwidth(tail) = cur_val ; + } else if (scan_keyword("left")) { + options = options | noad_option_left ; + } else if (scan_keyword("middle")) { + options = options | noad_option_middle ; + } else if (scan_keyword("right")) { + options = options | noad_option_right ; + } else { + break; + } + } + radicaloptions(tail) = options; + if (chr_code == 0) + /*tex \.{\\radical} */ + scan_delimiter(left_delimiter(tail), tex_mathcode); + else if (chr_code == 1) + /*tex \.{\\Uradical} */ + scan_delimiter(left_delimiter(tail), umath_mathcode); + else if (chr_code == 2) + /*tex \.{\\Uroot} */ + scan_delimiter(left_delimiter(tail), umath_mathcode); + else if (chr_code == 3) + /*tex \.{\\Uunderdelimiter} */ + scan_delimiter(left_delimiter(tail), umath_mathcode); + else if (chr_code == 4) + /*tex \.{\\Uoverdelimiter} */ + scan_delimiter(left_delimiter(tail), umath_mathcode); + else if (chr_code == 5) + /*tex \.{\\Udelimiterunder} */ + scan_delimiter(left_delimiter(tail), umath_mathcode); + else if (chr_code == 6) + /*tex \.{\\Udelimiterover} */ + scan_delimiter(left_delimiter(tail), umath_mathcode); + else if (chr_code == 7) + /*tex \.{\\Uhextensible} */ + scan_delimiter(left_delimiter(tail), umath_mathcode); + else + confusion("math_radical"); + if (chr_code == 7) { + /*tex type will change */ + q = new_node(sub_box_node, 0); + nucleus(tail) = q; + return; + } else if (chr_code == 2) { + /*tex + + The trick with the |vlink(q)| is used by |scan_math| to decide + whether it needs to go on. + + */ + q = new_node(math_char_node, 0); + vlink(q) = tail; + degree(tail) = q; + if (!scan_math(degree(tail), sup_sup_style(m_style))) { + vlink(degree(tail)) = null; + q = new_node(math_char_node, 0); + nucleus(tail) = q; + (void) scan_math(nucleus(tail), cramped_style(m_style)); + } + } else { + q = new_node(math_char_node, 0); + nucleus(tail) = q; + (void) scan_math(nucleus(tail), cramped_style(m_style)); + } +} + +void math_ac(void) +{ + halfword q; + mathcodeval t = { 0, 0, 0 }; + mathcodeval b = { 0, 0, 0 }; + mathcodeval o = { 0, 0, 0 }; + if (cur_cmd == accent_cmd) { + const char *hlp[] = { + "I'm changing \\accent to \\mathaccent here; wish me luck.", + "(Accents are not the same in formulas as they are in text.)", + NULL + }; + tex_error("Please use \\mathaccent for accents in math mode", hlp); + } + tail_append(new_node(accent_noad, 0)); + if (cur_chr == 0) { + /*tex \.{\\mathaccent} */ + t = scan_mathchar(tex_mathcode); + } else if (cur_chr == 1) { + /*tex \.{\\Umathaccent} */ + if (scan_keyword("fixed")) { + /*tex top */ + subtype(tail) = 1; + t = scan_mathchar(umath_mathcode); + } else if (scan_keyword("both")) { + /*tex top bottom */ + if (scan_keyword("fixed")) { + subtype(tail) = 1; + } + t = scan_mathchar(umath_mathcode); + if (scan_keyword("fixed")) { + subtype(tail) += 2; + } + b = scan_mathchar(umath_mathcode); + } else if (scan_keyword("bottom")) { + /*tex bottom */ + if (scan_keyword("fixed")) { + subtype(tail) = 2; + } + b = scan_mathchar(umath_mathcode); + } else if (scan_keyword("top")) { + /*tex top */ + if (scan_keyword("fixed")) { + subtype(tail) = 1; + } + t = scan_mathchar(umath_mathcode); + } else if (scan_keyword("overlay")) { + /* overlay */ + if (scan_keyword("fixed")) { + subtype(tail) = 1; + } + o = scan_mathchar(umath_mathcode); + } else { + /*tex top */ + t = scan_mathchar(umath_mathcode); + } + if (scan_keyword("fraction")) { + scan_int(); + accentfraction(tail) = cur_val; + } + } else { + confusion("mathaccent"); + } + if (!(t.character_value == 0 && t.family_value == 0)) { + q = new_node(math_char_node, 0); + top_accent_chr(tail) = q; + math_character(top_accent_chr(tail)) = t.character_value; + if ((t.class_value == math_use_current_family_code) && cur_fam_par_in_range) + math_fam(top_accent_chr(tail)) = cur_fam_par; + else + math_fam(top_accent_chr(tail)) = t.family_value; + } + if (!(b.character_value == 0 && b.family_value == 0)) { + q = new_node(math_char_node, 0); + bot_accent_chr(tail) = q; + math_character(bot_accent_chr(tail)) = b.character_value; + if ((b.class_value == math_use_current_family_code) && cur_fam_par_in_range) + math_fam(bot_accent_chr(tail)) = cur_fam_par; + else + math_fam(bot_accent_chr(tail)) = b.family_value; + } + if (!(o.character_value == 0 && o.family_value == 0)) { + q = new_node(math_char_node, 0); + overlay_accent_chr(tail) = q; + math_character(overlay_accent_chr(tail)) = o.character_value; + if ((o.class_value == math_use_current_family_code) && cur_fam_par_in_range) + math_fam(overlay_accent_chr(tail)) = cur_fam_par; + else + math_fam(overlay_accent_chr(tail)) = o.family_value; + } + q = new_node(math_char_node, 0); + nucleus(tail) = q; + (void) scan_math(nucleus(tail), cramped_style(m_style)); +} + +pointer math_vcenter_group(pointer p) +{ + pointer q, r; + q = new_noad(); + subtype(q) = vcenter_noad_type; + r = new_node(sub_box_node, 0); + nucleus(q) = r; + math_list(nucleus(q)) = p; + return q; +} + +/*tex + + The routine that scans the four mlists of a \.{\\mathchoice} is very much + like the routine that builds discretionary nodes. + +*/ + +void append_choices(void) +{ + tail_append(new_choice()); + incr(save_ptr); + set_saved_record(-1, saved_choices, 0, 0); + push_math(math_choice_group, display_style); + scan_left_brace(); +} + +void build_choices(void) +{ + pointer p; + int prev_style; + prev_style = m_style; + unsave_math(); + p = fin_mlist(null); + assert(saved_type(-1) == saved_choices); + switch (saved_value(-1)) { + case 0: + display_mlist(tail) = p; + break; + case 1: + text_mlist(tail) = p; + break; + case 2: + script_mlist(tail) = p; + break; + case 3: + script_script_mlist(tail) = p; + decr(save_ptr); + return; + break; + } + set_saved_record(-1, saved_choices, 0, (saved_value(-1) + 1)); + push_math(math_choice_group, (prev_style + 2)); + scan_left_brace(); +} + +/*tex + + Subscripts and superscripts are attached to the previous nucleus by the + action procedure called |sub_sup|. + +*/ + +static void do_sub_sup(int no) +{ + pointer q; + if (tail == head || (!scripts_allowed(tail))) { + tail_append(new_noad()); + q = new_node(sub_mlist_node, 0); + nucleus(tail) = q; + } + if (cur_cmd == sup_mark_cmd || cur_chr == sup_mark_cmd) { + /*tex |super_sub_script| */ + if (supscr(tail) != null) { + const char *hlp[] = { + "I treat `x^1^2' essentially like `x^1{}^2'.", NULL + }; + tail_append(new_noad()); + q = new_node(sub_mlist_node, 0); + nucleus(tail) = q; + tex_error("Double superscript", hlp); + } + if (no) { + noadoptions(tail) = noadoptions(tail) | noad_option_no_super_script ; + } + q = new_node(math_char_node, 0); + supscr(tail) = q; + (void) scan_math(supscr(tail), sup_style(m_style)); + } else if (cur_cmd == sub_mark_cmd || cur_chr == sub_mark_cmd) { + if (subscr(tail) != null) { + const char *hlp[] = { + "I treat `x_1_2' essentially like `x_1{}_2'.", NULL + }; + tail_append(new_noad()); + q = new_node(sub_mlist_node, 0); + nucleus(tail) = q; + tex_error("Double subscript", hlp); + } + if (no) { + noadoptions(tail) = noadoptions(tail) | noad_option_no_sub_script ; + } + q = new_node(math_char_node, 0); + subscr(tail) = q; + (void) scan_math(subscr(tail), sub_style(m_style)); + } +} + +void sub_sup(void) +{ + do_sub_sup(0); +} + +void no_sub_sup(void) +{ + do_sub_sup(1); +} + +/*tex + + An operation like `\.{\\over}' causes the current mlist to go into a state of + suspended animation: |incompleat_noad| points to a |fraction_noad| that + contains the mlist-so-far as its numerator, while the denominator is yet to + come. Finally when the mlist is finished, the denominator will go into the + incompleat fraction noad, and that noad will become the whole formula, unless + it is surrounded by `\.{\\left}' and `\.{\\right}' delimiters. + +*/ + +void math_fraction(void) +{ + /*tex The type of generalized fraction we are scanning: */ + halfword c; + pointer q; + halfword options = 0; + halfword temp_value; + c = cur_chr; + if (incompleat_noad_par != null) { + const char *hlp[] = { + "I'm ignoring this fraction specification, since I don't", + "know whether a construction like `x \\over y \\over z'", + "means `{x \\over y} \\over z' or `x \\over {y \\over z}'.", + NULL + }; + if (c >= delimited_code) { + scan_delimiter(null, no_mathcode); + scan_delimiter(null, no_mathcode); + } + if ((c % delimited_code) == above_code) + scan_normal_dimen(); + tex_error("Ambiguous; you need another { and }", hlp); + } else { + incompleat_noad_par = new_node(fraction_noad, 0); + temp_value = new_node(sub_mlist_node, 0); + numerator(incompleat_noad_par) = temp_value; + math_list(numerator(incompleat_noad_par)) = vlink(head); + vlink(head) = null; + tail = head; + m_style = cramped_style(m_style); + + if ((c % delimited_code) == skewed_code) { + q = new_node(delim_node, 0); + middle_delimiter(incompleat_noad_par) = q; + scan_delimiter(middle_delimiter(incompleat_noad_par), no_mathcode); + } + if (c >= delimited_code) { + q = new_node(delim_node, 0); + left_delimiter(incompleat_noad_par) = q; + q = new_node(delim_node, 0); + right_delimiter(incompleat_noad_par) = q; + scan_delimiter(left_delimiter(incompleat_noad_par), no_mathcode); + scan_delimiter(right_delimiter(incompleat_noad_par), no_mathcode); + } + switch (c % delimited_code) { + case above_code: + while (1) { + if (scan_keyword("exact")) { + options = options | noad_option_exact ; + } else { + break; + } + } + fractionoptions(incompleat_noad_par) = options; + scan_normal_dimen(); + thickness(incompleat_noad_par) = cur_val; + break; + case over_code: + thickness(incompleat_noad_par) = default_code; + break; + case atop_code: + thickness(incompleat_noad_par) = 0; + break; + case skewed_code: + while (1) { + if (scan_keyword("exact")) { + options = options | noad_option_exact ; + } else if (scan_keyword("noaxis")) { + options = options | noad_option_no_axis ; + } else { + break; + } + } + fractionoptions(incompleat_noad_par) = options; + thickness(incompleat_noad_par) = 0; + break; + } + } +} + +/*tex + + At the end of a math formula or subformula, the |fin_mlist| routine is called + upon to return a pointer to the newly completed mlist, and to pop the nest + back to the enclosing semantic level. The parameter to |fin_mlist|, if not + null, points to a |fence_noad| that ends the current mlist; this |fence_noad| + has not yet been appended. + +*/ + +pointer fin_mlist(pointer p) +{ + pointer q; + if (incompleat_noad_par != null) { + if (denominator(incompleat_noad_par) != null) { + type(denominator(incompleat_noad_par)) = sub_mlist_node; + } else { + q = new_node(sub_mlist_node, 0); + denominator(incompleat_noad_par) = q; + } + math_list(denominator(incompleat_noad_par)) = vlink(head); + if (p == null) { + q = incompleat_noad_par; + } else { + q = math_list(numerator(incompleat_noad_par)); + if ((type(q) != fence_noad) || (subtype(q) != left_noad_side) || (delim_par == null)) + confusion("right"); + math_list(numerator(incompleat_noad_par)) = vlink(delim_par); + vlink(delim_par) = incompleat_noad_par; + vlink(incompleat_noad_par) = p; + } + } else { + vlink(tail) = p; + q = vlink(head); + } + pop_nest(); + return q; +} + +/*tex + + Now at last we're ready to see what happens when a right brace occurs in a + math formula. Two special cases are simplified here: Braces are effectively + removed when they surround a single Ord without sub/superscripts, or when + they surround an accent that is the nucleus of an Ord atom. + +*/ + +void close_math_group(pointer p) +{ + int old_style = m_style; + unsave_math(); + decr(save_ptr); + assert(saved_type(0) == saved_math); + type(saved_value(0)) = sub_mlist_node; + p = fin_mlist(null); + math_list(saved_value(0)) = p; + if (p != null && vlink(p) == null) { + if (type(p) == simple_noad) { + if (subscr(p) == null && supscr(p) == null) { + /*tex (subtype(p) == ord_noad_type) */ + int flatten = 0; + int modepar = math_flatten_mode_par; + switch (subtype(p)) { + case ord_noad_type : + flatten = (modepar & 1) == 1; + break; + case bin_noad_type : + flatten = (modepar & 2) == 2; + break; + case rel_noad_type : + flatten = (modepar & 4) == 4; + break; + case punct_noad_type : + flatten = (modepar & 8) == 8; + break; + case inner_noad_type : + flatten = (modepar & 16) == 16; + break; + default: + break; + } + if (flatten) { + type(saved_value(0)) = type(nucleus(p)); + if (type(nucleus(p)) == math_char_node) { + math_fam(saved_value(0)) = math_fam(nucleus(p)); + math_character(saved_value(0)) = + math_character(nucleus(p)); + } else { + math_list(saved_value(0)) = math_list(nucleus(p)); + math_list(nucleus(p)) = null; + } + delete_attribute_ref(node_attr(saved_value(0))); + node_attr(saved_value(0)) = node_attr(nucleus(p)); + node_attr(nucleus(p)) = null; + flush_node(p); + } + } + } else if (type(p) == accent_noad) { + if (saved_value(0) == nucleus(tail) && type(tail) == simple_noad && subtype(tail) == ord_noad_type) { + pointer q = head; + while (vlink(q) != tail) + q = vlink(q); + vlink(q) = p; + nucleus(tail) = null; + subscr(tail) = null; + supscr(tail) = null; + delete_attribute_ref(node_attr(p)); + node_attr(p) = node_attr(tail); + node_attr(tail) = null; + flush_node(tail); + tail = p; + } + } + } + if (vlink(saved_value(0)) > 0) { + pointer q; + q = new_node(math_char_node, 0); + nucleus(vlink(saved_value(0))) = q; + vlink(saved_value(0)) = null; + saved_value(0) = q; + (void) scan_math(saved_value(0), old_style); + /*tex restart */ + } +} + +/*tex + + We have dealt with all constructions of math mode except `\.{\\left}' and + `\.{\\right}', so the picture is completed by the following sections of the + program. The |middle| feature of eTeX allows one ore several \.{\\middle} + delimiters to appear between \.{\\left} and \.{\\right}. + +*/ + +void math_left_right(void) +{ + /*tex |left_noad_side| .. |right_noad_side| */ + halfword t; + /*tex new noad */ + pointer p; + /*tex resulting mlist */ + pointer q; + /*tex temporary */ + pointer r; + halfword ht = 0; + halfword dp = 0; + halfword options = 0; + halfword type = -1 ; + t = cur_chr; + if (t > 10) { + /*tex we have \Uleft \Uright \Umiddle */ + t = t - 10; + while (1) { + if (scan_keyword("height")) { + scan_dimen(false,false,false); + ht = cur_val ; + } else if (scan_keyword("depth")) { + scan_dimen(false,false,false); + dp = cur_val ; + } else if (scan_keyword("axis")) { + options = options | noad_option_axis ; + } else if (scan_keyword("noaxis")) { + options = options | noad_option_no_axis ; + } else if (scan_keyword("exact")) { + options = options | noad_option_exact ; + } else if (scan_keyword("class")) { + scan_int(); + math_class_to_type(type,cur_val); + } else { + break; + } + } + } + if ((t != no_noad_side) && (t != left_noad_side) && (cur_group != math_left_group)) { + if (cur_group == math_shift_group) { + scan_delimiter(null, no_mathcode); + if (t == middle_noad_side) { + const char *hlp[] = { + "I'm ignoring a \\middle that had no matching \\left.", + NULL + }; + tex_error("Extra \\middle", hlp); + } else { + const char *hlp[] = { + "I'm ignoring a \\right that had no matching \\left.", + NULL + }; + tex_error("Extra \\right", hlp); + } + } else { + off_save(); + } + } else { + p = new_noad(); + type(p) = fence_noad; + subtype(p) = (quarterword) t; + r = new_node(delim_node, 0); + delimiter(p) = r; + delimiterheight(p) = ht; + delimiterdepth(p) = dp; + delimiteroptions(p) = options; + delimiterclass(p) = type; + delimiteritalic(p) = 0; + delimitersamesize(p) = 0; + scan_delimiter(delimiter(p), no_mathcode); + if (t == no_noad_side) { + tail_append(new_noad()); + subtype(tail) = inner_noad_type; + r = new_node(sub_mlist_node, 0); + nucleus(tail) = r; + math_list(nucleus(tail)) = p; + return ; + } + if (t == left_noad_side) { + q = p; + } else { + q = fin_mlist(p); + unsave_math(); + } + if (t != right_noad_side) { + push_math(math_left_group, m_style); + vlink(head) = q; + tail = p; + delim_par = p; + } else { + tail_append(new_noad()); + subtype(tail) = inner_noad_type; + r = new_node(sub_mlist_node, 0); + nucleus(tail) = r; + math_list(nucleus(tail)) = q; + } + } +} + +/*tex + + \TeX\ gets to the following part of the program when the first `\.\$' ending + a display has been scanned. + +*/ + +static void check_second_math_shift(void) +{ + get_x_token(); + if (cur_cmd != math_shift_cmd) { + const char *hlp[] = { + "The `$' that I just saw supposedly matches a previous `$$'.", + "So I shall assume that you typed `$$' both times.", + NULL + }; + back_error("Display math should end with $$", hlp); + } +} + +static void check_display_math_end(void) +{ + if (cur_chr != cramped_display_style) { + const char *hlp[] = { + "I shall assume that you typed that.", + NULL + }; + tex_error("Display math should end with \\Ustopdisplaymath", hlp); + } +} + +static void check_inline_math_end(void) +{ + if (cur_chr != cramped_text_style) { + const char *hlp[] = { + "I shall assume that you typed that.", + NULL + }; + tex_error("Inline math should end with \\Ustopmath", hlp); + } +} + +static void resume_after_display(void) +{ + if (cur_group != math_shift_group) + confusion("display"); + unsave_math(); + prev_graf_par = prev_graf_par + 3; + push_nest(); + mode = hmode; + space_factor_par = 1000; + /*tex This needs to be intercepted in the display math start! */ + tail_append(make_local_par_node(penalty_par_code)); + get_x_token(); + if (cur_cmd != spacer_cmd) + back_input(); + if (nest_ptr == 1) { + normal_page_filter(after_display); + build_page(); + } +} + +/*tex + + The fussiest part of math mode processing occurs when a displayed formula is + being centered and placed with an optional equation number. + + At this time we are in vertical mode (or internal vertical mode). + + \starttabulate + \NC \type {p} \NC points to the mlist for the formula \NC \NR + \NC \type {a} \NC is either |null| or it points to a box containing the equation number \NC \NR + \NC \type {l} \NC is true if there was an \.{\\leqno}/ (so |a| is a horizontal box) \NC \NR + \stoptabulate + +*/ + +#define inject_display_skip_before(g) \ + if (g > 0) { \ + switch (display_skip_mode_par) { \ + case 0 : \ + /*tex normal tex | always */ \ + case 1 : \ + /*tex always */ \ + tail_append(new_param_glue(g)); \ + break; \ + case 2 : \ + /*tex non-zero */ \ + if (! glue_is_zero(glue_par(g))) \ + tail_append(new_param_glue(g)); \ + break; \ + case 3: \ + /*tex ignore */ \ + break; \ + default: \ + /*tex > 3 reserved for future use */ \ + tail_append(new_param_glue(g)); \ + break; \ + } \ + } + +#define inject_display_skip_after(g) \ + if (g > 0) { \ + switch (display_skip_mode_par) { \ + case 0 : \ + /*tex normal tex | always */ \ + case 1 : \ + /*tex always */ \ + tail_append(new_param_glue(g)); \ + break; \ + case 2 : \ + /*tex non-zero */ \ + if (! glue_is_zero(glue_par(g))) \ + tail_append(new_param_glue(g)); \ + break; \ + case 3: \ + /*tex ignore */ \ + break; \ + default: \ + /*tex > 3 reserved for future use */ \ + tail_append(new_param_glue(g)); \ + break; \ + } \ + } + +static void finish_displayed_math(boolean l, pointer eqno_box, pointer p) +{ + /*tex box containing the equation */ + pointer eq_box; + /*tex width of the equation */ + scaled eq_w; + /*tex width of the line */ + scaled line_w; + /*tex width of equation number */ + scaled eqno_w; + /*tex width of equation number plus space to separate from equation */ + scaled eqno_w2; + /*tex move the line right this much */ + scaled line_s; + /*tex displacement of equation in the line */ + scaled d; + /*tex glue parameter codes for before and after */ + small_number g1, g2; + /*tex kern nodes used to position the display */ + pointer r,s; + /*tex tail of adjustment list */ + pointer t; + /*tex tail of pre-adjustment list */ + pointer pre_t; + /*tex true if the math and surrounding text dirs are opposed */ + boolean swap_dir; + scaled eqno_width; + swap_dir = (pre_display_direction_par < 0 ? true : false ); + if (eqno_box != null && swap_dir) + l = !l; + adjust_tail = adjust_head; + pre_adjust_tail = pre_adjust_head; + eq_box = hpack(p, 0, additional, -1); + subtype(eq_box) = equation_list; + build_attribute_list(eq_box); + p = list_ptr(eq_box); + t = adjust_tail; + adjust_tail = null; + pre_t = pre_adjust_tail; + pre_adjust_tail = null; + eq_w = width(eq_box); + line_w = display_width_par; + line_s = display_indent_par; + if (eqno_box == null) { + eqno_w = 0; + eqno_width = 0; + eqno_w2 = 0; + } else { + eqno_w = width(eqno_box); + eqno_width = eqno_w; + eqno_w2 = eqno_w + round_xn_over_d(math_eqno_gap_step_par, get_math_quad_style(text_style), 1000); + subtype(eqno_box) = equation_number_list; + /*tex build_attribute_list(eqno_box); */ + } + if (eq_w + eqno_w2 > line_w) { + /*tex + + The user can force the equation number to go on a separate line by + causing its width to be zero. + + */ + if ((eqno_w != 0) && ((eq_w - total_shrink[normal] + eqno_w2 <= line_w) + || (total_shrink[sfi] != 0) || (total_shrink[fil] != 0) + || (total_shrink[fill] != 0) || (total_shrink[filll] != 0))) { + list_ptr(eq_box) = null; + flush_node(eq_box); + eq_box = hpack(p, line_w - eqno_w2, exactly, -1); + subtype(eq_box) = equation_list; + build_attribute_list(eq_box); + } else { + eqno_w = 0; + if (eq_w > line_w) { + list_ptr(eq_box) = null; + flush_node(eq_box); + eq_box = hpack(p, line_w, exactly, -1); + subtype(eq_box) = equation_list; + build_attribute_list(eq_box); + } + } + eq_w = width(eq_box); + } + /*tex + + We try first to center the display without regard to the existence of the + equation number. If that would make it too close (where ``too close'' + means that the space between display and equation number is less than the + width of the equation number), we either center it in the remaining space + or move it as far from the equation number as possible. The latter + alternative is taken only if the display begins with glue, since we + assume that the user put glue there to control the spacing precisely. + + */ + d = half(line_w - eq_w); + if ((eqno_w > 0) && (d < 2 * eqno_w)) { + /*tex too close */ + d = half(line_w - eq_w - eqno_w); + if (p != null) + if (!is_char_node(p)) + if (type(p) == glue_node) + d = 0; + } + tail_append(new_penalty(pre_display_penalty_par,after_display_penalty)); + if ((d + line_s <= pre_display_size_par) || l) { + /*tex not enough clearance */ + g1 = above_display_skip_code; + g2 = below_display_skip_code; + } else { + g1 = above_display_short_skip_code; + g2 = below_display_short_skip_code; + } + /*tex + + If the equation number is set on a line by itself, either before or after + the formula, we append an infinite penalty so that no page break will + separate the display from its number; and we use the same size and + displacement for all three potential lines of the display, even though + `\.{\\parshape}' may specify them differently. + + \.{\\leqno} on a forced single line due to |width=0|; it follows that |type(a)=hlist_node| + + */ + if (eqno_box && l && (eqno_w == 0)) { + /* if (math_direction_par==dir_TLT) { */ + shift_amount(eqno_box) = 0; + /* } else { */ + /* } */ + append_to_vlist(eqno_box,lua_key_index(equation_number)); + tail_append(new_penalty(inf_penalty,equation_number_penalty)); + } else { + inject_display_skip_before(g1); + } + if (eqno_w != 0) { + r = new_kern(line_w - eq_w - eqno_w - d); + if (l) { + if (swap_dir) { + if (math_direction_par==dir_TLT) { + /*tex TRT + TLT + \eqno: (swap_dir=true, math_direction_par=TLT, l=true) */ + s = new_kern(width(r) + eqno_w); + try_couple_nodes(eqno_box,r); + try_couple_nodes(r,eq_box); + try_couple_nodes(eq_box,s); + } else { + /*tex TLT + TRT + \eqno: (swap_dir=true, math_direction_par=TRT, l=true) */ + try_couple_nodes(eqno_box,r); + try_couple_nodes(r,eq_box); + } + } else { + if (math_direction_par==dir_TLT) { + /*tex TLT + TLT + \leqno: (swap_dir=false, math_direction_par=TLT, l=true) */ + s = new_kern(width(r) + eqno_w); + } else { + /*tex TRT + TRT + \leqno: (swap_dir=false, math_direction_par=TRT, l=true) */ + s = new_kern(width(r)); + } + try_couple_nodes(eqno_box,r); + try_couple_nodes(r,eq_box); + try_couple_nodes(eq_box,s); + } + eq_box = eqno_box; + } else { + if (swap_dir) { + if (math_direction_par==dir_TLT) { + /*tex TRT + TLT + \leqno: (swap_dir=true, math_direction_par=TLT, l=false) */ + } else { + /*tex TLT + TRT + \leqno: (swap_dir=true, math_direction_par=TRT, l=false) */ + } + try_couple_nodes(eq_box,r); + try_couple_nodes(r,eqno_box); + } else { + if (math_direction_par==dir_TLT) { + /*tex TLT + TLT + \eqno: (swap_dir=false, math_direction_par=TLT, l=false) */ + s = new_kern(d); + } else { + /*tex TRT + TRT + \eqno: (swap_dir=false, math_direction_par=TRT, l=false) */ + s = new_kern(width(r) + eqno_w); + } + try_couple_nodes(s,eq_box); + try_couple_nodes(eq_box,r); + try_couple_nodes(r,eqno_box); + eq_box = s; + } + } + eq_box = hpack(eq_box, 0, additional, -1); + subtype(eq_box) = equation_list; /* new */ + build_attribute_list(eq_box); + shift_amount(eq_box) = line_s; + } else { + shift_amount(eq_box) = line_s + d; + } + /*tex check for prev: */ + append_to_vlist(eq_box,lua_key_index(equation)); + if ((eqno_box != null) && (eqno_w == 0) && !l) { + tail_append(new_penalty(inf_penalty,equation_number_penalty)); + /* if (math_direction_par==dir_TLT) { */ + shift_amount(eqno_box) = line_s + line_w - eqno_width ; + /* } else { */ + /* } */ + append_to_vlist(eqno_box,lua_key_index(equation_number)); + g2 = 0; + } + if (t != adjust_head) { + /*tex migrating material comes after equation number */ + vlink(tail) = vlink(adjust_head); + alink(adjust_tail) = alink(tail); + tail = t; + } + if (pre_t != pre_adjust_head) { + vlink(tail) = vlink(pre_adjust_head); + alink(pre_adjust_tail) = alink(tail); + tail = pre_t; + } + tail_append(new_penalty(post_display_penalty_par,after_display_penalty)); + inject_display_skip_after(g2); + resume_after_display(); +} + +void after_math(void) +{ + /*tex |mmode| or |-mmode| */ + int m; + /*tex the formula */ + pointer p; + /*tex box containing equation number */ + pointer a = null; + /*tex `\.{\\leqno}' instead of `\.{\\eqno}' */ + boolean l = false; + m = mode; + /*tex this pops the nest */ + p = fin_mlist(null); + if (cur_cmd == math_shift_cs_cmd && + (cur_chr == text_style || cur_chr == display_style)) { + you_cant(); + } + if (mode == -m) { + /*tex end of equation number */ + if (cur_cmd == math_shift_cmd) { + check_second_math_shift(); + } else { + check_display_math_end(); + } + run_mlist_to_hlist(p, false, text_style); + a = hpack(vlink(temp_head), 0, additional, -1); + build_attribute_list(a); + unsave_math(); + /*tex now |cur_group=math_shift_group| */ + decr(save_ptr); + assert(saved_type(0) == saved_eqno); + if (saved_value(0) == 1) + l = true; + m = mode; + p = fin_mlist(null); + + } + if (m < 0) { + /*tex + + The |unsave| is done after everything else here; hence an appearance + of `\.{\\mathsurround}' inside of `\.{\$...\$}' affects the spacing + at these particular \.\$'s. This is consistent with the conventions + of `\.{\$\$...\$\$}', since `\.{\\abovedisplayskip}' inside a display + affects the space above that display. + + */ + if (cur_cmd == math_shift_cs_cmd) { + check_inline_math_end(); + } + tail_append(new_math(math_surround_par, before)); + /*tex begin mathskip code */ + switch (math_skip_mode) { + case 0 : + /*tex obey mathsurround when zero glue */ + if (! glue_is_zero(math_skip_par)) { + copy_glue_values(tail,math_skip_par); + surround(tail) = 0; + } + break ; + case 1 : + /*tex always left */ + case 3 : + /*tex always both */ + case 6 : + /*tex only when skip */ + copy_glue_values(tail,math_skip_par); + surround(tail) = 0; + break ; + case 2 : + /*tex only right */ + surround(tail) = 0; + break ; + case 4 : + /*tex ignore, obey marthsurround */ + break ; + case 5: + /*tex all spacing disabled */ + surround(tail) = 0; + break ; + } + /*tex end mathskip code */ + if (dir_math_save) { + tail_append(new_dir(math_direction_par)); + } + run_mlist_to_hlist(p, (mode > 0), text_style); + vlink(tail) = vlink(temp_head); + while (vlink(tail) != null) { + tail = vlink(tail); + } + if (dir_math_save) { + tail_append(new_dir(math_direction_par)); + subtype(tail) = cancel_dir; + } + dir_math_save = false; + tail_append(new_math(math_surround_par, after)); + /*tex begin mathskip code */ + switch (math_skip_mode) { + case 0 : + /*tex obey mathsurround when zero glue */ + if (! glue_is_zero(math_skip_par)) { + copy_glue_values(tail,math_skip_par); + surround(tail) = 0; + } + break ; + case 2 : + /*tex always right */ + case 3 : + /*tex always both */ + case 6 : + /*tex only when skip */ + copy_glue_values(tail,math_skip_par); + surround(tail) = 0; + break ; + case 1 : + /*tex only left */ + surround(tail) = 0; + break ; + case 4 : + /*tex ignore, obey marthsurround */ + break ; + case 5: + /*tex all spacing disabled */ + surround(tail) = 0; + break ; + } + /*tex end mathskip code */ + space_factor_par = 1000; + unsave_math(); + } else { + if (a == null) { + if (cur_cmd == math_shift_cmd) { + check_second_math_shift(); + } else { + check_display_math_end(); + } + } + run_mlist_to_hlist(p, false, display_style); + finish_displayed_math(l, a, vlink(temp_head)); + } +} + +/*tex + + When \.{\\halign} appears in a display, the alignment routines operate + essentially as they do in vertical mode. Then the following program is + activated, with |p| and |q| pointing to the beginning and end of the + resulting list, and with |aux_save| holding the |prev_depth| value. + +*/ + +void finish_display_alignment(pointer p, pointer q, halfword saved_prevdepth) +{ + do_assignments(); + if (cur_cmd == math_shift_cmd) { + check_second_math_shift(); + } else { + check_display_math_end(); + } + pop_nest(); + tail_append(new_penalty(pre_display_penalty_par,before_display_penalty)); + inject_display_skip_before(above_display_skip_code); + vlink(tail) = p; + if (p != null) + tail = q; + tail_append(new_penalty(post_display_penalty_par,after_display_penalty)); + inject_display_skip_after(below_display_skip_code); + cur_list.prev_depth_field = saved_prevdepth; + resume_after_display(); +} + +/*tex Interface to \.{\\Umath} and \.{\\mathstyle}: */ + +void setup_math_style(void) +{ + pointer q; + tail_append(new_noad()); + q = new_node(math_char_node, 0); + nucleus(tail) = q; + (void) scan_math_style(nucleus(tail), num_style(m_style)); +} + +void print_math_style(void) +{ + if (abs(mode) == mmode) + print_int(m_style); + else + print_int(-1); +} |