summaryrefslogtreecommitdiff
path: root/Build/source/texk/web2c/luatexdir/luapplib/src/util/utilsha.c
diff options
context:
space:
mode:
Diffstat (limited to 'Build/source/texk/web2c/luatexdir/luapplib/src/util/utilsha.c')
-rw-r--r--Build/source/texk/web2c/luatexdir/luapplib/src/util/utilsha.c1065
1 files changed, 0 insertions, 1065 deletions
diff --git a/Build/source/texk/web2c/luatexdir/luapplib/src/util/utilsha.c b/Build/source/texk/web2c/luatexdir/luapplib/src/util/utilsha.c
deleted file mode 100644
index 596bf76f72b..00000000000
--- a/Build/source/texk/web2c/luatexdir/luapplib/src/util/utilsha.c
+++ /dev/null
@@ -1,1065 +0,0 @@
-/* sha2 implementation excerpted from code by Aaron D. Gifford */
-
-/*
- * AUTHOR: Aaron D. Gifford - http://www.aarongifford.com/
- *
- * Copyright (c) 2000-2001, Aaron D. Gifford
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. Neither the name of the copyright holder nor the names of contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * $Id: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
- */
-
-#include <stdio.h> /* FILE */
-#include <string.h> /* memcpy()/memset() or bcopy()/bzero() */
-//#include <assert.h> /* assert() */
-#include "utilsha.h"
-
-/*
- * UNROLLED TRANSFORM LOOP NOTE:
- * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
- * loop version for the hash transform rounds (defined using macros
- * later in this file). Either define on the command line, for example:
- *
- * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
- *
- * or define below:
- *
- * #define SHA2_UNROLL_TRANSFORM
- *
- */
-
-/*** SHA-256/384/512 Machine Architecture Definitions *****************/
-/*
- * BYTE_ORDER NOTE:
- *
- * Please make sure that your system defines BYTE_ORDER. If your
- * architecture is little-endian, make sure it also defines
- * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
- * equivilent.
- *
- * If your system does not define the above, then you can do so by
- * hand like this:
- *
- * #define LITTLE_ENDIAN 1234
- * #define BIG_ENDIAN 4321
- *
- * And for little-endian machines, add:
- *
- * #define BYTE_ORDER LITTLE_ENDIAN
- *
- * Or for big-endian machines:
- *
- * #define BYTE_ORDER BIG_ENDIAN
- *
- * The FreeBSD machine this was written on defines BYTE_ORDER
- * appropriately by including <sys/types.h> (which in turn includes
- * <machine/endian.h> where the appropriate definitions are actually
- * made).
- */
-
-#ifndef BYTE_ORDER
-#define BYTE_ORDER LITTLE_ENDIAN
-#endif
-
-//#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
-//#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
-//#endif
-
-/*
- * Define the following sha2_* types to types of the correct length on
- * the native archtecture. Most BSD systems and Linux define u_intXX_t
- * types. Machines with very recent ANSI C headers, can use the
- * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
- * during compile or in the sha.h header file.
- *
- * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
- * will need to define these three typedefs below (and the appropriate
- * ones in sha.h too) by hand according to their system architecture.
- *
- * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
- * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
- *
- * PJ: replace by uintX_t
- */
-
-//typedef uint8_t sha2_byte; /* Exactly 1 byte */
-//typedef uint32_t sha2_word32; /* Exactly 4 bytes */
-//typedef uint64_t sha2_word64; /* Exactly 8 bytes */
-
-/*** SHA-256/384/512 Various Length Definitions ***********************/
-/* NOTE: Most of these are in header */
-#define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
-#define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
-#define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
-
-
-/*** ENDIAN REVERSAL MACROS *******************************************/
-#if BYTE_ORDER == LITTLE_ENDIAN
-#define REVERSE32(w, x) { \
- uint32_t tmp = (w); \
- tmp = (tmp >> 16) | (tmp << 16); \
- (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
-}
-#define REVERSE64(w, x) { \
- uint64_t tmp = (w); \
- tmp = (tmp >> 32) | (tmp << 32); \
- tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
- ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
- (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
- ((tmp & 0x0000ffff0000ffffULL) << 16); \
-}
-#endif /* BYTE_ORDER == LITTLE_ENDIAN */
-
-/*
- * Macro for incrementally adding the unsigned 64-bit integer n to the
- * unsigned 128-bit integer (represented using a two-element array of
- * 64-bit words):
- */
-#define ADDINC128(w,n) { \
- (w)[0] += (uint64_t)(n); \
- if ((w)[0] < (n)) { \
- (w)[1]++; \
- } \
-}
-
-#define MEMSET_BZERO(p,l) memset((p), 0, (l))
-#define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l))
-
-/*** THE SIX LOGICAL FUNCTIONS ****************************************/
-/*
- * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
- *
- * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
- * S is a ROTATION) because the SHA-256/384/512 description document
- * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
- * same "backwards" definition.
- */
-/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
-#define R(b,x) ((x) >> (b))
-/* 32-bit Rotate-right (used in SHA-256): */
-#define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
-/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
-#define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
-
-/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
-#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
-#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
-
-/* Four of six logical functions used in SHA-256: */
-#define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
-#define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
-#define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
-#define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
-
-/* Four of six logical functions used in SHA-384 and SHA-512: */
-#define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
-#define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
-#define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
-#define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
-
-static void sha512_last (sha512_state *state);
-static void sha256_transform (sha256_state *state, const uint32_t idata[16]);
-static void sha512_transform (sha512_state *state, const uint64_t idata[16]);
-
-/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
-/* Hash constant words K for SHA-256: */
-static const uint32_t K256[64] = {
- 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
- 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
- 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
- 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
- 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
- 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
- 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
- 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
- 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
- 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
- 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
- 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
- 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
- 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
- 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
- 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
-};
-
-/* Initial hash value H for SHA-256: */
-static const uint32_t sha256_initial_hash_value[8] = {
- 0x6a09e667UL,
- 0xbb67ae85UL,
- 0x3c6ef372UL,
- 0xa54ff53aUL,
- 0x510e527fUL,
- 0x9b05688cUL,
- 0x1f83d9abUL,
- 0x5be0cd19UL
-};
-
-/* Hash constant words K for SHA-384 and SHA-512: */
-static const uint64_t K512[80] = {
- 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
- 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
- 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
- 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
- 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
- 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
- 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
- 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
- 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
- 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
- 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
- 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
- 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
- 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
- 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
- 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
- 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
- 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
- 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
- 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
- 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
- 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
- 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
- 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
- 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
- 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
- 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
- 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
- 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
- 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
- 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
- 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
- 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
- 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
- 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
- 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
- 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
- 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
- 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
- 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
-};
-
-/* Initial hash value H for SHA-384 */
-static const uint64_t sha384_initial_hash_value[8] = {
- 0xcbbb9d5dc1059ed8ULL,
- 0x629a292a367cd507ULL,
- 0x9159015a3070dd17ULL,
- 0x152fecd8f70e5939ULL,
- 0x67332667ffc00b31ULL,
- 0x8eb44a8768581511ULL,
- 0xdb0c2e0d64f98fa7ULL,
- 0x47b5481dbefa4fa4ULL
-};
-
-/* Initial hash value H for SHA-512 */
-static const uint64_t sha512_initial_hash_value[8] = {
- 0x6a09e667f3bcc908ULL,
- 0xbb67ae8584caa73bULL,
- 0x3c6ef372fe94f82bULL,
- 0xa54ff53a5f1d36f1ULL,
- 0x510e527fade682d1ULL,
- 0x9b05688c2b3e6c1fULL,
- 0x1f83d9abfb41bd6bULL,
- 0x5be0cd19137e2179ULL
-};
-
-/*** SHA-256: *********************************************************/
-sha256_state * sha256_digest_init (sha256_state *state)
-{
- MEMCPY_BCOPY(state->words, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
- MEMSET_BZERO(state->buffer, SHA256_BLOCK_LENGTH);
- state->bitcount = 0;
- return state;
-}
-
-#ifdef SHA2_UNROLL_TRANSFORM
-
-/* Unrolled SHA-256 round macros: */
-
-#if BYTE_ORDER == LITTLE_ENDIAN
-
-#define ROUND256_0_TO_15(v, a, b, c, d, e, f, g, h) \
- REVERSE32(v, W256[j]); \
- T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
- (d) += T1; \
- (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c))
-
-#else /* BYTE_ORDER == LITTLE_ENDIAN */
-
-#define ROUND256_0_TO_15(v, a, b, c, d, e, f, g, h) \
- T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + (W256[j] = v); \
- (d) += T1; \
- (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c))
-
-#endif /* BYTE_ORDER == LITTLE_ENDIAN */
-
-#define ROUND256(a, b, c, d, e, f, g, h) \
- s0 = W256[(j+1)&0x0f]; \
- s0 = sigma0_256(s0); \
- s1 = W256[(j+14)&0x0f]; \
- s1 = sigma1_256(s1); \
- T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
- (d) += T1; \
- (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c))
-
-static void sha256_transform (sha256_state *state, const uint32_t idata[16]) {
- uint32_t a, b, c, d, e, f, g, h, s0, s1;
- uint32_t T1, *W256, v;
- int j;
-
- W256 = state->buffer32;
-
- /* Initialize registers with the prev. intermediate value */
- a = state->words[0];
- b = state->words[1];
- c = state->words[2];
- d = state->words[3];
- e = state->words[4];
- f = state->words[5];
- g = state->words[6];
- h = state->words[7];
-
- j = 0;
- do {
- /* Rounds 0 to 15 (unrolled): */
- v = idata[j]; ROUND256_0_TO_15(v, a, b, c, d, e, f, g, h); ++j;
- v = idata[j]; ROUND256_0_TO_15(v, h, a, b, c, d, e, f, g); ++j;
- v = idata[j]; ROUND256_0_TO_15(v, g, h, a, b, c, d, e, f); ++j;
- v = idata[j]; ROUND256_0_TO_15(v, f, g, h, a, b, c, d, e); ++j;
- v = idata[j]; ROUND256_0_TO_15(v, e, f, g, h, a, b, c, d); ++j;
- v = idata[j]; ROUND256_0_TO_15(v, d, e, f, g, h, a, b, c); ++j;
- v = idata[j]; ROUND256_0_TO_15(v, c, d, e, f, g, h, a, b); ++j;
- v = idata[j]; ROUND256_0_TO_15(v, b, c, d, e, f, g, h, a); ++j;
- } while (j < 16);
-
- /* Now for the remaining rounds to 64: */
- do {
- ROUND256(a, b, c, d, e, f, g, h); ++j;
- ROUND256(h, a, b, c, d, e, f, g); ++j;
- ROUND256(g, h, a, b, c, d, e, f); ++j;
- ROUND256(f, g, h, a, b, c, d, e); ++j;
- ROUND256(e, f, g, h, a, b, c, d); ++j;
- ROUND256(d, e, f, g, h, a, b, c); ++j;
- ROUND256(c, d, e, f, g, h, a, b); ++j;
- ROUND256(b, c, d, e, f, g, h, a); ++j;
- } while (j < 64);
-
- /* Compute the current intermediate hash value */
- state->words[0] += a;
- state->words[1] += b;
- state->words[2] += c;
- state->words[3] += d;
- state->words[4] += e;
- state->words[5] += f;
- state->words[6] += g;
- state->words[7] += h;
-}
-
-#else /* SHA2_UNROLL_TRANSFORM */
-
-static void sha256_transform (sha256_state *state, const uint32_t idata[16]) {
- uint32_t a, b, c, d, e, f, g, h, s0, s1;
- uint32_t T1, T2, *W256, v;
- int j;
-
- W256 = state->buffer32;
-
- /* Initialize registers with the prev. intermediate value */
- a = state->words[0];
- b = state->words[1];
- c = state->words[2];
- d = state->words[3];
- e = state->words[4];
- f = state->words[5];
- g = state->words[6];
- h = state->words[7];
-
- j = 0;
- do {
- v = idata[j];
-#if BYTE_ORDER == LITTLE_ENDIAN
- /* Copy data while converting to host byte order */
- REVERSE32(v, W256[j]);
- /* Apply the SHA-256 compression function to update a..h */
- T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
-#else /* BYTE_ORDER == LITTLE_ENDIAN */
- /* Apply the SHA-256 compression function to update a..h with copy */
- T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = v);
-#endif /* BYTE_ORDER == LITTLE_ENDIAN */
- T2 = Sigma0_256(a) + Maj(a, b, c);
- h = g;
- g = f;
- f = e;
- e = d + T1;
- d = c;
- c = b;
- b = a;
- a = T1 + T2;
-
- j++;
- } while (j < 16);
-
- do {
- /* Part of the message block expansion: */
- s0 = W256[(j+1)&0x0f];
- s0 = sigma0_256(s0);
- s1 = W256[(j+14)&0x0f];
- s1 = sigma1_256(s1);
-
- /* Apply the SHA-256 compression function to update a..h */
- T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
- T2 = Sigma0_256(a) + Maj(a, b, c);
- h = g;
- g = f;
- f = e;
- e = d + T1;
- d = c;
- c = b;
- b = a;
- a = T1 + T2;
-
- j++;
- } while (j < 64);
-
- /* Compute the current intermediate hash value */
- state->words[0] += a;
- state->words[1] += b;
- state->words[2] += c;
- state->words[3] += d;
- state->words[4] += e;
- state->words[5] += f;
- state->words[6] += g;
- state->words[7] += h;
-}
-
-#endif /* SHA2_UNROLL_TRANSFORM */
-
-/* PJ: alignment-safe version */
-
-#define data_aligned4(data) (((data - (const uint8_t *)(0UL)) & 3) == 0)
-#define data_aligned8(data) (((data - (const uint8_t *)(0ULL)) & 7) == 0)
-
-static void sha256_transform_aligned (sha256_state *state, const uint8_t *data) {
- if (data_aligned4(data))
- {
- sha256_transform(state, (const uint32_t *)((const void *)data)); // alignment ok
- }
- else
- {
- uint32_t idata[16];
- memcpy(&idata[0], data, 16 * sizeof(uint32_t));
- sha256_transform(state, idata);
- }
-}
-
-void sha256_digest_add (sha256_state *state, const void *vdata, size_t len)
-{
- unsigned int freespace, usedspace;
- const uint8_t *data;
-
- if (len == 0) /* Calling with no data is valid - we do nothing */
- return;
-
- data = (const uint8_t *)vdata;
-
- usedspace = (state->bitcount >> 3) % SHA256_BLOCK_LENGTH;
- if (usedspace > 0)
- {
- /* Calculate how much free space is available in the buffer */
- freespace = SHA256_BLOCK_LENGTH - usedspace;
-
- if (len >= freespace)
- {
- /* Fill the buffer completely and process it */
- MEMCPY_BCOPY(&state->buffer[usedspace], data, freespace);
- state->bitcount += freespace << 3;
- len -= freespace;
- data += freespace;
- sha256_transform(state, state->buffer32);
- }
- else
- {
- /* The buffer is not yet full */
- MEMCPY_BCOPY(&state->buffer[usedspace], data, len);
- state->bitcount += len << 3;
- return;
- }
- }
- while (len >= SHA256_BLOCK_LENGTH)
- {
- /* Process as many complete blocks as we can */
- sha256_transform_aligned(state, data);
-
- state->bitcount += SHA256_BLOCK_LENGTH << 3;
- len -= SHA256_BLOCK_LENGTH;
- data += SHA256_BLOCK_LENGTH;
- }
- if (len > 0)
- {
- /* There's left-overs, so save 'em */
- MEMCPY_BCOPY(state->buffer, data, len);
- state->bitcount += len << 3;
- }
-}
-
-static void digest_hex (uint8_t digest[], const void *data, size_t size, int flags);
-
-void sha256_digest_get (sha256_state *state, uint8_t digest[], int flags) {
- unsigned int usedspace;
-
- usedspace = (state->bitcount >> 3) % SHA256_BLOCK_LENGTH;
-#if BYTE_ORDER == LITTLE_ENDIAN
- /* Convert FROM host byte order */
- REVERSE64(state->bitcount,state->bitcount);
-#endif
- if (usedspace > 0)
- {
- /* Begin padding with a 1 bit: */
- state->buffer[usedspace++] = 0x80;
-
- if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
- /* Set-up for the last transform: */
- MEMSET_BZERO(&state->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
- } else {
- if (usedspace < SHA256_BLOCK_LENGTH) {
- MEMSET_BZERO(&state->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
- }
- /* Do second-to-last transform: */
- sha256_transform(state, state->buffer32);
-
- /* And set-up for the last transform: */
- MEMSET_BZERO(state->buffer, SHA256_SHORT_BLOCK_LENGTH);
- }
- }
- else
- {
- /* Set-up for the last transform: */
- MEMSET_BZERO(state->buffer, SHA256_SHORT_BLOCK_LENGTH);
-
- /* Begin padding with a 1 bit: */
- *state->buffer = 0x80;
- }
- /* Set the bit count: */
- //*(uint64_t*)&state->buffer[SHA256_SHORT_BLOCK_LENGTH] = state->bitcount; // aliasing violation warning
- state->buffer64[SHA256_SHORT_BLOCK_LENGTH / sizeof(uint64_t)] = state->bitcount;
-
- /* Final transform: */
- sha256_transform(state, state->buffer32);
-
-#if BYTE_ORDER == LITTLE_ENDIAN
- {
- /* Convert TO host byte order */
- int j;
- for (j = 0; j < 8; j++)
- {
- REVERSE32(state->words[j], state->words[j]);
- }
- }
-#endif
- if (flags & SHA_HEX)
- digest_hex(digest, state->words, SHA256_DIGEST_LENGTH, flags);
- else
- memcpy(digest, state->words, SHA256_DIGEST_LENGTH);
-}
-
-/*** SHA-512: *********************************************************/
-sha512_state * sha512_digest_init (sha512_state *state)
-{
- MEMCPY_BCOPY(state->words, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
- MEMSET_BZERO(state->buffer, SHA512_BLOCK_LENGTH);
- state->bitcount[0] = 0;
- state->bitcount[1] = 0;
- return state;
-}
-
-#ifdef SHA2_UNROLL_TRANSFORM
-
-/* PJ: ++ operations moved out of macros! */
-
-/* Unrolled SHA-512 round macros: */
-#if BYTE_ORDER == LITTLE_ENDIAN
-
-#define ROUND512_0_TO_15(v, a, b, c, d, e, f, g, h) \
- REVERSE64(v, W512[j]); \
- T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + W512[j]; \
- (d) += T1; \
- (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c))
-
-#else /* BYTE_ORDER == LITTLE_ENDIAN */
-
-#define ROUND512_0_TO_15(v, a, b, c, d, e, f, g, h) \
- T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + (W512[j] = v); \
- (d) += T1; \
- (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c))
-
-#endif /* BYTE_ORDER == LITTLE_ENDIAN */
-
-#define ROUND512(a, b, c, d, e, f, g, h) \
- s0 = W512[(j+1)&0x0f]; \
- s0 = sigma0_512(s0); \
- s1 = W512[(j+14)&0x0f]; \
- s1 = sigma1_512(s1); \
- T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
- (d) += T1; \
- (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c))
-
-static void sha512_transform (sha512_state *state, const uint64_t idata[16])
-{
- uint64_t a, b, c, d, e, f, g, h, s0, s1;
- uint64_t T1, *W512, v;
- int j;
-
- W512 = state->buffer64;
-
- /* Initialize registers with the prev. intermediate value */
- a = state->words[0];
- b = state->words[1];
- c = state->words[2];
- d = state->words[3];
- e = state->words[4];
- f = state->words[5];
- g = state->words[6];
- h = state->words[7];
-
- j = 0;
- do {
- v = idata[j]; ROUND512_0_TO_15(v, a, b, c, d, e, f, g, h); ++j;
- v = idata[j]; ROUND512_0_TO_15(v, h, a, b, c, d, e, f, g); ++j;
- v = idata[j]; ROUND512_0_TO_15(v, g, h, a, b, c, d, e, f); ++j;
- v = idata[j]; ROUND512_0_TO_15(v, f, g, h, a, b, c, d, e); ++j;
- v = idata[j]; ROUND512_0_TO_15(v, e, f, g, h, a, b, c, d); ++j;
- v = idata[j]; ROUND512_0_TO_15(v, d, e, f, g, h, a, b, c); ++j;
- v = idata[j]; ROUND512_0_TO_15(v, c, d, e, f, g, h, a, b); ++j;
- v = idata[j]; ROUND512_0_TO_15(v, b, c, d, e, f, g, h, a); ++j;
- } while (j < 16);
-
- /* Now for the remaining rounds up to 79: */
- do {
- ROUND512(a, b, c, d, e, f, g, h); ++j;
- ROUND512(h, a, b, c, d, e, f, g); ++j;
- ROUND512(g, h, a, b, c, d, e, f); ++j;
- ROUND512(f, g, h, a, b, c, d, e); ++j;
- ROUND512(e, f, g, h, a, b, c, d); ++j;
- ROUND512(d, e, f, g, h, a, b, c); ++j;
- ROUND512(c, d, e, f, g, h, a, b); ++j;
- ROUND512(b, c, d, e, f, g, h, a); ++j;
- } while (j < 80);
-
- /* Compute the current intermediate hash value */
- state->words[0] += a;
- state->words[1] += b;
- state->words[2] += c;
- state->words[3] += d;
- state->words[4] += e;
- state->words[5] += f;
- state->words[6] += g;
- state->words[7] += h;
-}
-
-#else /* SHA2_UNROLL_TRANSFORM */
-
-static void sha512_transform (sha512_state *state, const uint64_t idata[16])
-{
- uint64_t a, b, c, d, e, f, g, h, s0, s1;
- uint64_t T1, T2, *W512, v;
- int j;
-
- W512 = state->buffer64;
-
- /* Initialize registers with the prev. intermediate value */
- a = state->words[0];
- b = state->words[1];
- c = state->words[2];
- d = state->words[3];
- e = state->words[4];
- f = state->words[5];
- g = state->words[6];
- h = state->words[7];
-
- j = 0;
- do {
- v = idata[j];
-#if BYTE_ORDER == LITTLE_ENDIAN
- /* Convert TO host byte order */
- REVERSE64(v, W512[j]);
- /* Apply the SHA-512 compression function to update a..h */
- T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
-#else /* BYTE_ORDER == LITTLE_ENDIAN */
- /* Apply the SHA-512 compression function to update a..h with copy */
- T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = v);
-#endif /* BYTE_ORDER == LITTLE_ENDIAN */
- T2 = Sigma0_512(a) + Maj(a, b, c);
- h = g;
- g = f;
- f = e;
- e = d + T1;
- d = c;
- c = b;
- b = a;
- a = T1 + T2;
-
- j++;
- } while (j < 16);
-
- do {
- /* Part of the message block expansion: */
- s0 = W512[(j+1)&0x0f];
- s0 = sigma0_512(s0);
- s1 = W512[(j+14)&0x0f];
- s1 = sigma1_512(s1);
-
- /* Apply the SHA-512 compression function to update a..h */
- T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
- T2 = Sigma0_512(a) + Maj(a, b, c);
- h = g;
- g = f;
- f = e;
- e = d + T1;
- d = c;
- c = b;
- b = a;
- a = T1 + T2;
-
- j++;
- } while (j < 80);
-
- /* Compute the current intermediate hash value */
- state->words[0] += a;
- state->words[1] += b;
- state->words[2] += c;
- state->words[3] += d;
- state->words[4] += e;
- state->words[5] += f;
- state->words[6] += g;
- state->words[7] += h;
-}
-
-#endif /* SHA2_UNROLL_TRANSFORM */
-
-static void sha512_transform_aligned (sha512_state *state, const uint8_t *data)
-{
- if (data_aligned8(data))
- {
- sha512_transform(state, (const uint64_t *)((const void *)data)); // alignment ok
- }
- else
- {
- uint64_t idata[16];
- memcpy(&idata[0], data, 16 * sizeof(uint64_t));
- sha512_transform(state, idata);
- }
-}
-
-void sha512_digest_add (sha512_state *state, const void *vdata, size_t len)
-{
- unsigned int freespace, usedspace;
- const uint8_t *data;
-
- if (len == 0) /* Calling with no data is valid - we do nothing */
- return;
-
- /* Sanity check: */
- data = (const uint8_t *)vdata;
-
- usedspace = (state->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
- if (usedspace > 0)
- {
- /* Calculate how much free space is available in the buffer */
- freespace = SHA512_BLOCK_LENGTH - usedspace;
-
- if (len >= freespace)
- {
- /* Fill the buffer completely and process it */
- MEMCPY_BCOPY(&state->buffer[usedspace], data, freespace);
- ADDINC128(state->bitcount, freespace << 3);
- len -= freespace;
- data += freespace;
- sha512_transform(state, state->buffer64);
- }
- else
- {
- /* The buffer is not yet full */
- MEMCPY_BCOPY(&state->buffer[usedspace], data, len);
- ADDINC128(state->bitcount, len << 3);
- return;
- }
- }
- while (len >= SHA512_BLOCK_LENGTH)
- {
- /* Process as many complete blocks as we can */
- sha512_transform_aligned(state, data);
-
- ADDINC128(state->bitcount, SHA512_BLOCK_LENGTH << 3);
- len -= SHA512_BLOCK_LENGTH;
- data += SHA512_BLOCK_LENGTH;
- }
- if (len > 0)
- {
- /* There's left-overs, so save 'em */
- MEMCPY_BCOPY(state->buffer, data, len);
- ADDINC128(state->bitcount, len << 3);
- }
-}
-
-static void sha512_last (sha512_state *state)
-{
- unsigned int usedspace;
-
- usedspace = (state->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
-#if BYTE_ORDER == LITTLE_ENDIAN
- /* Convert FROM host byte order */
- REVERSE64(state->bitcount[0],state->bitcount[0]);
- REVERSE64(state->bitcount[1],state->bitcount[1]);
-#endif
- if (usedspace > 0)
- {
- /* Begin padding with a 1 bit: */
- state->buffer[usedspace++] = 0x80;
-
- if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
- /* Set-up for the last transform: */
- MEMSET_BZERO(&state->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
- } else {
- if (usedspace < SHA512_BLOCK_LENGTH) {
- MEMSET_BZERO(&state->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
- }
- /* Do second-to-last transform: */
- sha512_transform(state, state->buffer64);
-
- /* And set-up for the last transform: */
- //MEMSET_BZERO(state->buffer, SHA512_BLOCK_LENGTH - 2); // seems a typo, we overwrite last 16 bytes below
- MEMSET_BZERO(state->buffer, SHA512_SHORT_BLOCK_LENGTH);
- }
- }
- else
- {
- /* Prepare for final transform: */
- MEMSET_BZERO(state->buffer, SHA512_SHORT_BLOCK_LENGTH);
-
- /* Begin padding with a 1 bit: */
- *state->buffer = 0x80;
- }
- /* Store the length of input data (in bits): */
- //*(uint64_t*)&state->buffer[SHA512_SHORT_BLOCK_LENGTH] = state->bitcount[1]; // aliasing violation warning
- //*(uint64_t*)&state->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = state->bitcount[0];
- state->buffer64[SHA512_SHORT_BLOCK_LENGTH / sizeof(uint64_t)] = state->bitcount[1];
- state->buffer64[SHA512_SHORT_BLOCK_LENGTH / sizeof(uint64_t) + 1] = state->bitcount[0];
-
- /* Final transform: */
- sha512_transform(state, state->buffer64);
-}
-
-void sha512_digest_get (sha512_state *state, uint8_t digest[], int flags)
-{
- /* If no digest buffer is passed, we don't bother doing this: */
- sha512_last(state);
-
- /* Save the hash data for output: */
-#if BYTE_ORDER == LITTLE_ENDIAN
- {
- /* Convert TO host byte order */
- int j;
- for (j = 0; j < 8; j++)
- {
- REVERSE64(state->words[j], state->words[j]);
- }
- }
-#endif
- if (flags & SHA_HEX)
- digest_hex(digest, state->words, SHA512_DIGEST_LENGTH, flags);
- else
- memcpy(digest, state->words, SHA512_DIGEST_LENGTH);
-}
-
-/*** SHA-384: *********************************************************/
-sha384_state * sha384_digest_init (sha384_state *state)
-{
- MEMCPY_BCOPY(state->words, sha384_initial_hash_value, SHA512_DIGEST_LENGTH);
- MEMSET_BZERO(state->buffer, SHA384_BLOCK_LENGTH);
- state->bitcount[0] = state->bitcount[1] = 0;
- return state;
-}
-
-void sha384_digest_add (sha384_state *state, const void *data, size_t len)
-{
- sha512_digest_add((sha512_state *)state, data, len);
-}
-
-void sha384_digest_get (sha384_state *state, uint8_t digest[], int flags)
-{
- sha512_last((sha512_state *)state);
-
- /* Save the hash data for output: */
-#if BYTE_ORDER == LITTLE_ENDIAN
- {
- /* Convert TO host byte order */
- int j;
- for (j = 0; j < 6; j++)
- {
- REVERSE64(state->words[j], state->words[j]);
- }
- }
-#endif
- if (flags & SHA_HEX)
- digest_hex(digest, state->words, SHA384_DIGEST_LENGTH, flags);
- else
- memcpy(digest, state->words, SHA384_DIGEST_LENGTH);
-}
-
-/* hex output */
-
-static void digest_hex (uint8_t digest[], const void *data, size_t size, int flags)
-{
- const char *alphabet;
- const uint8_t *bytes;
- size_t i;
-
- bytes = (const uint8_t *)data;
- alphabet = (flags & SHA_LCHEX) ? "0123456789abcdef" : "0123456789ABCDEF";
- for (i = 0; i < size; ++i, ++bytes)
- {
- *digest++ = (uint8_t)alphabet[(*bytes) >> 4];
- *digest++ = (uint8_t)alphabet[(*bytes) & 15];
- }
- *digest = 0;
-}
-
-/* string checksum */
-
-void sha256_digest (const void *data, size_t size, uint8_t digest[], int flags)
-{
- sha256_state state;
- sha256_digest_init(&state);
- sha256_digest_add(&state, data, size);
- sha256_digest_get(&state, digest, flags);
-}
-
-void sha384_digest (const void *data, size_t size, uint8_t digest[], int flags)
-{
- sha384_state state;
- sha384_digest_init(&state);
- sha384_digest_add(&state, data, size);
- sha384_digest_get(&state, digest, flags);
-}
-
-void sha512_digest (const void *data, size_t size, uint8_t digest[], int flags)
-{
- sha512_state state;
- sha512_digest_init(&state);
- sha512_digest_add(&state, data, size);
- sha512_digest_get(&state, digest, flags);
-}
-
-/* file checksum */
-
-#define DIGEST_BUFFER_SIZE 4096
-
-int sha256_digest_add_file (sha256_state *state, const char *filename)
-{
- FILE *fh;
- uint8_t buffer[DIGEST_BUFFER_SIZE];
- size_t read;
-
- if ((fh = fopen(filename, "rb")) == NULL)
- return 0;
- do {
- read = fread(buffer, 1, DIGEST_BUFFER_SIZE, fh);
- sha256_digest_add(state, buffer, read);
- } while (read == DIGEST_BUFFER_SIZE);
- fclose(fh);
- return 1;
-}
-
-int sha256_digest_file (const char *filename, uint8_t digest[], int flags)
-{
- sha256_state state;
-
- sha256_digest_init(&state);
- if (sha256_digest_add_file(&state, filename))
- {
- sha256_digest_get(&state, digest, flags);
- return 1;
- }
- return 0;
-}
-
-int sha384_digest_add_file (sha384_state *state, const char *filename)
-{
- FILE *fh;
- uint8_t buffer[DIGEST_BUFFER_SIZE];
- size_t read;
-
- if ((fh = fopen(filename, "rb")) == NULL)
- return 0;
- do {
- read = fread(buffer, 1, DIGEST_BUFFER_SIZE, fh);
- sha384_digest_add(state, buffer, read);
- } while (read == DIGEST_BUFFER_SIZE);
- fclose(fh);
- return 1;
-}
-
-int sha384_digest_file (const char *filename, uint8_t digest[], int flags)
-{
- sha384_state state;
-
- sha384_digest_init(&state);
- if (sha384_digest_add_file(&state, filename))
- {
- sha384_digest_get(&state, digest, flags);
- return 1;
- }
- return 0;
-}
-
-int sha512_digest_add_file (sha512_state *state, const char *filename)
-{
- FILE *fh;
- uint8_t buffer[DIGEST_BUFFER_SIZE];
- size_t read;
-
- if ((fh = fopen(filename, "rb")) == NULL)
- return 0;
- do {
- read = fread(buffer, 1, DIGEST_BUFFER_SIZE, fh);
- sha512_digest_add(state, buffer, read);
- } while (read == DIGEST_BUFFER_SIZE);
- fclose(fh);
- return 1;
-}
-
-int sha512_digest_file (const char *filename, uint8_t digest[], int flags)
-{
- sha512_state state;
-
- sha512_digest_init(&state);
- if (sha512_digest_add_file(&state, filename))
- {
- sha512_digest_get(&state, digest, flags);
- return 1;
- }
- return 0;
-}