summaryrefslogtreecommitdiff
path: root/Build/source/texk/gregorio/gregorio-4.0.0-beta2/src/sha1.c
diff options
context:
space:
mode:
Diffstat (limited to 'Build/source/texk/gregorio/gregorio-4.0.0-beta2/src/sha1.c')
-rw-r--r--Build/source/texk/gregorio/gregorio-4.0.0-beta2/src/sha1.c373
1 files changed, 373 insertions, 0 deletions
diff --git a/Build/source/texk/gregorio/gregorio-4.0.0-beta2/src/sha1.c b/Build/source/texk/gregorio/gregorio-4.0.0-beta2/src/sha1.c
new file mode 100644
index 00000000000..64ab6bad55f
--- /dev/null
+++ b/Build/source/texk/gregorio/gregorio-4.0.0-beta2/src/sha1.c
@@ -0,0 +1,373 @@
+/*
+ * sha1.c - Functions to compute SHA1 message digest of files or
+ * memory blocks according to the NIST specification FIPS-180-1.
+ *
+ * Copyright (C) 2015 The Gregorio Project (see CONTRIBUTORS.md)
+ * Copyright (C) 2000-2001, 2003-2006, 2008-2014 Free Software Foundation, Inc.
+ *
+ * This file is part of Gregorio.
+ * This file has been adapted from GNU coreutils to fit Gregorio.
+ *
+ * Gregorio is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * Gregorio is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with Gregorio. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+/* Written by Scott G. Miller
+ Credits:
+ Robert Klep <robert@ilse.nl> -- Expansion function fix
+*/
+
+#include "config.h"
+#include "sha1.h"
+#ifdef HAVE_STDINT_H
+#include <stdint.h>
+#else
+#include <inttypes.h>
+#endif
+#include <stdlib.h>
+#include <string.h>
+
+#ifdef HAVE_STDALIGN_H
+#include <stdalign.h>
+#ifdef __clang__
+#pragma clang diagnostic ignored "-Wc11-extensions"
+#endif
+#else
+#define alignof(x) sizeof(x)
+#endif
+
+#ifdef WORDS_BIGENDIAN
+#define SWAP(n) (n)
+#else
+#define SWAP(n) \
+ (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
+#endif
+
+#define BLOCKSIZE 32768
+#if BLOCKSIZE % 64 != 0
+#error "invalid BLOCKSIZE"
+#endif
+
+/* This array contains the bytes used to pad the buffer to the next
+ 64-byte boundary. (RFC 1321, 3.1: Step 1) */
+static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
+
+/* Take a pointer to a 160 bit block of data (five 32 bit ints) and
+ initialize it to the start constants of the SHA1 algorithm. This
+ must be called before using hash in the call to sha1_hash. */
+void sha1_init_ctx(struct sha1_ctx *ctx)
+{
+ ctx->A = 0x67452301;
+ ctx->B = 0xefcdab89;
+ ctx->C = 0x98badcfe;
+ ctx->D = 0x10325476;
+ ctx->E = 0xc3d2e1f0;
+
+ ctx->total[0] = ctx->total[1] = 0;
+ ctx->buflen = 0;
+}
+
+/* Copy the 4 byte value from v into the memory location pointed to by *cp,
+ If your architecture allows unaligned access this is equivalent to
+ * (uint32_t *) cp = v */
+static void set_uint32(char *cp, uint32_t v)
+{
+ memcpy(cp, &v, sizeof v);
+}
+
+/* Put result from CTX in first 20 bytes following RESBUF. The result
+ must be in little endian byte order. */
+void *sha1_read_ctx(const struct sha1_ctx *ctx, void *resbuf)
+{
+ char *r = resbuf;
+ set_uint32(r + 0 * sizeof ctx->A, SWAP(ctx->A));
+ set_uint32(r + 1 * sizeof ctx->B, SWAP(ctx->B));
+ set_uint32(r + 2 * sizeof ctx->C, SWAP(ctx->C));
+ set_uint32(r + 3 * sizeof ctx->D, SWAP(ctx->D));
+ set_uint32(r + 4 * sizeof ctx->E, SWAP(ctx->E));
+
+ return resbuf;
+}
+
+/* Process the remaining bytes in the internal buffer and the usual
+ prolog according to the standard and write the result to RESBUF. */
+void *sha1_finish_ctx(struct sha1_ctx *ctx, void *resbuf)
+{
+ /*
+ * Take yet unprocessed bytes into account.
+ */
+ uint32_t bytes = ctx->buflen;
+ size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
+
+ /*
+ * Now count remaining bytes.
+ */
+ ctx->total[0] += bytes;
+ if (ctx->total[0] < bytes)
+ ++ctx->total[1];
+
+ /*
+ * Put the 64-bit file length in *bits* at the end of the buffer.
+ */
+ ctx->buffer[size - 2] = SWAP((ctx->total[1] << 3) | (ctx->total[0] >> 29));
+ ctx->buffer[size - 1] = SWAP(ctx->total[0] << 3);
+
+ memcpy(&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);
+
+ /*
+ * Process last bytes.
+ */
+ sha1_process_block(ctx->buffer, size * 4, ctx);
+
+ return sha1_read_ctx(ctx, resbuf);
+}
+
+/* Compute SHA1 message digest for LEN bytes beginning at BUFFER. The
+ result is always in little endian byte order, so that a byte-wise
+ output yields to the wanted ASCII representation of the message
+ digest. */
+void *sha1_buffer(const char *buffer, size_t len, void *resblock)
+{
+ struct sha1_ctx ctx;
+
+ /*
+ * Initialize the computation context.
+ */
+ sha1_init_ctx(&ctx);
+
+ /*
+ * Process whole buffer but last len % 64 bytes.
+ */
+ sha1_process_bytes(buffer, len, &ctx);
+
+ /*
+ * Put result in desired memory area.
+ */
+ return sha1_finish_ctx(&ctx, resblock);
+}
+
+void sha1_process_bytes(const void *buffer, size_t len, struct sha1_ctx *ctx)
+{
+ /*
+ * When we already have some bits in our internal buffer concatenate
+ * both inputs first.
+ */
+ if (ctx->buflen != 0) {
+ size_t left_over = ctx->buflen;
+ size_t add = 128 - left_over > len ? len : 128 - left_over;
+
+ memcpy(&((char *) ctx->buffer)[left_over], buffer, add);
+ ctx->buflen += add;
+
+ if (ctx->buflen > 64) {
+ sha1_process_block(ctx->buffer, ctx->buflen & ~63, ctx);
+
+ ctx->buflen &= 63;
+ /*
+ * The regions in the following copy operation cannot overlap.
+ */
+ memcpy(ctx->buffer,
+ &((char *) ctx->buffer)[(left_over + add) & ~63],
+ ctx->buflen);
+ }
+
+ buffer = (const char *) buffer + add;
+ len -= add;
+ }
+
+ /*
+ * Process available complete blocks.
+ */
+ if (len >= 64) {
+#if !_STRING_ARCH_unaligned
+#define UNALIGNED_P(p) ((uintptr_t) (p) % alignof (uint32_t) != 0)
+ if (UNALIGNED_P(buffer)) {
+ while (len > 64) {
+ sha1_process_block(memcpy(ctx->buffer, buffer, 64), 64, ctx);
+ buffer = (const char *) buffer + 64;
+ len -= 64;
+ }
+ } else
+#endif
+ {
+ sha1_process_block(buffer, len & ~63, ctx);
+ buffer = (const char *) buffer + (len & ~63);
+ len &= 63;
+ }
+ }
+
+ /*
+ * Move remaining bytes in internal buffer.
+ */
+ if (len > 0) {
+ size_t left_over = ctx->buflen;
+
+ memcpy(&((char *) ctx->buffer)[left_over], buffer, len);
+ left_over += len;
+ if (left_over >= 64) {
+ sha1_process_block(ctx->buffer, 64, ctx);
+ left_over -= 64;
+ memcpy(ctx->buffer, &ctx->buffer[16], left_over);
+ }
+ ctx->buflen = left_over;
+ }
+}
+
+/* --- Code below is the primary difference between md5.c and sha1.c --- */
+
+/* SHA1 round constants */
+#define K1 0x5a827999
+#define K2 0x6ed9eba1
+#define K3 0x8f1bbcdc
+#define K4 0xca62c1d6
+
+/* Round functions. Note that F2 is the same as F4. */
+#define F1(B,C,D) ( D ^ ( B & ( C ^ D ) ) )
+#define F2(B,C,D) (B ^ C ^ D)
+#define F3(B,C,D) ( ( B & C ) | ( D & ( B | C ) ) )
+#define F4(B,C,D) (B ^ C ^ D)
+
+/* Process LEN bytes of BUFFER, accumulating context into CTX.
+ It is assumed that LEN % 64 == 0.
+ Most of this code comes from GnuPG's cipher/sha1.c. */
+
+void sha1_process_block(const void *buffer, size_t len, struct sha1_ctx *ctx)
+{
+ const uint32_t *words = buffer;
+ size_t nwords = len / sizeof(uint32_t);
+ const uint32_t *endp = words + nwords;
+ uint32_t x[16];
+ uint32_t a = ctx->A;
+ uint32_t b = ctx->B;
+ uint32_t c = ctx->C;
+ uint32_t d = ctx->D;
+ uint32_t e = ctx->E;
+ uint32_t lolen = len;
+
+ /*
+ * First increment the byte count. RFC 1321 specifies the possible
+ * length of the file up to 2^64 bits. Here we only compute the
+ * number of bytes. Do a double word increment.
+ */
+ ctx->total[0] += lolen;
+ ctx->total[1] += (len >> 31 >> 1) + (ctx->total[0] < lolen);
+
+#define rol(x, n) (((x) << (n)) | ((uint32_t) (x) >> (32 - (n))))
+
+#define M(I) ( tm = x[I&0x0f] ^ x[(I-14)&0x0f] \
+ ^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \
+ , (x[I&0x0f] = rol(tm, 1)) )
+
+#define R(A,B,C,D,E,F,K,M) do { E += rol( A, 5 ) \
+ + F( B, C, D ) \
+ + K \
+ + M; \
+ B = rol( B, 30 ); \
+ } while(0)
+
+ while (words < endp) {
+ uint32_t tm;
+ int t;
+ for (t = 0; t < 16; t++) {
+ x[t] = SWAP(*words);
+ words++;
+ }
+
+ R(a, b, c, d, e, F1, K1, x[0]);
+ R(e, a, b, c, d, F1, K1, x[1]);
+ R(d, e, a, b, c, F1, K1, x[2]);
+ R(c, d, e, a, b, F1, K1, x[3]);
+ R(b, c, d, e, a, F1, K1, x[4]);
+ R(a, b, c, d, e, F1, K1, x[5]);
+ R(e, a, b, c, d, F1, K1, x[6]);
+ R(d, e, a, b, c, F1, K1, x[7]);
+ R(c, d, e, a, b, F1, K1, x[8]);
+ R(b, c, d, e, a, F1, K1, x[9]);
+ R(a, b, c, d, e, F1, K1, x[10]);
+ R(e, a, b, c, d, F1, K1, x[11]);
+ R(d, e, a, b, c, F1, K1, x[12]);
+ R(c, d, e, a, b, F1, K1, x[13]);
+ R(b, c, d, e, a, F1, K1, x[14]);
+ R(a, b, c, d, e, F1, K1, x[15]);
+ R(e, a, b, c, d, F1, K1, M(16));
+ R(d, e, a, b, c, F1, K1, M(17));
+ R(c, d, e, a, b, F1, K1, M(18));
+ R(b, c, d, e, a, F1, K1, M(19));
+ R(a, b, c, d, e, F2, K2, M(20));
+ R(e, a, b, c, d, F2, K2, M(21));
+ R(d, e, a, b, c, F2, K2, M(22));
+ R(c, d, e, a, b, F2, K2, M(23));
+ R(b, c, d, e, a, F2, K2, M(24));
+ R(a, b, c, d, e, F2, K2, M(25));
+ R(e, a, b, c, d, F2, K2, M(26));
+ R(d, e, a, b, c, F2, K2, M(27));
+ R(c, d, e, a, b, F2, K2, M(28));
+ R(b, c, d, e, a, F2, K2, M(29));
+ R(a, b, c, d, e, F2, K2, M(30));
+ R(e, a, b, c, d, F2, K2, M(31));
+ R(d, e, a, b, c, F2, K2, M(32));
+ R(c, d, e, a, b, F2, K2, M(33));
+ R(b, c, d, e, a, F2, K2, M(34));
+ R(a, b, c, d, e, F2, K2, M(35));
+ R(e, a, b, c, d, F2, K2, M(36));
+ R(d, e, a, b, c, F2, K2, M(37));
+ R(c, d, e, a, b, F2, K2, M(38));
+ R(b, c, d, e, a, F2, K2, M(39));
+ R(a, b, c, d, e, F3, K3, M(40));
+ R(e, a, b, c, d, F3, K3, M(41));
+ R(d, e, a, b, c, F3, K3, M(42));
+ R(c, d, e, a, b, F3, K3, M(43));
+ R(b, c, d, e, a, F3, K3, M(44));
+ R(a, b, c, d, e, F3, K3, M(45));
+ R(e, a, b, c, d, F3, K3, M(46));
+ R(d, e, a, b, c, F3, K3, M(47));
+ R(c, d, e, a, b, F3, K3, M(48));
+ R(b, c, d, e, a, F3, K3, M(49));
+ R(a, b, c, d, e, F3, K3, M(50));
+ R(e, a, b, c, d, F3, K3, M(51));
+ R(d, e, a, b, c, F3, K3, M(52));
+ R(c, d, e, a, b, F3, K3, M(53));
+ R(b, c, d, e, a, F3, K3, M(54));
+ R(a, b, c, d, e, F3, K3, M(55));
+ R(e, a, b, c, d, F3, K3, M(56));
+ R(d, e, a, b, c, F3, K3, M(57));
+ R(c, d, e, a, b, F3, K3, M(58));
+ R(b, c, d, e, a, F3, K3, M(59));
+ R(a, b, c, d, e, F4, K4, M(60));
+ R(e, a, b, c, d, F4, K4, M(61));
+ R(d, e, a, b, c, F4, K4, M(62));
+ R(c, d, e, a, b, F4, K4, M(63));
+ R(b, c, d, e, a, F4, K4, M(64));
+ R(a, b, c, d, e, F4, K4, M(65));
+ R(e, a, b, c, d, F4, K4, M(66));
+ R(d, e, a, b, c, F4, K4, M(67));
+ R(c, d, e, a, b, F4, K4, M(68));
+ R(b, c, d, e, a, F4, K4, M(69));
+ R(a, b, c, d, e, F4, K4, M(70));
+ R(e, a, b, c, d, F4, K4, M(71));
+ R(d, e, a, b, c, F4, K4, M(72));
+ R(c, d, e, a, b, F4, K4, M(73));
+ R(b, c, d, e, a, F4, K4, M(74));
+ R(a, b, c, d, e, F4, K4, M(75));
+ R(e, a, b, c, d, F4, K4, M(76));
+ R(d, e, a, b, c, F4, K4, M(77));
+ R(c, d, e, a, b, F4, K4, M(78));
+ R(b, c, d, e, a, F4, K4, M(79));
+
+ a = ctx->A += a;
+ b = ctx->B += b;
+ c = ctx->C += c;
+ d = ctx->D += d;
+ e = ctx->E += e;
+ }
+}