diff options
Diffstat (limited to 'Build/source/texk/dvisvgm/dvisvgm-1.8/src/PathClipper.cpp')
-rw-r--r-- | Build/source/texk/dvisvgm/dvisvgm-1.8/src/PathClipper.cpp | 343 |
1 files changed, 343 insertions, 0 deletions
diff --git a/Build/source/texk/dvisvgm/dvisvgm-1.8/src/PathClipper.cpp b/Build/source/texk/dvisvgm/dvisvgm-1.8/src/PathClipper.cpp new file mode 100644 index 00000000000..fcc231fb5fe --- /dev/null +++ b/Build/source/texk/dvisvgm/dvisvgm-1.8/src/PathClipper.cpp @@ -0,0 +1,343 @@ +/************************************************************************* +** PathClipper.cpp ** +** ** +** This file is part of dvisvgm -- the DVI to SVG converter ** +** Copyright (C) 2005-2014 Martin Gieseking <martin.gieseking@uos.de> ** +** ** +** This program is free software; you can redistribute it and/or ** +** modify it under the terms of the GNU General Public License as ** +** published by the Free Software Foundation; either version 3 of ** +** the License, or (at your option) any later version. ** +** ** +** This program is distributed in the hope that it will be useful, but ** +** WITHOUT ANY WARRANTY; without even the implied warranty of ** +** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** +** GNU General Public License for more details. ** +** ** +** You should have received a copy of the GNU General Public License ** +** along with this program; if not, see <http://www.gnu.org/licenses/>. ** +*************************************************************************/ + +#include <config.h> +#include "Bezier.h" +#include "PathClipper.h" +#include "types.h" + +using namespace std; +using namespace ClipperLib; + +typedef ClipperLib::Path Polygon; +typedef ClipperLib::Paths Polygons; +typedef PathClipper::CurvedPath CurvedPath; + +const int SCALE_FACTOR = 1000; + +inline cInt to_cInt (double x) { + if (x < 0) + return static_cast<cInt>(x*SCALE_FACTOR - 0.5); + return static_cast<cInt>(x*SCALE_FACTOR + 0.5); +} + + +inline double to_double (cInt x) { + return static_cast<double>(x)/SCALE_FACTOR; +} + + +inline DPair to_DPair (const IntPoint &p) { + return DPair(to_double(p.X), to_double(p.Y)); +} + + +/** In order to flatten a curved path, all path segements are processed sequentially. + * Depending on the type of the segment, one of the methods provided by this class + * is called. */ +class FlattenActions : public CurvedPath::Actions { + public: + FlattenActions (vector<Bezier> &curves, Polygons &polygons, int &numLines) + : _polygons(polygons), _curves(curves), _numLines(numLines) {} + + void moveto (const CurvedPath::Point &p) { + if (p == _currentPoint && !_currentPoly.empty()) + return; + closepath(); + _currentPoly.push_back(IntPoint(to_cInt(p.x()), to_cInt(p.y()), 0)); + _currentPoint = _startPoint = p; + } + + void lineto (const CurvedPath::Point &p) { + if (p == _currentPoint && !_currentPoly.empty()) + return; + if (_currentPoly.empty()) // this shouldn't happen but in case it does... + _currentPoly.push_back(IntPoint(0, 0, 0)); // ...add a start point first + _numLines--; + _currentPoly.back().Z.label2 = _numLines; + _currentPoly.push_back(IntPoint(to_cInt(p.x()), to_cInt(p.y()), ZType(_numLines, 0))); + _currentPoint = p; + } + + void conicto (const CurvedPath::Point &p1, const CurvedPath::Point &p2) { + Bezier bezier(_currentPoint, p1, p2); + addCurvePoints(bezier); + } + + void cubicto (const CurvedPath::Point &p1, const CurvedPath::Point &p2, const CurvedPath::Point &p3) { + Bezier bezier(_currentPoint, p1, p2, p3); + addCurvePoints(bezier); + } + + void closepath () { + if (_currentPoly.empty()) + return; + _numLines--; + _currentPoly.back().Z.label2 = ZLabel(_numLines, 0); + _currentPoly.front().Z.label1 = ZLabel(_numLines, 0); + _polygons.push_back(_currentPoly); + _currentPoly.clear(); + } + + void finished () { + closepath(); + } + + protected: + void addCurvePoints (const Bezier &bezier) { + if (_currentPoly.empty()) // this shouldn't happen but in case it does, ... + _currentPoly.push_back(IntPoint(0, 0, 0)); // ...add a start point first + vector<DPair> points; // points of flattened curve + vector<double> t; // corresponding 'time' parameters + bezier.approximate(0.01, points, &t); + if (points.size() < 2) + return; + _curves.push_back(bezier); + for (size_t i=1; i < points.size(); i++) { + const DPair &p = points[i]; + if (p == _currentPoint) + continue; + _currentPoly.back().Z.label2 = ZLabel(_curves.size(), t[i-1]); + ZLabel label(_curves.size(), t[i]); + _currentPoly.push_back(IntPoint(to_cInt(p.x()), to_cInt(p.y()), ZType(label, label))); + _currentPoint = p; + } + } + + private: + CurvedPath::Point _startPoint, _currentPoint; + Polygon _currentPoly; ///< polygon being created + Polygons &_polygons; ///< all polygons created + vector<Bezier> &_curves; + int &_numLines; +}; + + +/** Removes adjacent polygon vertices that equal their predecessor. */ +static void remove_redundant_vertices (Polygon &polygon) { + Polygon::iterator it1=polygon.begin(); + while (it1 != polygon.end()) { + Polygon::iterator it2 = it1+1; + if (it2 == polygon.end()) + it2 = polygon.begin(); + if (it1 == it2) + return; + + if (*it1 != *it2) + ++it1; + else { + it1->Z.label2 = it2->Z.label2; + polygon.erase(it2); + } + } +} + + +/** Approximates a curved path by a set of polygons and stores information + * to reconstruct the curved segments later. The z component of each + * polygon vertex holds two integers representing information about the two + * adjacent edges the vertex belongs to. This is required to identify the + * affected edges and thus the former (curve/line) segment of the path during + * the intersection process. + * @param[in] curvedPath curved path to be flattened + * @param[out] polygons the flattened path (set of polygons) */ +void PathClipper::flatten (const CurvedPath &curvedPath, Polygons &polygons) { + FlattenActions flattenActions(_curves, polygons, _numLines); + curvedPath.iterate(flattenActions, false); + for (size_t i=0; i < polygons.size(); i++) + remove_redundant_vertices(polygons[i]); +} + + +/** Returns the ID of the path segment the polygon edge defined by its start + * and end point belongs to. The z component of a polygon vertex holds a pair + * of labels that allows to identify the original path segments the point belongs to. + * Since always two adjacent segments share a point, each point gets two values assigned. + * Negative numbers denote line segments, positive ones Bézier curves. + * There are only these two segment types, so we don't need further flags in + * order to distinguish them. By comparing the labels of two adjacent polygon + * vertexes it's possible to identify the original path segment the corresponding + * edge belongs to. + * @param[in] p1 first of two adjacent vertices + * @param[in] p2 second of two adjacent vertices + * @param[out] t1 time paramater of p1 + * @param[out] t2 time paramater of p2 + * @return id of edge between p1 and p2, or 0 if it's not possible to identify the segment */ +static Int32 segment_id (const IntPoint &p1, const IntPoint &p2, double &t1, double &t2) { + const ZType &z1=p1.Z, &z2=p2.Z; + if (z1 == z2 && z1.minLabel().id < 0) return z1.minLabel().id; + if (z1.label1 == z2.label2) {t1=z1.label1.t; t2=z2.label2.t; return z1.label1.id;} + if (z1.label2 == z2.label1) {t1=z1.label2.t; t2=z2.label1.t; return z1.label2.id;} + if (z1.label1 == z2.label1) {t1=z1.label1.t; t2=z2.label1.t; return z1.label1.id;} + if (z1.label2 == z2.label2) {t1=z1.label2.t; t2=z2.label2.t; return z1.label2.id;} + // if we get here, it's not possible to identify the segment + // => the edge is going to be handled as line segment + return 0; +} + + +inline Int32 edge_id (const IntPoint &p1, const IntPoint &p2) { + double t; + return segment_id(p1, p2, t, t); +} + + +/** This function expects 3 colinear points p1, p2, and q where q lies between p1 and p2, + * i.e. q divides the line \f$ \overline{p_1 p_2} \f$ somewhere. The function returns + * the corresponding division ratio. */ +static double division_ratio (const IntPoint &p1, const IntPoint &p2, const IntPoint &q) { + if (p1 == p2 || q == p1) + return 0; + if (q == p2) + return 1; + if (p1.X == p2.X) + return double(q.Y-p1.Y)/(p2.Y-p1.Y); + return double(q.X-p1.X)/(p2.X-p1.X); +} + + +/** Returns the label of point q that lies on the line between points p1 and p2. */ +inline ZLabel division_label (const IntPoint &p1, const IntPoint &p2, const IntPoint &q) { + double t1, t2; + double s=0; + Int32 id = segment_id(p1, p2, t1, t2); + if (id > 0) + s = t1+(t2-t1)*division_ratio(p1, p2, q); + return ZLabel(id, s); +} + + +/** This method is called if the clipper library finds an intersection between two polygon edges. + * It populates the z coordinate of the intersection point with the idexes of the two edges. + * @param[in] e1bot first endpoint of edge 1 + * @param[in] e1top second endpoint of edge 1 + * @param[in] e2bot first endpoint of edge 2 + * @param[in] e1top second endpoint of edge 2 + * @param[in] ip intersection point of edge 1 and 2 + * @param[in] userval pointer to PathClipper object set by ZFillFunction() */ +void PathClipper::callback (IntPoint &e1bot, IntPoint &e1top, IntPoint &e2bot, IntPoint &e2top, IntPoint &ip) { + ZLabel label1 = division_label(e1bot, e1top, ip); + ZLabel label2 = division_label(e2bot, e2top, ip); + ip.Z = ZType(label1, label2); +} + + +/** Iterates along the polygon edges until the endpoint of the current + * path segment is found and returns its vector index afterwards. + * @param[in] points the vertices of the polygon + * @param[in] start index of the vertex where the iteration starts + * @param[out] label if not 0, retrieves the label of the endpoint + * @param[in] startLabel if true, the found endpoint is treated as start point and + * parameter 'label' gets the corresponding value */ +static size_t find_segment_endpoint (const Polygon &polygon, size_t start, ZLabel *label=0, bool startLabel=false) { + if (polygon.empty()) + return 0; + + const size_t num_points = polygon.size(); + int i = start%num_points; + double t1, t2; // time parameters of start and endpoint of current edge + Int32 id1 = segment_id(polygon[i], polygon[(i+1)%num_points], t1, t2); + Int32 id2 = id1; + double t = t2; // time parameter of resulting endpoint + for (size_t j=1; id1 == id2 && j < num_points; j++) { + t = t2; + i = (i+1)%num_points; + if (id1 == 0) + break; + id2 = segment_id(polygon[i], polygon[(i+1)%num_points], t1, t2); + } + if (label) { + *label = ZLabel(id1, id1 < 0 ? 0 : t); + if (startLabel && id1 != 0) + *label = polygon[i].Z.otherLabel(*label); + } + return i; +} + + +/** Reconstructs a curved path from the set of polygons. + * @param[in] polygons set of polygons to reconstruct + * @param[out] path the reconstructed curved path */ +void PathClipper::reconstruct (const Polygons &polygons, CurvedPath &path) { + for (size_t i=0; i < polygons.size(); i++) + reconstruct(polygons[i], path); +} + + +/** Reconstructs a curved path from a single polygon. + * @param[in] polygon polygon to reconstruct + * @param[out] path the reconstructed curved path */ +void PathClipper::reconstruct (const Polygon &polygon, CurvedPath &path) { + size_t num_points = polygon.size(); + if (num_points < 2) + return; + + ZLabel label1, label2; // labels of the current segment's start and endpoint + int index1 = find_segment_endpoint(polygon, 0, &label1, true); + int index2 = find_segment_endpoint(polygon, index1, &label2); + int diff = (num_points+index2-index1)%num_points; + path.moveto(to_DPair(polygon[index1])); + for (size_t count = diff; count <= num_points; count += diff) { + if (diff == 1 || label1.id <= 0) // line segment? + path.lineto(to_DPair(polygon[index2])); + else { // Bézier curve segment + Bezier bezier(_curves[label1.id-1], label1.t, label2.t); + if (label1.t > label2.t) + bezier.reverse(); + path.cubicto(bezier.point(1), bezier.point(2), bezier.point(3)); + } + if (label1.id == 0) + find_segment_endpoint(polygon, index2, &label1, true); + else + label1 = polygon[index2].Z.otherLabel(label2); + index1 = index2; + index2 = find_segment_endpoint(polygon, index1, &label2); + diff = (num_points+index2-index1)%num_points; + } + path.closepath(); +} + + +inline PolyFillType polyFillType (CurvedPath::WindingRule wr) { + return (wr == CurvedPath::WR_NON_ZERO) ? pftNonZero : pftEvenOdd; +} + + +/** Computes the intersection of to curved path. + * @param[in] p1 first curved path + * @param[in] wr1 winding rule to be applied to p1 + * @param[in] p2 second curved path + * @param[in] wr2 winding rule to be applied to p2 + * @param[out] result intersection of p1 and p2 */ +void PathClipper::intersect (const CurvedPath &p1, const CurvedPath &p2, CurvedPath &result) { + if (p1.size() < 2 || p2.size() < 2) + return; + Clipper clipper; + Polygons polygons; + flatten(p1, polygons); + clipper.AddPaths(polygons, ptSubject, true); + polygons.clear(); + flatten(p2, polygons); + clipper.AddPaths(polygons, ptClip, true); + clipper.ZFillFunction(callback); + Polygons flattenedPath; + clipper.Execute(ctIntersection, flattenedPath, polyFillType(p1.windingRule()), polyFillType(p2.windingRule())); + reconstruct(flattenedPath, result); +} |