summaryrefslogtreecommitdiff
path: root/Build/source/texk/dvisvgm/dvisvgm-1.8/src/PathClipper.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'Build/source/texk/dvisvgm/dvisvgm-1.8/src/PathClipper.cpp')
-rw-r--r--Build/source/texk/dvisvgm/dvisvgm-1.8/src/PathClipper.cpp343
1 files changed, 343 insertions, 0 deletions
diff --git a/Build/source/texk/dvisvgm/dvisvgm-1.8/src/PathClipper.cpp b/Build/source/texk/dvisvgm/dvisvgm-1.8/src/PathClipper.cpp
new file mode 100644
index 00000000000..fcc231fb5fe
--- /dev/null
+++ b/Build/source/texk/dvisvgm/dvisvgm-1.8/src/PathClipper.cpp
@@ -0,0 +1,343 @@
+/*************************************************************************
+** PathClipper.cpp **
+** **
+** This file is part of dvisvgm -- the DVI to SVG converter **
+** Copyright (C) 2005-2014 Martin Gieseking <martin.gieseking@uos.de> **
+** **
+** This program is free software; you can redistribute it and/or **
+** modify it under the terms of the GNU General Public License as **
+** published by the Free Software Foundation; either version 3 of **
+** the License, or (at your option) any later version. **
+** **
+** This program is distributed in the hope that it will be useful, but **
+** WITHOUT ANY WARRANTY; without even the implied warranty of **
+** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the **
+** GNU General Public License for more details. **
+** **
+** You should have received a copy of the GNU General Public License **
+** along with this program; if not, see <http://www.gnu.org/licenses/>. **
+*************************************************************************/
+
+#include <config.h>
+#include "Bezier.h"
+#include "PathClipper.h"
+#include "types.h"
+
+using namespace std;
+using namespace ClipperLib;
+
+typedef ClipperLib::Path Polygon;
+typedef ClipperLib::Paths Polygons;
+typedef PathClipper::CurvedPath CurvedPath;
+
+const int SCALE_FACTOR = 1000;
+
+inline cInt to_cInt (double x) {
+ if (x < 0)
+ return static_cast<cInt>(x*SCALE_FACTOR - 0.5);
+ return static_cast<cInt>(x*SCALE_FACTOR + 0.5);
+}
+
+
+inline double to_double (cInt x) {
+ return static_cast<double>(x)/SCALE_FACTOR;
+}
+
+
+inline DPair to_DPair (const IntPoint &p) {
+ return DPair(to_double(p.X), to_double(p.Y));
+}
+
+
+/** In order to flatten a curved path, all path segements are processed sequentially.
+ * Depending on the type of the segment, one of the methods provided by this class
+ * is called. */
+class FlattenActions : public CurvedPath::Actions {
+ public:
+ FlattenActions (vector<Bezier> &curves, Polygons &polygons, int &numLines)
+ : _polygons(polygons), _curves(curves), _numLines(numLines) {}
+
+ void moveto (const CurvedPath::Point &p) {
+ if (p == _currentPoint && !_currentPoly.empty())
+ return;
+ closepath();
+ _currentPoly.push_back(IntPoint(to_cInt(p.x()), to_cInt(p.y()), 0));
+ _currentPoint = _startPoint = p;
+ }
+
+ void lineto (const CurvedPath::Point &p) {
+ if (p == _currentPoint && !_currentPoly.empty())
+ return;
+ if (_currentPoly.empty()) // this shouldn't happen but in case it does...
+ _currentPoly.push_back(IntPoint(0, 0, 0)); // ...add a start point first
+ _numLines--;
+ _currentPoly.back().Z.label2 = _numLines;
+ _currentPoly.push_back(IntPoint(to_cInt(p.x()), to_cInt(p.y()), ZType(_numLines, 0)));
+ _currentPoint = p;
+ }
+
+ void conicto (const CurvedPath::Point &p1, const CurvedPath::Point &p2) {
+ Bezier bezier(_currentPoint, p1, p2);
+ addCurvePoints(bezier);
+ }
+
+ void cubicto (const CurvedPath::Point &p1, const CurvedPath::Point &p2, const CurvedPath::Point &p3) {
+ Bezier bezier(_currentPoint, p1, p2, p3);
+ addCurvePoints(bezier);
+ }
+
+ void closepath () {
+ if (_currentPoly.empty())
+ return;
+ _numLines--;
+ _currentPoly.back().Z.label2 = ZLabel(_numLines, 0);
+ _currentPoly.front().Z.label1 = ZLabel(_numLines, 0);
+ _polygons.push_back(_currentPoly);
+ _currentPoly.clear();
+ }
+
+ void finished () {
+ closepath();
+ }
+
+ protected:
+ void addCurvePoints (const Bezier &bezier) {
+ if (_currentPoly.empty()) // this shouldn't happen but in case it does, ...
+ _currentPoly.push_back(IntPoint(0, 0, 0)); // ...add a start point first
+ vector<DPair> points; // points of flattened curve
+ vector<double> t; // corresponding 'time' parameters
+ bezier.approximate(0.01, points, &t);
+ if (points.size() < 2)
+ return;
+ _curves.push_back(bezier);
+ for (size_t i=1; i < points.size(); i++) {
+ const DPair &p = points[i];
+ if (p == _currentPoint)
+ continue;
+ _currentPoly.back().Z.label2 = ZLabel(_curves.size(), t[i-1]);
+ ZLabel label(_curves.size(), t[i]);
+ _currentPoly.push_back(IntPoint(to_cInt(p.x()), to_cInt(p.y()), ZType(label, label)));
+ _currentPoint = p;
+ }
+ }
+
+ private:
+ CurvedPath::Point _startPoint, _currentPoint;
+ Polygon _currentPoly; ///< polygon being created
+ Polygons &_polygons; ///< all polygons created
+ vector<Bezier> &_curves;
+ int &_numLines;
+};
+
+
+/** Removes adjacent polygon vertices that equal their predecessor. */
+static void remove_redundant_vertices (Polygon &polygon) {
+ Polygon::iterator it1=polygon.begin();
+ while (it1 != polygon.end()) {
+ Polygon::iterator it2 = it1+1;
+ if (it2 == polygon.end())
+ it2 = polygon.begin();
+ if (it1 == it2)
+ return;
+
+ if (*it1 != *it2)
+ ++it1;
+ else {
+ it1->Z.label2 = it2->Z.label2;
+ polygon.erase(it2);
+ }
+ }
+}
+
+
+/** Approximates a curved path by a set of polygons and stores information
+ * to reconstruct the curved segments later. The z component of each
+ * polygon vertex holds two integers representing information about the two
+ * adjacent edges the vertex belongs to. This is required to identify the
+ * affected edges and thus the former (curve/line) segment of the path during
+ * the intersection process.
+ * @param[in] curvedPath curved path to be flattened
+ * @param[out] polygons the flattened path (set of polygons) */
+void PathClipper::flatten (const CurvedPath &curvedPath, Polygons &polygons) {
+ FlattenActions flattenActions(_curves, polygons, _numLines);
+ curvedPath.iterate(flattenActions, false);
+ for (size_t i=0; i < polygons.size(); i++)
+ remove_redundant_vertices(polygons[i]);
+}
+
+
+/** Returns the ID of the path segment the polygon edge defined by its start
+ * and end point belongs to. The z component of a polygon vertex holds a pair
+ * of labels that allows to identify the original path segments the point belongs to.
+ * Since always two adjacent segments share a point, each point gets two values assigned.
+ * Negative numbers denote line segments, positive ones Bézier curves.
+ * There are only these two segment types, so we don't need further flags in
+ * order to distinguish them. By comparing the labels of two adjacent polygon
+ * vertexes it's possible to identify the original path segment the corresponding
+ * edge belongs to.
+ * @param[in] p1 first of two adjacent vertices
+ * @param[in] p2 second of two adjacent vertices
+ * @param[out] t1 time paramater of p1
+ * @param[out] t2 time paramater of p2
+ * @return id of edge between p1 and p2, or 0 if it's not possible to identify the segment */
+static Int32 segment_id (const IntPoint &p1, const IntPoint &p2, double &t1, double &t2) {
+ const ZType &z1=p1.Z, &z2=p2.Z;
+ if (z1 == z2 && z1.minLabel().id < 0) return z1.minLabel().id;
+ if (z1.label1 == z2.label2) {t1=z1.label1.t; t2=z2.label2.t; return z1.label1.id;}
+ if (z1.label2 == z2.label1) {t1=z1.label2.t; t2=z2.label1.t; return z1.label2.id;}
+ if (z1.label1 == z2.label1) {t1=z1.label1.t; t2=z2.label1.t; return z1.label1.id;}
+ if (z1.label2 == z2.label2) {t1=z1.label2.t; t2=z2.label2.t; return z1.label2.id;}
+ // if we get here, it's not possible to identify the segment
+ // => the edge is going to be handled as line segment
+ return 0;
+}
+
+
+inline Int32 edge_id (const IntPoint &p1, const IntPoint &p2) {
+ double t;
+ return segment_id(p1, p2, t, t);
+}
+
+
+/** This function expects 3 colinear points p1, p2, and q where q lies between p1 and p2,
+ * i.e. q divides the line \f$ \overline{p_1 p_2} \f$ somewhere. The function returns
+ * the corresponding division ratio. */
+static double division_ratio (const IntPoint &p1, const IntPoint &p2, const IntPoint &q) {
+ if (p1 == p2 || q == p1)
+ return 0;
+ if (q == p2)
+ return 1;
+ if (p1.X == p2.X)
+ return double(q.Y-p1.Y)/(p2.Y-p1.Y);
+ return double(q.X-p1.X)/(p2.X-p1.X);
+}
+
+
+/** Returns the label of point q that lies on the line between points p1 and p2. */
+inline ZLabel division_label (const IntPoint &p1, const IntPoint &p2, const IntPoint &q) {
+ double t1, t2;
+ double s=0;
+ Int32 id = segment_id(p1, p2, t1, t2);
+ if (id > 0)
+ s = t1+(t2-t1)*division_ratio(p1, p2, q);
+ return ZLabel(id, s);
+}
+
+
+/** This method is called if the clipper library finds an intersection between two polygon edges.
+ * It populates the z coordinate of the intersection point with the idexes of the two edges.
+ * @param[in] e1bot first endpoint of edge 1
+ * @param[in] e1top second endpoint of edge 1
+ * @param[in] e2bot first endpoint of edge 2
+ * @param[in] e1top second endpoint of edge 2
+ * @param[in] ip intersection point of edge 1 and 2
+ * @param[in] userval pointer to PathClipper object set by ZFillFunction() */
+void PathClipper::callback (IntPoint &e1bot, IntPoint &e1top, IntPoint &e2bot, IntPoint &e2top, IntPoint &ip) {
+ ZLabel label1 = division_label(e1bot, e1top, ip);
+ ZLabel label2 = division_label(e2bot, e2top, ip);
+ ip.Z = ZType(label1, label2);
+}
+
+
+/** Iterates along the polygon edges until the endpoint of the current
+ * path segment is found and returns its vector index afterwards.
+ * @param[in] points the vertices of the polygon
+ * @param[in] start index of the vertex where the iteration starts
+ * @param[out] label if not 0, retrieves the label of the endpoint
+ * @param[in] startLabel if true, the found endpoint is treated as start point and
+ * parameter 'label' gets the corresponding value */
+static size_t find_segment_endpoint (const Polygon &polygon, size_t start, ZLabel *label=0, bool startLabel=false) {
+ if (polygon.empty())
+ return 0;
+
+ const size_t num_points = polygon.size();
+ int i = start%num_points;
+ double t1, t2; // time parameters of start and endpoint of current edge
+ Int32 id1 = segment_id(polygon[i], polygon[(i+1)%num_points], t1, t2);
+ Int32 id2 = id1;
+ double t = t2; // time parameter of resulting endpoint
+ for (size_t j=1; id1 == id2 && j < num_points; j++) {
+ t = t2;
+ i = (i+1)%num_points;
+ if (id1 == 0)
+ break;
+ id2 = segment_id(polygon[i], polygon[(i+1)%num_points], t1, t2);
+ }
+ if (label) {
+ *label = ZLabel(id1, id1 < 0 ? 0 : t);
+ if (startLabel && id1 != 0)
+ *label = polygon[i].Z.otherLabel(*label);
+ }
+ return i;
+}
+
+
+/** Reconstructs a curved path from the set of polygons.
+ * @param[in] polygons set of polygons to reconstruct
+ * @param[out] path the reconstructed curved path */
+void PathClipper::reconstruct (const Polygons &polygons, CurvedPath &path) {
+ for (size_t i=0; i < polygons.size(); i++)
+ reconstruct(polygons[i], path);
+}
+
+
+/** Reconstructs a curved path from a single polygon.
+ * @param[in] polygon polygon to reconstruct
+ * @param[out] path the reconstructed curved path */
+void PathClipper::reconstruct (const Polygon &polygon, CurvedPath &path) {
+ size_t num_points = polygon.size();
+ if (num_points < 2)
+ return;
+
+ ZLabel label1, label2; // labels of the current segment's start and endpoint
+ int index1 = find_segment_endpoint(polygon, 0, &label1, true);
+ int index2 = find_segment_endpoint(polygon, index1, &label2);
+ int diff = (num_points+index2-index1)%num_points;
+ path.moveto(to_DPair(polygon[index1]));
+ for (size_t count = diff; count <= num_points; count += diff) {
+ if (diff == 1 || label1.id <= 0) // line segment?
+ path.lineto(to_DPair(polygon[index2]));
+ else { // Bézier curve segment
+ Bezier bezier(_curves[label1.id-1], label1.t, label2.t);
+ if (label1.t > label2.t)
+ bezier.reverse();
+ path.cubicto(bezier.point(1), bezier.point(2), bezier.point(3));
+ }
+ if (label1.id == 0)
+ find_segment_endpoint(polygon, index2, &label1, true);
+ else
+ label1 = polygon[index2].Z.otherLabel(label2);
+ index1 = index2;
+ index2 = find_segment_endpoint(polygon, index1, &label2);
+ diff = (num_points+index2-index1)%num_points;
+ }
+ path.closepath();
+}
+
+
+inline PolyFillType polyFillType (CurvedPath::WindingRule wr) {
+ return (wr == CurvedPath::WR_NON_ZERO) ? pftNonZero : pftEvenOdd;
+}
+
+
+/** Computes the intersection of to curved path.
+ * @param[in] p1 first curved path
+ * @param[in] wr1 winding rule to be applied to p1
+ * @param[in] p2 second curved path
+ * @param[in] wr2 winding rule to be applied to p2
+ * @param[out] result intersection of p1 and p2 */
+void PathClipper::intersect (const CurvedPath &p1, const CurvedPath &p2, CurvedPath &result) {
+ if (p1.size() < 2 || p2.size() < 2)
+ return;
+ Clipper clipper;
+ Polygons polygons;
+ flatten(p1, polygons);
+ clipper.AddPaths(polygons, ptSubject, true);
+ polygons.clear();
+ flatten(p2, polygons);
+ clipper.AddPaths(polygons, ptClip, true);
+ clipper.ZFillFunction(callback);
+ Polygons flattenedPath;
+ clipper.Execute(ctIntersection, flattenedPath, polyFillType(p1.windingRule()), polyFillType(p2.windingRule()));
+ reconstruct(flattenedPath, result);
+}