summaryrefslogtreecommitdiff
path: root/Build/source/libs/mpfr/mpfr-src/src/mulders.c
diff options
context:
space:
mode:
Diffstat (limited to 'Build/source/libs/mpfr/mpfr-src/src/mulders.c')
-rw-r--r--Build/source/libs/mpfr/mpfr-src/src/mulders.c495
1 files changed, 495 insertions, 0 deletions
diff --git a/Build/source/libs/mpfr/mpfr-src/src/mulders.c b/Build/source/libs/mpfr/mpfr-src/src/mulders.c
new file mode 100644
index 00000000000..8f23d21b678
--- /dev/null
+++ b/Build/source/libs/mpfr/mpfr-src/src/mulders.c
@@ -0,0 +1,495 @@
+/* Mulders' MulHigh function (short product)
+
+Copyright 2005-2015 Free Software Foundation, Inc.
+Contributed by the AriC and Caramel projects, INRIA.
+
+This file is part of the GNU MPFR Library.
+
+The GNU MPFR Library is free software; you can redistribute it and/or modify
+it under the terms of the GNU Lesser General Public License as published by
+the Free Software Foundation; either version 3 of the License, or (at your
+option) any later version.
+
+The GNU MPFR Library is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
+License for more details.
+
+You should have received a copy of the GNU Lesser General Public License
+along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
+http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
+51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
+
+/* References:
+ [1] Short Division of Long Integers, David Harvey and Paul Zimmermann,
+ Proceedings of the 20th Symposium on Computer Arithmetic (ARITH-20),
+ July 25-27, 2011, pages 7-14.
+*/
+
+#define MPFR_NEED_LONGLONG_H
+#include "mpfr-impl.h"
+
+#ifndef MUL_FFT_THRESHOLD
+#define MUL_FFT_THRESHOLD 8448
+#endif
+
+/* Don't use MPFR_MULHIGH_SIZE since it is handled by tuneup */
+#ifdef MPFR_MULHIGH_TAB_SIZE
+static short mulhigh_ktab[MPFR_MULHIGH_TAB_SIZE];
+#else
+static short mulhigh_ktab[] = {MPFR_MULHIGH_TAB};
+#define MPFR_MULHIGH_TAB_SIZE \
+ ((mp_size_t) (sizeof(mulhigh_ktab) / sizeof(mulhigh_ktab[0])))
+#endif
+
+/* Put in rp[n..2n-1] an approximation of the n high limbs
+ of {up, n} * {vp, n}. The error is less than n ulps of rp[n] (and the
+ approximation is always less or equal to the truncated full product).
+ Assume 2n limbs are allocated at rp.
+
+ Implements Algorithm ShortMulNaive from [1].
+*/
+static void
+mpfr_mulhigh_n_basecase (mpfr_limb_ptr rp, mpfr_limb_srcptr up,
+ mpfr_limb_srcptr vp, mp_size_t n)
+{
+ mp_size_t i;
+
+ rp += n - 1;
+ umul_ppmm (rp[1], rp[0], up[n-1], vp[0]); /* we neglect up[0..n-2]*vp[0],
+ which is less than B^n */
+ for (i = 1 ; i < n ; i++)
+ /* here, we neglect up[0..n-i-2] * vp[i], which is less than B^n too */
+ rp[i + 1] = mpn_addmul_1 (rp, up + (n - i - 1), i + 1, vp[i]);
+ /* in total, we neglect less than n*B^n, i.e., n ulps of rp[n]. */
+}
+
+/* Put in rp[0..n] the n+1 low limbs of {up, n} * {vp, n}.
+ Assume 2n limbs are allocated at rp. */
+static void
+mpfr_mullow_n_basecase (mpfr_limb_ptr rp, mpfr_limb_srcptr up,
+ mpfr_limb_srcptr vp, mp_size_t n)
+{
+ mp_size_t i;
+
+ rp[n] = mpn_mul_1 (rp, up, n, vp[0]);
+ for (i = 1 ; i < n ; i++)
+ mpn_addmul_1 (rp + i, up, n - i + 1, vp[i]);
+}
+
+/* Put in rp[n..2n-1] an approximation of the n high limbs
+ of {np, n} * {mp, n}. The error is less than n ulps of rp[n] (and the
+ approximation is always less or equal to the truncated full product).
+
+ Implements Algorithm ShortMul from [1].
+*/
+void
+mpfr_mulhigh_n (mpfr_limb_ptr rp, mpfr_limb_srcptr np, mpfr_limb_srcptr mp,
+ mp_size_t n)
+{
+ mp_size_t k;
+
+ MPFR_ASSERTN (MPFR_MULHIGH_TAB_SIZE >= 8); /* so that 3*(n/4) > n/2 */
+ k = MPFR_LIKELY (n < MPFR_MULHIGH_TAB_SIZE) ? mulhigh_ktab[n] : 3*(n/4);
+ /* Algorithm ShortMul from [1] requires k >= (n+3)/2, which translates
+ into k >= (n+4)/2 in the C language. */
+ MPFR_ASSERTD (k == -1 || k == 0 || (k >= (n+4)/2 && k < n));
+ if (k < 0)
+ mpn_mul_basecase (rp, np, n, mp, n); /* result is exact, no error */
+ else if (k == 0)
+ mpfr_mulhigh_n_basecase (rp, np, mp, n); /* basecase error < n ulps */
+ else if (n > MUL_FFT_THRESHOLD)
+ mpn_mul_n (rp, np, mp, n); /* result is exact, no error */
+ else
+ {
+ mp_size_t l = n - k;
+ mp_limb_t cy;
+
+ mpn_mul_n (rp + 2 * l, np + l, mp + l, k); /* fills rp[2l..2n-1] */
+ mpfr_mulhigh_n (rp, np + k, mp, l); /* fills rp[l-1..2l-1] */
+ cy = mpn_add_n (rp + n - 1, rp + n - 1, rp + l - 1, l + 1);
+ mpfr_mulhigh_n (rp, np, mp + k, l); /* fills rp[l-1..2l-1] */
+ cy += mpn_add_n (rp + n - 1, rp + n - 1, rp + l - 1, l + 1);
+ mpn_add_1 (rp + n + l, rp + n + l, k, cy); /* propagate carry */
+ }
+}
+
+/* Put in rp[0..n] the n+1 low limbs of {np, n} * {mp, n}.
+ Assume 2n limbs are allocated at rp. */
+void
+mpfr_mullow_n (mpfr_limb_ptr rp, mpfr_limb_srcptr np, mpfr_limb_srcptr mp,
+ mp_size_t n)
+{
+ mp_size_t k;
+
+ MPFR_ASSERTN (MPFR_MULHIGH_TAB_SIZE >= 8); /* so that 3*(n/4) > n/2 */
+ k = MPFR_LIKELY (n < MPFR_MULHIGH_TAB_SIZE) ? mulhigh_ktab[n] : 3*(n/4);
+ MPFR_ASSERTD (k == -1 || k == 0 || (2 * k >= n && k < n));
+ if (k < 0)
+ mpn_mul_basecase (rp, np, n, mp, n);
+ else if (k == 0)
+ mpfr_mullow_n_basecase (rp, np, mp, n);
+ else if (n > MUL_FFT_THRESHOLD)
+ mpn_mul_n (rp, np, mp, n);
+ else
+ {
+ mp_size_t l = n - k;
+
+ mpn_mul_n (rp, np, mp, k); /* fills rp[0..2k] */
+ mpfr_mullow_n (rp + n, np + k, mp, l); /* fills rp[n..n+2l] */
+ mpn_add_n (rp + k, rp + k, rp + n, l + 1);
+ mpfr_mullow_n (rp + n, np, mp + k, l); /* fills rp[n..n+2l] */
+ mpn_add_n (rp + k, rp + k, rp + n, l + 1);
+ }
+}
+
+#ifdef MPFR_SQRHIGH_TAB_SIZE
+static short sqrhigh_ktab[MPFR_SQRHIGH_TAB_SIZE];
+#else
+static short sqrhigh_ktab[] = {MPFR_SQRHIGH_TAB};
+#define MPFR_SQRHIGH_TAB_SIZE (sizeof(sqrhigh_ktab) / sizeof(sqrhigh_ktab[0]))
+#endif
+
+/* Put in rp[n..2n-1] an approximation of the n high limbs
+ of {np, n}^2. The error is less than n ulps of rp[n]. */
+void
+mpfr_sqrhigh_n (mpfr_limb_ptr rp, mpfr_limb_srcptr np, mp_size_t n)
+{
+ mp_size_t k;
+
+ MPFR_ASSERTN (MPFR_SQRHIGH_TAB_SIZE > 2); /* ensures k < n */
+ k = MPFR_LIKELY (n < MPFR_SQRHIGH_TAB_SIZE) ? sqrhigh_ktab[n]
+ : (n+4)/2; /* ensures that k >= (n+3)/2 */
+ MPFR_ASSERTD (k == -1 || k == 0 || (k >= (n+4)/2 && k < n));
+ if (k < 0)
+ /* we can't use mpn_sqr_basecase here, since it requires
+ n <= SQR_KARATSUBA_THRESHOLD, where SQR_KARATSUBA_THRESHOLD
+ is not exported by GMP */
+ mpn_sqr_n (rp, np, n);
+ else if (k == 0)
+ mpfr_mulhigh_n_basecase (rp, np, np, n);
+ else
+ {
+ mp_size_t l = n - k;
+ mp_limb_t cy;
+
+ mpn_sqr_n (rp + 2 * l, np + l, k); /* fills rp[2l..2n-1] */
+ mpfr_mulhigh_n (rp, np, np + k, l); /* fills rp[l-1..2l-1] */
+ /* {rp+n-1,l+1} += 2 * {rp+l-1,l+1} */
+ cy = mpn_lshift (rp + l - 1, rp + l - 1, l + 1, 1);
+ cy += mpn_add_n (rp + n - 1, rp + n - 1, rp + l - 1, l + 1);
+ mpn_add_1 (rp + n + l, rp + n + l, k, cy); /* propagate carry */
+ }
+}
+
+#ifdef MPFR_DIVHIGH_TAB_SIZE
+static short divhigh_ktab[MPFR_DIVHIGH_TAB_SIZE];
+#else
+static short divhigh_ktab[] = {MPFR_DIVHIGH_TAB};
+#define MPFR_DIVHIGH_TAB_SIZE (sizeof(divhigh_ktab) / sizeof(divhigh_ktab[0]))
+#endif
+
+#ifndef __GMPFR_GMP_H__
+#define mpfr_pi1_t gmp_pi1_t /* with a GMP build */
+#endif
+
+#if !(defined(WANT_GMP_INTERNALS) && defined(HAVE___GMPN_SBPI1_DIVAPPR_Q))
+/* Put in Q={qp, n} an approximation of N={np, 2*n} divided by D={dp, n},
+ with the most significant limb of the quotient as return value (0 or 1).
+ Assumes the most significant bit of D is set. Clobbers N.
+
+ The approximate quotient Q satisfies - 2(n-1) < N/D - Q <= 4.
+*/
+static mp_limb_t
+mpfr_divhigh_n_basecase (mpfr_limb_ptr qp, mpfr_limb_ptr np,
+ mpfr_limb_srcptr dp, mp_size_t n)
+{
+ mp_limb_t qh, d1, d0, dinv, q2, q1, q0;
+ mpfr_pi1_t dinv2;
+
+ np += n;
+
+ if ((qh = (mpn_cmp (np, dp, n) >= 0)))
+ mpn_sub_n (np, np, dp, n);
+
+ /* now {np, n} is less than D={dp, n}, which implies np[n-1] <= dp[n-1] */
+
+ d1 = dp[n - 1];
+
+ if (n == 1)
+ {
+ invert_limb (dinv, d1);
+ umul_ppmm (q1, q0, np[0], dinv);
+ qp[0] = np[0] + q1;
+ return qh;
+ }
+
+ /* now n >= 2 */
+ d0 = dp[n - 2];
+ invert_pi1 (dinv2, d1, d0);
+ /* dinv2.inv32 = floor ((B^3 - 1) / (d0 + d1 B)) - B */
+ while (n > 1)
+ {
+ /* Invariant: it remains to reduce n limbs from N (in addition to the
+ initial low n limbs).
+ Since n >= 2 here, necessarily we had n >= 2 initially, which means
+ that in addition to the limb np[n-1] to reduce, we have at least 2
+ extra limbs, thus accessing np[n-3] is valid. */
+
+ /* warning: we can have np[n-1]=d1 and np[n-2]=d0, but since {np,n} < D,
+ the largest possible partial quotient is B-1 */
+ if (MPFR_UNLIKELY(np[n - 1] == d1 && np[n - 2] == d0))
+ q2 = ~ (mp_limb_t) 0;
+ else
+ udiv_qr_3by2 (q2, q1, q0, np[n - 1], np[n - 2], np[n - 3],
+ d1, d0, dinv2.inv32);
+ /* since q2 = floor((np[n-1]*B^2+np[n-2]*B+np[n-3])/(d1*B+d0)),
+ we have q2 <= (np[n-1]*B^2+np[n-2]*B+np[n-3])/(d1*B+d0),
+ thus np[n-1]*B^2+np[n-2]*B+np[n-3] >= q2*(d1*B+d0)
+ and {np-1, n} >= q2*D - q2*B^(n-2) >= q2*D - B^(n-1)
+ thus {np-1, n} - (q2-1)*D >= D - B^(n-1) >= 0
+ which proves that at most one correction is needed */
+ q0 = mpn_submul_1 (np - 1, dp, n, q2);
+ if (MPFR_UNLIKELY(q0 > np[n - 1]))
+ {
+ mpn_add_n (np - 1, np - 1, dp, n);
+ q2 --;
+ }
+ qp[--n] = q2;
+ dp ++;
+ }
+
+ /* we have B+dinv2 = floor((B^3-1)/(d1*B+d0)) < B^2/d1
+ q1 = floor(np[0]*(B+dinv2)/B) <= floor(np[0]*B/d1)
+ <= floor((np[0]*B+np[1])/d1)
+ thus q1 is not larger than the true quotient.
+ q1 > np[0]*(B+dinv2)/B - 1 > np[0]*(B^3-1)/(d1*B+d0)/B - 2
+ For d1*B+d0 <> B^2/2, we have B+dinv2 = floor(B^3/(d1*B+d0))
+ thus q1 > np[0]*B^2/(d1*B+d0) - 2, i.e.,
+ (d1*B+d0)*q1 > np[0]*B^2 - 2*(d1*B+d0)
+ d1*B*q1 > np[0]*B^2 - 2*d1*B - 2*d0 - d0*q1 >= np[0]*B^2 - 2*d1*B - B^2
+ thus q1 > np[0]*B/d1 - 2 - B/d1 > np[0]*B/d1 - 4.
+
+ For d1*B+d0 = B^2/2, dinv2 = B-1 thus q1 > np[0]*(2B-1)/B - 1 >
+ np[0]*B/d1 - 2.
+
+ In all cases, if q = floor((np[0]*B+np[1])/d1), we have:
+ q - 4 <= q1 <= q
+ */
+ umul_ppmm (q1, q0, np[0], dinv2.inv32);
+ qp[0] = np[0] + q1;
+
+ return qh;
+}
+#endif
+
+/* Put in {qp, n} an approximation of N={np, 2*n} divided by D={dp, n},
+ with the most significant limb of the quotient as return value (0 or 1).
+ Assumes the most significant bit of D is set. Clobbers N.
+
+ This implements the ShortDiv algorithm from reference [1].
+*/
+#if 1
+mp_limb_t
+mpfr_divhigh_n (mpfr_limb_ptr qp, mpfr_limb_ptr np, mpfr_limb_ptr dp,
+ mp_size_t n)
+{
+ mp_size_t k, l;
+ mp_limb_t qh, cy;
+ mpfr_limb_ptr tp;
+ MPFR_TMP_DECL(marker);
+
+ MPFR_ASSERTN (MPFR_MULHIGH_TAB_SIZE >= 15); /* so that 2*(n/3) >= (n+4)/2 */
+ k = MPFR_LIKELY (n < MPFR_DIVHIGH_TAB_SIZE) ? divhigh_ktab[n] : 2*(n/3);
+
+ if (k == 0)
+#if defined(WANT_GMP_INTERNALS) && defined(HAVE___GMPN_SBPI1_DIVAPPR_Q)
+ {
+ mpfr_pi1_t dinv2;
+ invert_pi1 (dinv2, dp[n - 1], dp[n - 2]);
+ return __gmpn_sbpi1_divappr_q (qp, np, n + n, dp, n, dinv2.inv32);
+ }
+#else /* use our own code for base-case short division */
+ return mpfr_divhigh_n_basecase (qp, np, dp, n);
+#endif
+ else if (k == n)
+ /* for k=n, we use a division with remainder (mpn_divrem),
+ which computes the exact quotient */
+ return mpn_divrem (qp, 0, np, 2 * n, dp, n);
+
+ MPFR_ASSERTD ((n+4)/2 <= k && k < n); /* bounds from [1] */
+ MPFR_TMP_MARK (marker);
+ l = n - k;
+ /* first divide the most significant 2k limbs from N by the most significant
+ k limbs of D */
+ qh = mpn_divrem (qp + l, 0, np + 2 * l, 2 * k, dp + l, k); /* exact */
+
+ /* it remains {np,2l+k} = {np,n+l} as remainder */
+
+ /* now we have to subtract high(Q1)*D0 where Q1=qh*B^k+{qp+l,k} and
+ D0={dp,l} */
+ tp = MPFR_TMP_LIMBS_ALLOC (2 * l);
+ mpfr_mulhigh_n (tp, qp + k, dp, l);
+ /* we are only interested in the upper l limbs from {tp,2l} */
+ cy = mpn_sub_n (np + n, np + n, tp + l, l);
+ if (qh)
+ cy += mpn_sub_n (np + n, np + n, dp, l);
+ while (cy > 0) /* Q1 was too large: subtract 1 to Q1 and add D to np+l */
+ {
+ qh -= mpn_sub_1 (qp + l, qp + l, k, MPFR_LIMB_ONE);
+ cy -= mpn_add_n (np + l, np + l, dp, n);
+ }
+
+ /* now it remains {np,n+l} to divide by D */
+ cy = mpfr_divhigh_n (qp, np + k, dp + k, l);
+ qh += mpn_add_1 (qp + l, qp + l, k, cy);
+ MPFR_TMP_FREE(marker);
+
+ return qh;
+}
+#else /* below is the FoldDiv(K) algorithm from [1] */
+mp_limb_t
+mpfr_divhigh_n (mpfr_limb_ptr qp, mpfr_limb_ptr np, mpfr_limb_ptr dp,
+ mp_size_t n)
+{
+ mp_size_t k, r;
+ mpfr_limb_ptr ip, tp, up;
+ mp_limb_t qh = 0, cy, cc;
+ int count;
+ MPFR_TMP_DECL(marker);
+
+#define K 3
+ if (n < K)
+ return mpn_divrem (qp, 0, np, 2 * n, dp, n);
+
+ k = (n - 1) / K + 1; /* ceil(n/K) */
+
+ MPFR_TMP_MARK (marker);
+ ip = MPFR_TMP_LIMBS_ALLOC (k + 1);
+ tp = MPFR_TMP_LIMBS_ALLOC (n + k);
+ up = MPFR_TMP_LIMBS_ALLOC (2 * (k + 1));
+ mpn_invert (ip, dp + n - (k + 1), k + 1, NULL); /* takes about 13% for n=1000 */
+ /* {ip, k+1} = floor((B^(2k+2)-1)/D - B^(k+1) where D = {dp+n-(k+1),k+1} */
+ for (r = n, cc = 0UL; r > 0;)
+ {
+ /* cc is the carry at np[n+r] */
+ MPFR_ASSERTD(cc <= 1);
+ /* FIXME: why can we have cc as large as say 8? */
+ count = 0;
+ while (cc > 0)
+ {
+ count ++;
+ MPFR_ASSERTD(count <= 1);
+ /* subtract {dp+n-r,r} from {np+n,r} */
+ cc -= mpn_sub_n (np + n, np + n, dp + n - r, r);
+ /* add 1 at qp[r] */
+ qh += mpn_add_1 (qp + r, qp + r, n - r, 1UL);
+ }
+ /* it remains r limbs to reduce, i.e., the remainder is {np, n+r} */
+ if (r < k)
+ {
+ ip += k - r;
+ k = r;
+ }
+ /* now r >= k */
+ /* qp + r - 2 * k -> up */
+ mpfr_mulhigh_n (up, np + n + r - (k + 1), ip, k + 1);
+ /* take into account the term B^k in the inverse: B^k * {np+n+r-k, k} */
+ cy = mpn_add_n (qp + r - k, up + k + 2, np + n + r - k, k);
+ /* since we need only r limbs of tp (below), it suffices to consider
+ r high limbs of dp */
+ if (r > k)
+ {
+#if 0
+ mpn_mul (tp, dp + n - r, r, qp + r - k, k);
+#else /* use a short product for the low k x k limbs */
+ /* we know the upper k limbs of the r-limb product cancel with the
+ remainder, thus we only need to compute the low r-k limbs */
+ if (r - k >= k)
+ mpn_mul (tp + k, dp + n - r + k, r - k, qp + r - k, k);
+ else /* r-k < k */
+ {
+/* #define LOW */
+#ifndef LOW
+ mpn_mul (tp + k, qp + r - k, k, dp + n - r + k, r - k);
+#else
+ mpfr_mullow_n_basecase (tp + k, qp + r - k, dp + n - r + k, r - k);
+ /* take into account qp[2r-2k] * dp[n - r + k] */
+ tp[r] += qp[2*r-2*k] * dp[n - r + k];
+#endif
+ /* tp[k..r] is filled */
+ }
+#if 0
+ mpfr_mulhigh_n (up, dp + n - r, qp + r - k, k);
+#else /* compute one more limb. FIXME: we could add one limb of dp in the
+ above, to save one mpn_addmul_1 call */
+ mpfr_mulhigh_n (up, dp + n - r, qp + r - k, k - 1); /* {up,2k-2} */
+ /* add {qp + r - k, k - 1} * dp[n-r+k-1] */
+ up[2*k-2] = mpn_addmul_1 (up + k - 1, qp + r - k, k-1, dp[n-r+k-1]);
+ /* add {dp+n-r, k} * qp[r-1] */
+ up[2*k-1] = mpn_addmul_1 (up + k - 1, dp + n - r, k, qp[r-1]);
+#endif
+#ifndef LOW
+ cc = mpn_add_n (tp + k, tp + k, up + k, k);
+ mpn_add_1 (tp + 2 * k, tp + 2 * k, r - k, cc);
+#else
+ /* update tp[k..r] */
+ if (r - k + 1 <= k)
+ mpn_add_n (tp + k, tp + k, up + k, r - k + 1);
+ else /* r - k >= k */
+ {
+ cc = mpn_add_n (tp + k, tp + k, up + k, k);
+ mpn_add_1 (tp + 2 * k, tp + 2 * k, r - 2 * k + 1, cc);
+ }
+#endif
+#endif
+ }
+ else /* last step: since we only want the quotient, no need to update,
+ just propagate the carry cy */
+ {
+ MPFR_ASSERTD(r < n);
+ if (cy > 0)
+ qh += mpn_add_1 (qp + r, qp + r, n - r, cy);
+ break;
+ }
+ /* subtract {tp, n+k} from {np+r-k, n+k}; however we only want to
+ update {np+n, n} */
+ /* we should have tp[r] = np[n+r-k] up to 1 */
+ MPFR_ASSERTD(tp[r] == np[n + r - k] || tp[r] + 1 == np[n + r - k]);
+#ifndef LOW
+ cc = mpn_sub_n (np + n - 1, np + n - 1, tp + k - 1, r + 1); /* borrow at np[n+r] */
+#else
+ cc = mpn_sub_n (np + n - 1, np + n - 1, tp + k - 1, r - k + 2);
+#endif
+ /* if cy = 1, subtract {dp, n} from {np+r, n}, thus
+ {dp+n-r,r} from {np+n,r} */
+ if (cy)
+ {
+ if (r < n)
+ cc += mpn_sub_n (np + n - 1, np + n - 1, dp + n - r - 1, r + 1);
+ else
+ cc += mpn_sub_n (np + n, np + n, dp + n - r, r);
+ /* propagate cy */
+ if (r == n)
+ qh = cy;
+ else
+ qh += mpn_add_1 (qp + r, qp + r, n - r, cy);
+ }
+ /* cc is the borrow at np[n+r] */
+ count = 0;
+ while (cc > 0) /* quotient was too large */
+ {
+ count++;
+ MPFR_ASSERTD (count <= 1);
+ cy = mpn_add_n (np + n, np + n, dp + n - (r - k), r - k);
+ cc -= mpn_add_1 (np + n + r - k, np + n + r - k, k, cy);
+ qh -= mpn_sub_1 (qp + r - k, qp + r - k, n - (r - k), 1UL);
+ }
+ r -= k;
+ cc = np[n + r];
+ }
+ MPFR_TMP_FREE(marker);
+
+ return qh;
+}
+#endif