diff options
Diffstat (limited to 'Build/source/libs/mpfr/mpfr-src/src/get_d64.c')
-rw-r--r-- | Build/source/libs/mpfr/mpfr-src/src/get_d64.c | 400 |
1 files changed, 400 insertions, 0 deletions
diff --git a/Build/source/libs/mpfr/mpfr-src/src/get_d64.c b/Build/source/libs/mpfr/mpfr-src/src/get_d64.c new file mode 100644 index 00000000000..16c9c936e56 --- /dev/null +++ b/Build/source/libs/mpfr/mpfr-src/src/get_d64.c @@ -0,0 +1,400 @@ +/* mpfr_get_decimal64 -- convert a multiple precision floating-point number + to a IEEE 754r decimal64 float + +See http://gcc.gnu.org/ml/gcc/2006-06/msg00691.html, +http://gcc.gnu.org/onlinedocs/gcc/Decimal-Float.html, +and TR 24732 <http://www.open-std.org/jtc1/sc22/wg14/www/projects#24732>. + +Copyright 2006-2015 Free Software Foundation, Inc. +Contributed by the AriC and Caramel projects, INRIA. + +This file is part of the GNU MPFR Library. + +The GNU MPFR Library is free software; you can redistribute it and/or modify +it under the terms of the GNU Lesser General Public License as published by +the Free Software Foundation; either version 3 of the License, or (at your +option) any later version. + +The GNU MPFR Library is distributed in the hope that it will be useful, but +WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY +or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public +License for more details. + +You should have received a copy of the GNU Lesser General Public License +along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see +http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., +51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ + +#include <stdlib.h> /* for strtol */ +#include "mpfr-impl.h" + +#define ISDIGIT(c) ('0' <= c && c <= '9') + +#ifdef MPFR_WANT_DECIMAL_FLOATS + +#ifndef DEC64_MAX +# define DEC64_MAX 9.999999999999999E384dd +#endif + +#ifdef DPD_FORMAT +static int T[1000] = { + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32, + 33, 34, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, + 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 80, 81, 82, 83, 84, 85, 86, 87, 88, + 89, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 112, 113, 114, 115, 116, + 117, 118, 119, 120, 121, 10, 11, 42, 43, 74, 75, 106, 107, 78, 79, 26, 27, + 58, 59, 90, 91, 122, 123, 94, 95, 128, 129, 130, 131, 132, 133, 134, 135, + 136, 137, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 160, 161, 162, + 163, 164, 165, 166, 167, 168, 169, 176, 177, 178, 179, 180, 181, 182, 183, + 184, 185, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 208, 209, 210, + 211, 212, 213, 214, 215, 216, 217, 224, 225, 226, 227, 228, 229, 230, 231, + 232, 233, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 138, 139, 170, + 171, 202, 203, 234, 235, 206, 207, 154, 155, 186, 187, 218, 219, 250, 251, + 222, 223, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 272, 273, 274, + 275, 276, 277, 278, 279, 280, 281, 288, 289, 290, 291, 292, 293, 294, 295, + 296, 297, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 320, 321, 322, + 323, 324, 325, 326, 327, 328, 329, 336, 337, 338, 339, 340, 341, 342, 343, + 344, 345, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 368, 369, 370, + 371, 372, 373, 374, 375, 376, 377, 266, 267, 298, 299, 330, 331, 362, 363, + 334, 335, 282, 283, 314, 315, 346, 347, 378, 379, 350, 351, 384, 385, 386, + 387, 388, 389, 390, 391, 392, 393, 400, 401, 402, 403, 404, 405, 406, 407, + 408, 409, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 432, 433, 434, + 435, 436, 437, 438, 439, 440, 441, 448, 449, 450, 451, 452, 453, 454, 455, + 456, 457, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 480, 481, 482, + 483, 484, 485, 486, 487, 488, 489, 496, 497, 498, 499, 500, 501, 502, 503, + 504, 505, 394, 395, 426, 427, 458, 459, 490, 491, 462, 463, 410, 411, 442, + 443, 474, 475, 506, 507, 478, 479, 512, 513, 514, 515, 516, 517, 518, 519, + 520, 521, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 544, 545, 546, + 547, 548, 549, 550, 551, 552, 553, 560, 561, 562, 563, 564, 565, 566, 567, + 568, 569, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 592, 593, 594, + 595, 596, 597, 598, 599, 600, 601, 608, 609, 610, 611, 612, 613, 614, 615, + 616, 617, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 522, 523, 554, + 555, 586, 587, 618, 619, 590, 591, 538, 539, 570, 571, 602, 603, 634, 635, + 606, 607, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 656, 657, 658, + 659, 660, 661, 662, 663, 664, 665, 672, 673, 674, 675, 676, 677, 678, 679, + 680, 681, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 704, 705, 706, + 707, 708, 709, 710, 711, 712, 713, 720, 721, 722, 723, 724, 725, 726, 727, + 728, 729, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 752, 753, 754, + 755, 756, 757, 758, 759, 760, 761, 650, 651, 682, 683, 714, 715, 746, 747, + 718, 719, 666, 667, 698, 699, 730, 731, 762, 763, 734, 735, 768, 769, 770, + 771, 772, 773, 774, 775, 776, 777, 784, 785, 786, 787, 788, 789, 790, 791, + 792, 793, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 816, 817, 818, + 819, 820, 821, 822, 823, 824, 825, 832, 833, 834, 835, 836, 837, 838, 839, + 840, 841, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 864, 865, 866, + 867, 868, 869, 870, 871, 872, 873, 880, 881, 882, 883, 884, 885, 886, 887, + 888, 889, 778, 779, 810, 811, 842, 843, 874, 875, 846, 847, 794, 795, 826, + 827, 858, 859, 890, 891, 862, 863, 896, 897, 898, 899, 900, 901, 902, 903, + 904, 905, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 928, 929, 930, + 931, 932, 933, 934, 935, 936, 937, 944, 945, 946, 947, 948, 949, 950, 951, + 952, 953, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 976, 977, 978, + 979, 980, 981, 982, 983, 984, 985, 992, 993, 994, 995, 996, 997, 998, 999, + 1000, 1001, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 906, + 907, 938, 939, 970, 971, 1002, 1003, 974, 975, 922, 923, 954, 955, 986, + 987, 1018, 1019, 990, 991, 12, 13, 268, 269, 524, 525, 780, 781, 46, 47, 28, + 29, 284, 285, 540, 541, 796, 797, 62, 63, 44, 45, 300, 301, 556, 557, 812, + 813, 302, 303, 60, 61, 316, 317, 572, 573, 828, 829, 318, 319, 76, 77, + 332, 333, 588, 589, 844, 845, 558, 559, 92, 93, 348, 349, 604, 605, 860, + 861, 574, 575, 108, 109, 364, 365, 620, 621, 876, 877, 814, 815, 124, 125, + 380, 381, 636, 637, 892, 893, 830, 831, 14, 15, 270, 271, 526, 527, 782, + 783, 110, 111, 30, 31, 286, 287, 542, 543, 798, 799, 126, 127, 140, 141, + 396, 397, 652, 653, 908, 909, 174, 175, 156, 157, 412, 413, 668, 669, 924, + 925, 190, 191, 172, 173, 428, 429, 684, 685, 940, 941, 430, 431, 188, 189, + 444, 445, 700, 701, 956, 957, 446, 447, 204, 205, 460, 461, 716, 717, 972, + 973, 686, 687, 220, 221, 476, 477, 732, 733, 988, 989, 702, 703, 236, 237, + 492, 493, 748, 749, 1004, 1005, 942, 943, 252, 253, 508, 509, 764, 765, + 1020, 1021, 958, 959, 142, 143, 398, 399, 654, 655, 910, 911, 238, 239, 158, + 159, 414, 415, 670, 671, 926, 927, 254, 255}; +#endif + +/* construct a decimal64 NaN */ +static _Decimal64 +get_decimal64_nan (void) +{ + union ieee_double_extract x; + union ieee_double_decimal64 y; + + x.s.exp = 1984; /* G[0]..G[4] = 11111: quiet NaN */ + y.d = x.d; + return y.d64; +} + +/* construct the decimal64 Inf with given sign */ +static _Decimal64 +get_decimal64_inf (int negative) +{ + union ieee_double_extract x; + union ieee_double_decimal64 y; + + x.s.sig = (negative) ? 1 : 0; + x.s.exp = 1920; /* G[0]..G[4] = 11110: Inf */ + y.d = x.d; + return y.d64; +} + +/* construct the decimal64 zero with given sign */ +static _Decimal64 +get_decimal64_zero (int negative) +{ + union ieee_double_decimal64 y; + + /* zero has the same representation in binary64 and decimal64 */ + y.d = negative ? DBL_NEG_ZERO : 0.0; + return y.d64; +} + +/* construct the decimal64 smallest non-zero with given sign */ +static _Decimal64 +get_decimal64_min (int negative) +{ + return negative ? - 1E-398dd : 1E-398dd; +} + +/* construct the decimal64 largest finite number with given sign */ +static _Decimal64 +get_decimal64_max (int negative) +{ + return negative ? - DEC64_MAX : DEC64_MAX; +} + +/* one-to-one conversion: + s is a decimal string representing a number x = m * 10^e which must be + exactly representable in the decimal64 format, i.e. + (a) the mantissa m has at most 16 decimal digits + (b1) -383 <= e <= 384 with m integer multiple of 10^(-15), |m| < 10 + (b2) or -398 <= e <= 369 with m integer, |m| < 10^16. + Assumes s is neither NaN nor +Inf nor -Inf. +*/ +static _Decimal64 +string_to_Decimal64 (char *s) +{ + long int exp = 0; + char m[17]; + long n = 0; /* mantissa length */ + char *endptr[1]; + union ieee_double_extract x; + union ieee_double_decimal64 y; +#ifdef DPD_FORMAT + unsigned int G, d1, d2, d3, d4, d5; +#endif + + /* read sign */ + if (*s == '-') + { + x.s.sig = 1; + s ++; + } + else + x.s.sig = 0; + /* read mantissa */ + while (ISDIGIT (*s)) + m[n++] = *s++; + exp = n; + if (*s == '.') + { + s ++; + while (ISDIGIT (*s)) + m[n++] = *s++; + } + /* we have exp digits before decimal point, and a total of n digits */ + exp -= n; /* we will consider an integer mantissa */ + MPFR_ASSERTN(n <= 16); + if (*s == 'E' || *s == 'e') + exp += strtol (s + 1, endptr, 10); + else + *endptr = s; + MPFR_ASSERTN(**endptr == '\0'); + MPFR_ASSERTN(-398 <= exp && exp <= (long) (385 - n)); + while (n < 16) + { + m[n++] = '0'; + exp --; + } + /* now n=16 and -398 <= exp <= 369 */ + m[n] = '\0'; + + /* compute biased exponent */ + exp += 398; + + MPFR_ASSERTN(exp >= -15); + if (exp < 0) + { + int i; + n = -exp; + /* check the last n digits of the mantissa are zero */ + for (i = 1; i <= n; i++) + MPFR_ASSERTN(m[16 - n] == '0'); + /* shift the first (16-n) digits to the right */ + for (i = 16 - n - 1; i >= 0; i--) + m[i + n] = m[i]; + /* zero the first n digits */ + for (i = 0; i < n; i ++) + m[i] = '0'; + exp = 0; + } + + /* now convert to DPD or BID */ +#ifdef DPD_FORMAT +#define CH(d) (d - '0') + if (m[0] >= '8') + G = (3 << 11) | ((exp & 768) << 1) | ((CH(m[0]) & 1) << 8); + else + G = ((exp & 768) << 3) | (CH(m[0]) << 8); + /* now the most 5 significant bits of G are filled */ + G |= exp & 255; + d1 = T[100 * CH(m[1]) + 10 * CH(m[2]) + CH(m[3])]; /* 10-bit encoding */ + d2 = T[100 * CH(m[4]) + 10 * CH(m[5]) + CH(m[6])]; /* 10-bit encoding */ + d3 = T[100 * CH(m[7]) + 10 * CH(m[8]) + CH(m[9])]; /* 10-bit encoding */ + d4 = T[100 * CH(m[10]) + 10 * CH(m[11]) + CH(m[12])]; /* 10-bit encoding */ + d5 = T[100 * CH(m[13]) + 10 * CH(m[14]) + CH(m[15])]; /* 10-bit encoding */ + x.s.exp = G >> 2; + x.s.manh = ((G & 3) << 18) | (d1 << 8) | (d2 >> 2); + x.s.manl = (d2 & 3) << 30; + x.s.manl |= (d3 << 20) | (d4 << 10) | d5; +#else /* BID format */ + { + mp_size_t rn; + mp_limb_t rp[2]; + int case_i = strcmp (m, "9007199254740992") < 0; + + for (n = 0; n < 16; n++) + m[n] -= '0'; + rn = mpn_set_str (rp, (unsigned char *) m, 16, 10); + if (rn == 1) + rp[1] = 0; +#if GMP_NUMB_BITS > 32 + rp[1] = rp[1] << (GMP_NUMB_BITS - 32); + rp[1] |= rp[0] >> 32; + rp[0] &= 4294967295UL; +#endif + if (case_i) + { /* s < 2^53: case i) */ + x.s.exp = exp << 1; + x.s.manl = rp[0]; /* 32 bits */ + x.s.manh = rp[1] & 1048575; /* 20 low bits */ + x.s.exp |= rp[1] >> 20; /* 1 bit */ + } + else /* s >= 2^53: case ii) */ + { + x.s.exp = 1536 | (exp >> 1); + x.s.manl = rp[0]; + x.s.manh = (rp[1] ^ 2097152) | ((exp & 1) << 19); + } + } +#endif /* DPD_FORMAT */ + y.d = x.d; + return y.d64; +} + +_Decimal64 +mpfr_get_decimal64 (mpfr_srcptr src, mpfr_rnd_t rnd_mode) +{ + int negative; + mpfr_exp_t e; + + /* the encoding of NaN, Inf, zero is the same under DPD or BID */ + if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (src))) + { + if (MPFR_IS_NAN (src)) + return get_decimal64_nan (); + + negative = MPFR_IS_NEG (src); + + if (MPFR_IS_INF (src)) + return get_decimal64_inf (negative); + + MPFR_ASSERTD (MPFR_IS_ZERO(src)); + return get_decimal64_zero (negative); + } + + e = MPFR_GET_EXP (src); + negative = MPFR_IS_NEG (src); + + if (MPFR_UNLIKELY(rnd_mode == MPFR_RNDA)) + rnd_mode = negative ? MPFR_RNDD : MPFR_RNDU; + + /* the smallest decimal64 number is 10^(-398), + with 2^(-1323) < 10^(-398) < 2^(-1322) */ + if (MPFR_UNLIKELY (e < -1323)) /* src <= 2^(-1324) < 1/2*10^(-398) */ + { + if (rnd_mode == MPFR_RNDZ || rnd_mode == MPFR_RNDN + || (rnd_mode == MPFR_RNDD && negative == 0) + || (rnd_mode == MPFR_RNDU && negative != 0)) + return get_decimal64_zero (negative); + else /* return the smallest non-zero number */ + return get_decimal64_min (negative); + } + /* the largest decimal64 number is just below 10^(385) < 2^1279 */ + else if (MPFR_UNLIKELY (e > 1279)) /* then src >= 2^1279 */ + { + if (rnd_mode == MPFR_RNDZ + || (rnd_mode == MPFR_RNDU && negative != 0) + || (rnd_mode == MPFR_RNDD && negative == 0)) + return get_decimal64_max (negative); + else + return get_decimal64_inf (negative); + } + else + { + /* we need to store the sign (1), the mantissa (16), and the terminating + character, thus we need at least 18 characters in s */ + char s[23]; + mpfr_get_str (s, &e, 10, 16, src, rnd_mode); + /* the smallest normal number is 1.000...000E-383, + which corresponds to s=[0.]1000...000 and e=-382 */ + if (e < -382) + { + /* the smallest subnormal number is 0.000...001E-383 = 1E-398, + which corresponds to s=[0.]1000...000 and e=-397 */ + if (e < -397) + { + if (rnd_mode == MPFR_RNDN && e == -398) + { + /* If 0.5E-398 < |src| < 1E-398 (smallest subnormal), + src should round to +/- 1E-398 in MPFR_RNDN. */ + mpfr_get_str (s, &e, 10, 1, src, MPFR_RNDA); + return e == -398 && s[negative] <= '5' ? + get_decimal64_zero (negative) : + get_decimal64_min (negative); + } + if (rnd_mode == MPFR_RNDZ || rnd_mode == MPFR_RNDN + || (rnd_mode == MPFR_RNDD && negative == 0) + || (rnd_mode == MPFR_RNDU && negative != 0)) + return get_decimal64_zero (negative); + else /* return the smallest non-zero number */ + return get_decimal64_min (negative); + } + else + { + mpfr_exp_t e2; + long digits = 16 - (-382 - e); + /* if e = -397 then 16 - (-382 - e) = 1 */ + mpfr_get_str (s, &e2, 10, digits, src, rnd_mode); + /* Warning: we can have e2 = e + 1 here, when rounding to + nearest or away from zero. */ + s[negative + digits] = 'E'; + sprintf (s + negative + digits + 1, "%ld", + (long int)e2 - digits); + return string_to_Decimal64 (s); + } + } + /* the largest number is 9.999...999E+384, + which corresponds to s=[0.]9999...999 and e=385 */ + else if (e > 385) + { + if (rnd_mode == MPFR_RNDZ + || (rnd_mode == MPFR_RNDU && negative != 0) + || (rnd_mode == MPFR_RNDD && negative == 0)) + return get_decimal64_max (negative); + else + return get_decimal64_inf (negative); + } + else /* -382 <= e <= 385 */ + { + s[16 + negative] = 'E'; + sprintf (s + 17 + negative, "%ld", (long int)e - 16); + return string_to_Decimal64 (s); + } + } +} + +#endif /* MPFR_WANT_DECIMAL_FLOATS */ |