summaryrefslogtreecommitdiff
path: root/Build/source/libs/mpfr/mpfr-src/src/gamma.c
diff options
context:
space:
mode:
Diffstat (limited to 'Build/source/libs/mpfr/mpfr-src/src/gamma.c')
-rw-r--r--Build/source/libs/mpfr/mpfr-src/src/gamma.c481
1 files changed, 0 insertions, 481 deletions
diff --git a/Build/source/libs/mpfr/mpfr-src/src/gamma.c b/Build/source/libs/mpfr/mpfr-src/src/gamma.c
deleted file mode 100644
index 861bb0dfaaa..00000000000
--- a/Build/source/libs/mpfr/mpfr-src/src/gamma.c
+++ /dev/null
@@ -1,481 +0,0 @@
-/* mpfr_gamma -- gamma function
-
-Copyright 2001-2020 Free Software Foundation, Inc.
-Contributed by the AriC and Caramba projects, INRIA.
-
-This file is part of the GNU MPFR Library.
-
-The GNU MPFR Library is free software; you can redistribute it and/or modify
-it under the terms of the GNU Lesser General Public License as published by
-the Free Software Foundation; either version 3 of the License, or (at your
-option) any later version.
-
-The GNU MPFR Library is distributed in the hope that it will be useful, but
-WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
-or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
-License for more details.
-
-You should have received a copy of the GNU Lesser General Public License
-along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
-https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
-51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
-
-#define MPFR_NEED_LONGLONG_H
-#include "mpfr-impl.h"
-
-#define IS_GAMMA
-#include "lngamma.c"
-#undef IS_GAMMA
-
-/* return a sufficient precision such that 2-x is exact, assuming x < 0
- and x is not an integer */
-static mpfr_prec_t
-mpfr_gamma_2_minus_x_exact (mpfr_srcptr x)
-{
- /* Since x < 0, 2-x = 2+y with y := -x.
- If y < 2, a precision w >= PREC(y) + EXP(2)-EXP(y) = PREC(y) + 2 - EXP(y)
- is enough, since no overlap occurs in 2+y, so no carry happens.
- If y >= 2, either ULP(y) <= 2, and we need w >= PREC(y)+1 since a
- carry can occur, or ULP(y) > 2, and we need w >= EXP(y)-1:
- (a) if EXP(y) <= 1, w = PREC(y) + 2 - EXP(y)
- (b) if EXP(y) > 1 and EXP(y)-PREC(y) <= 1, w = PREC(y) + 1
- (c) if EXP(y) > 1 and EXP(y)-PREC(y) > 1, w = EXP(y) - 1.
-
- Note: case (c) cannot happen in practice since this would imply that
- y is integer, thus x is negative integer */
- return (MPFR_GET_EXP(x) <= 1) ? MPFR_PREC(x) + 2 - MPFR_GET_EXP(x)
- : MPFR_PREC(x) + 1;
-}
-
-/* return a sufficient precision such that 1-x is exact, assuming x < 1
- and x is not an integer */
-static mpfr_prec_t
-mpfr_gamma_1_minus_x_exact (mpfr_srcptr x)
-{
- if (MPFR_IS_POS(x))
- return MPFR_PREC(x) - MPFR_GET_EXP(x);
- else if (MPFR_GET_EXP(x) <= 0)
- return MPFR_PREC(x) + 1 - MPFR_GET_EXP(x);
- else /* necessarily MPFR_PREC(x) > MPFR_GET_EXP(x) since otherwise
- x would be an integer */
- return MPFR_PREC(x) + 1;
-}
-
-/* returns a lower bound of the number of significant bits of n!
- (not counting the low zero bits).
- We know n! >= (n/e)^n*sqrt(2*Pi*n) for n >= 1, and the number of zero bits
- is floor(n/2) + floor(n/4) + floor(n/8) + ...
- This approximation is exact for n <= 500000, except for n = 219536, 235928,
- 298981, 355854, 464848, 493725, 498992 where it returns a value 1 too small.
-*/
-static unsigned long
-bits_fac (unsigned long n)
-{
- mpfr_t x, y;
- unsigned long r, k;
- MPFR_SAVE_EXPO_DECL (expo);
-
- MPFR_ASSERTD (n >= 1);
-
- MPFR_SAVE_EXPO_MARK (expo);
- mpfr_init2 (x, 38);
- mpfr_init2 (y, 38);
- mpfr_set_ui (x, n, MPFR_RNDZ);
- mpfr_set_str_binary (y, "10.101101111110000101010001011000101001"); /* upper bound of e */
- mpfr_div (x, x, y, MPFR_RNDZ);
- mpfr_pow_ui (x, x, n, MPFR_RNDZ);
- mpfr_const_pi (y, MPFR_RNDZ);
- mpfr_mul_ui (y, y, 2 * n, MPFR_RNDZ);
- mpfr_sqrt (y, y, MPFR_RNDZ);
- mpfr_mul (x, x, y, MPFR_RNDZ);
- mpfr_log2 (x, x, MPFR_RNDZ);
- r = mpfr_get_ui (x, MPFR_RNDU); /* lower bound on ceil(x) */
- for (k = 2; k <= n; k *= 2)
- {
- /* Note: the approximation is accurate enough so that the
- subtractions do not wrap. */
- MPFR_ASSERTD (r >= n / k);
- r -= n / k;
- }
- mpfr_clear (x);
- mpfr_clear (y);
- MPFR_SAVE_EXPO_FREE (expo);
-
- return r;
-}
-
-/* We use the reflection formula
- Gamma(1+t) Gamma(1-t) = - Pi t / sin(Pi (1 + t))
- in order to treat the case x <= 1,
- i.e. with x = 1-t, then Gamma(x) = -Pi*(1-x)/sin(Pi*(2-x))/GAMMA(2-x)
-*/
-int
-mpfr_gamma (mpfr_ptr gamma, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
-{
- mpfr_t xp, GammaTrial, tmp, tmp2;
- mpz_t fact;
- mpfr_prec_t realprec;
- int compared, is_integer;
- int inex = 0; /* 0 means: result gamma not set yet */
- MPFR_GROUP_DECL (group);
- MPFR_SAVE_EXPO_DECL (expo);
- MPFR_ZIV_DECL (loop);
-
- MPFR_LOG_FUNC
- (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode),
- ("gamma[%Pu]=%.*Rg inexact=%d",
- mpfr_get_prec (gamma), mpfr_log_prec, gamma, inex));
-
- /* Trivial cases */
- if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
- {
- if (MPFR_IS_NAN (x))
- {
- MPFR_SET_NAN (gamma);
- MPFR_RET_NAN;
- }
- else if (MPFR_IS_INF (x))
- {
- if (MPFR_IS_NEG (x))
- {
- /* gamma(x) has a pole at negative integers, thus even if it goes to zero
- for other values, we return NaN */
- MPFR_SET_NAN (gamma);
- MPFR_RET_NAN;
- }
- else
- {
- MPFR_SET_INF (gamma);
- MPFR_SET_POS (gamma);
- MPFR_RET (0); /* exact */
- }
- }
- else /* x is zero */
- {
- MPFR_ASSERTD(MPFR_IS_ZERO(x));
- MPFR_SET_INF(gamma);
- MPFR_SET_SAME_SIGN(gamma, x);
- MPFR_SET_DIVBY0 ();
- MPFR_RET (0); /* exact */
- }
- }
-
- /* Check for tiny arguments, where gamma(x) ~ 1/x - euler + ... can be
- approximated by 1/x, with some error term ~= - euler.
- We need to make sure that there are no breakpoints (discontinuity
- points of the rounding function) between gamma(x) and 1/x (included),
- where the possible breakpoints (for all rounding modes) are the numbers
- that fit on PREC(gamma)+1 bits. There will be a special case when |x|
- is a power of two, since such values are breakpoints. We will choose n
- minimum such that x fits on n bits and the breakpoints fit on n+1 bits,
- thus
- n = MAX(MPFR_PREC(x), MPFR_PREC(gamma)).
- We know from "Bound on Runs of Zeros and Ones for Algebraic Functions",
- Proceedings of Arith15, T. Lang and J.-M. Muller, 2001, that the maximal
- number of consecutive zeroes or ones after the round bit for 1/x is n-1
- for an input x of n bits [this is an actually much older result!].
- But we need a more precise lower bound. Assume that 1/x is near a
- breakpoint y. From the definition of n, the input x fits on n bits
- and the breakpoint y fits on of n+1 bits. We can write x = X*2^e,
- y = Y/2^f with X, Y integers of n and n+1 bits respectively.
- Thus X*Y^2^(e-f) is near 1, i.e., X*Y is near the integer 2^(f-e).
- Two cases can happen:
- (i) either X*Y is exactly 2^(f-e), but this can happen only if X and Y
- are themselves powers of two, i.e., x is a power of two;
- (ii) or X*Y is at distance at least one from 2^(f-e), thus
- |xy-1| >= 2^(e-f), or |y-1/x| >= 2^(e-f)/x = 2^(-f)/X >= 2^(-f-n).
- Since ufp(y) = 2^(n-f) [ufp = unit in first place], this means
- that the distance |y-1/x| >= 2^(-2n) ufp(y).
- Now, assuming |gamma(x)-1/x| < 1, which is true for 0 < x <= 1,
- if 2^(-2n) ufp(y) >= 1, then gamma(x) and 1/x round in the same
- way, so that rounding 1/x gives the correct result and correct
- (nonzero) ternary value.
- If x < 2^E, then y >= 2^(-E), thus ufp(y) >= 2^(-E).
- A sufficient condition is thus EXP(x) <= -2n, where
- n = MAX(MPFR_PREC(x), MPFR_PREC(gamma)).
- */
- /* TODO: The above proof uses the same precision for input and output.
- Without this assumption, one might obtain a bound like
- PREC(x) + PREC(y) instead of 2 MAX(PREC(x),PREC(y)). */
- /* TODO: Handle the very small arguments that do not satisfy the condition,
- by using the approximation 1/x - euler and a Ziv loop. Otherwise, after
- some tests, even Gamma(1+x)/x would be faster than the generic code. */
- if (MPFR_GET_EXP (x)
- <= -2 * (mpfr_exp_t) MAX(MPFR_PREC(x), MPFR_PREC(gamma)))
- {
- int sign = MPFR_SIGN (x); /* retrieve sign before possible override */
- int special;
- MPFR_BLOCK_DECL (flags);
-
- MPFR_SAVE_EXPO_MARK (expo);
-
- /* for overflow cases, see below; this needs to be done
- before x possibly gets overridden. */
- special =
- MPFR_GET_EXP (x) == 1 - MPFR_EMAX_MAX &&
- MPFR_IS_POS_SIGN (sign) &&
- MPFR_IS_LIKE_RNDD (rnd_mode, sign) &&
- mpfr_powerof2_raw (x);
-
- MPFR_BLOCK (flags, inex = mpfr_ui_div (gamma, 1, x, rnd_mode));
- if (inex == 0) /* |x| is a power of two */
- {
- /* return RND(1/x - euler) = RND(+/- 2^k - eps) with eps > 0 */
- if (rnd_mode == MPFR_RNDN || MPFR_IS_LIKE_RNDU (rnd_mode, sign))
- inex = 1;
- else
- {
- mpfr_nextbelow (gamma);
- inex = -1;
- }
- }
- else if (MPFR_UNLIKELY (MPFR_OVERFLOW (flags)))
- {
- /* Overflow in the division 1/x. This is a real overflow, except
- in RNDZ or RNDD when 1/x = 2^emax, i.e. x = 2^(-emax): due to
- the "- euler", the rounded value in unbounded exponent range
- is 0.111...11 * 2^emax (not an overflow). */
- if (!special)
- MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, flags);
- }
- MPFR_SAVE_EXPO_FREE (expo);
- /* Note: an overflow is possible with an infinite result;
- in this case, the overflow flag will automatically be
- restored by mpfr_check_range. */
- return mpfr_check_range (gamma, inex, rnd_mode);
- }
-
- is_integer = mpfr_integer_p (x);
- /* gamma(x) for x a negative integer gives NaN */
- if (is_integer && MPFR_IS_NEG(x))
- {
- MPFR_SET_NAN (gamma);
- MPFR_RET_NAN;
- }
-
- compared = mpfr_cmp_ui (x, 1);
- if (compared == 0)
- return mpfr_set_ui (gamma, 1, rnd_mode);
-
- /* if x is an integer that fits into an unsigned long, use mpfr_fac_ui
- if argument is not too large.
- If precision is p, fac_ui costs O(u*p), whereas gamma costs O(p*M(p)),
- so for u <= M(p), fac_ui should be faster.
- We approximate here M(p) by p*log(p)^2, which is not a bad guess.
- Warning: since the generic code does not handle exact cases,
- we want all cases where gamma(x) is exact to be treated here.
- */
- if (is_integer && mpfr_fits_ulong_p (x, MPFR_RNDN))
- {
- unsigned long int u;
- mpfr_prec_t p = MPFR_PREC(gamma);
- u = mpfr_get_ui (x, MPFR_RNDN);
- MPFR_ASSERTD (u >= 2);
- if (u < 44787929UL && bits_fac (u - 1) <= p + (rnd_mode == MPFR_RNDN))
- /* bits_fac: lower bound on the number of bits of m,
- where gamma(x) = (u-1)! = m*2^e with m odd. */
- return mpfr_fac_ui (gamma, u - 1, rnd_mode);
- /* if bits_fac(...) > p (resp. p+1 for rounding to nearest),
- then gamma(x) cannot be exact in precision p (resp. p+1).
- FIXME: remove the test u < 44787929UL after changing bits_fac
- to return a mpz_t or mpfr_t. */
- }
-
- MPFR_SAVE_EXPO_MARK (expo);
-
- /* check for overflow: according to (6.1.37) in Abramowitz & Stegun,
- gamma(x) >= exp(-x) * x^(x-1/2) * sqrt(2*Pi)
- >= 2 * (x/e)^x / x for x >= 1 */
- if (compared > 0)
- {
- mpfr_t yp, zp;
- mpfr_exp_t expxp;
- MPFR_BLOCK_DECL (flags);
- MPFR_GROUP_DECL (group);
-
- /* quick test for the default exponent range */
- if (mpfr_get_emax () >= 1073741823UL && MPFR_GET_EXP(x) <= 25)
- {
- MPFR_SAVE_EXPO_FREE (expo);
- return mpfr_gamma_aux (gamma, x, rnd_mode);
- }
-
- MPFR_GROUP_INIT_3 (group, 53, xp, yp, zp);
- /* 1/e rounded down to 53 bits */
- mpfr_set_str_binary (zp,
- "0.010111100010110101011000110110001011001110111100111");
- mpfr_mul (xp, x, zp, MPFR_RNDZ);
- mpfr_sub_ui (yp, x, 2, MPFR_RNDZ);
- mpfr_pow (xp, xp, yp, MPFR_RNDZ); /* (x/e)^(x-2) */
- mpfr_mul (xp, xp, zp, MPFR_RNDZ); /* x^(x-2) / e^(x-1) */
- mpfr_mul (xp, xp, zp, MPFR_RNDZ); /* x^(x-2) / e^x */
- mpfr_mul (xp, xp, x, MPFR_RNDZ); /* lower bound on x^(x-1) / e^x */
- MPFR_BLOCK (flags, mpfr_mul_2ui (xp, xp, 1, MPFR_RNDZ));
- expxp = MPFR_GET_EXP (xp);
- MPFR_GROUP_CLEAR (group);
- MPFR_SAVE_EXPO_FREE (expo);
- return MPFR_OVERFLOW (flags) || expxp > __gmpfr_emax ?
- mpfr_overflow (gamma, rnd_mode, 1) :
- mpfr_gamma_aux (gamma, x, rnd_mode);
- }
-
- /* now compared < 0 */
-
- /* check for underflow: for x < 1,
- gamma(x) = Pi*(x-1)/sin(Pi*(2-x))/gamma(2-x).
- Since gamma(2-x) >= 2 * ((2-x)/e)^(2-x) / (2-x), we have
- |gamma(x)| <= Pi*(1-x)*(2-x)/2/((2-x)/e)^(2-x) / |sin(Pi*(2-x))|
- <= 12 * ((2-x)/e)^x / |sin(Pi*(2-x))|.
- To avoid an underflow in ((2-x)/e)^x, we compute the logarithm.
- */
- if (MPFR_IS_NEG(x))
- {
- int underflow = 0, sgn, ck;
- mpfr_prec_t w;
-
- mpfr_init2 (xp, 53);
- mpfr_init2 (tmp, 53);
- mpfr_init2 (tmp2, 53);
- /* we want an upper bound for x * [log(2-x)-1].
- since x < 0, we need a lower bound on log(2-x) */
- mpfr_ui_sub (xp, 2, x, MPFR_RNDD);
- mpfr_log (xp, xp, MPFR_RNDD);
- mpfr_sub_ui (xp, xp, 1, MPFR_RNDD);
- mpfr_mul (xp, xp, x, MPFR_RNDU);
-
- /* we need an upper bound on 1/|sin(Pi*(2-x))|,
- thus a lower bound on |sin(Pi*(2-x))|.
- If 2-x is exact, then the error of Pi*(2-x) is (1+u)^2 with u = 2^(-p)
- thus the error on sin(Pi*(2-x)) is less than 1/2ulp + 3Pi(2-x)u,
- assuming u <= 1, thus <= u + 3Pi(2-x)u */
-
- w = mpfr_gamma_2_minus_x_exact (x); /* 2-x is exact for prec >= w */
- w += 17; /* to get tmp2 small enough */
- mpfr_set_prec (tmp, w);
- mpfr_set_prec (tmp2, w);
- MPFR_DBGRES (ck = mpfr_ui_sub (tmp, 2, x, MPFR_RNDN));
- MPFR_ASSERTD (ck == 0); /* tmp = 2-x exactly */
- mpfr_const_pi (tmp2, MPFR_RNDN);
- mpfr_mul (tmp2, tmp2, tmp, MPFR_RNDN); /* Pi*(2-x) */
- mpfr_sin (tmp, tmp2, MPFR_RNDN); /* sin(Pi*(2-x)) */
- sgn = mpfr_sgn (tmp);
- mpfr_abs (tmp, tmp, MPFR_RNDN);
- mpfr_mul_ui (tmp2, tmp2, 3, MPFR_RNDU); /* 3Pi(2-x) */
- mpfr_add_ui (tmp2, tmp2, 1, MPFR_RNDU); /* 3Pi(2-x)+1 */
- mpfr_div_2ui (tmp2, tmp2, mpfr_get_prec (tmp), MPFR_RNDU);
- /* if tmp2<|tmp|, we get a lower bound */
- if (mpfr_cmp (tmp2, tmp) < 0)
- {
- mpfr_sub (tmp, tmp, tmp2, MPFR_RNDZ); /* low bnd on |sin(Pi*(2-x))| */
- mpfr_ui_div (tmp, 12, tmp, MPFR_RNDU); /* upper bound */
- mpfr_log2 (tmp, tmp, MPFR_RNDU);
- mpfr_add (xp, tmp, xp, MPFR_RNDU);
- /* The assert below checks that expo.saved_emin - 2 always
- fits in a long. FIXME if we want to allow mpfr_exp_t to
- be a long long, for instance. */
- MPFR_ASSERTN (MPFR_EMIN_MIN - 2 >= LONG_MIN);
- underflow = mpfr_cmp_si (xp, expo.saved_emin - 2) <= 0;
- }
-
- mpfr_clear (xp);
- mpfr_clear (tmp);
- mpfr_clear (tmp2);
- if (underflow) /* the sign is the opposite of that of sin(Pi*(2-x)) */
- {
- MPFR_SAVE_EXPO_FREE (expo);
- return mpfr_underflow (gamma, (rnd_mode == MPFR_RNDN) ? MPFR_RNDZ : rnd_mode, -sgn);
- }
- }
-
- realprec = MPFR_PREC (gamma);
- /* we want both 1-x and 2-x to be exact */
- {
- mpfr_prec_t w;
- w = mpfr_gamma_1_minus_x_exact (x);
- if (realprec < w)
- realprec = w;
- w = mpfr_gamma_2_minus_x_exact (x);
- if (realprec < w)
- realprec = w;
- }
- realprec = realprec + MPFR_INT_CEIL_LOG2 (realprec) + 20;
- MPFR_ASSERTD(realprec >= 5);
-
- MPFR_GROUP_INIT_4 (group, realprec + MPFR_INT_CEIL_LOG2 (realprec) + 20,
- xp, tmp, tmp2, GammaTrial);
- mpz_init (fact);
- MPFR_ZIV_INIT (loop, realprec);
- for (;;)
- {
- mpfr_exp_t err_g;
- int ck;
- MPFR_GROUP_REPREC_4 (group, realprec, xp, tmp, tmp2, GammaTrial);
-
- /* reflection formula: gamma(x) = Pi*(x-1)/sin(Pi*(2-x))/gamma(2-x) */
-
- ck = mpfr_ui_sub (xp, 2, x, MPFR_RNDN); /* 2-x, exact */
- MPFR_ASSERTD(ck == 0); (void) ck; /* use ck to avoid a warning */
- mpfr_gamma (tmp, xp, MPFR_RNDN); /* gamma(2-x), error (1+u) */
- mpfr_const_pi (tmp2, MPFR_RNDN); /* Pi, error (1+u) */
- mpfr_mul (GammaTrial, tmp2, xp, MPFR_RNDN); /* Pi*(2-x), error (1+u)^2 */
- err_g = MPFR_GET_EXP(GammaTrial);
- mpfr_sin (GammaTrial, GammaTrial, MPFR_RNDN); /* sin(Pi*(2-x)) */
- /* If tmp is +Inf, we compute exp(lngamma(x)). */
- if (mpfr_inf_p (tmp))
- {
- inex = mpfr_explgamma (gamma, x, &expo, tmp, tmp2, rnd_mode);
- if (inex)
- goto end;
- else
- goto ziv_next;
- }
- err_g = err_g + 1 - MPFR_GET_EXP(GammaTrial);
- /* let g0 the true value of Pi*(2-x), g the computed value.
- We have g = g0 + h with |h| <= |(1+u^2)-1|*g.
- Thus sin(g) = sin(g0) + h' with |h'| <= |(1+u^2)-1|*g.
- The relative error is thus bounded by |(1+u^2)-1|*g/sin(g)
- <= |(1+u^2)-1|*2^err_g. <= 2.25*u*2^err_g for |u|<=1/4.
- With the rounding error, this gives (0.5 + 2.25*2^err_g)*u. */
- ck = mpfr_sub_ui (xp, x, 1, MPFR_RNDN); /* x-1, exact */
- MPFR_ASSERTD(ck == 0); (void) ck; /* use ck to avoid a warning */
- mpfr_mul (xp, tmp2, xp, MPFR_RNDN); /* Pi*(x-1), error (1+u)^2 */
- mpfr_mul (GammaTrial, GammaTrial, tmp, MPFR_RNDN);
- /* [1 + (0.5 + 2.25*2^err_g)*u]*(1+u)^2 = 1 + (2.5 + 2.25*2^err_g)*u
- + (0.5 + 2.25*2^err_g)*u*(2u+u^2) + u^2.
- For err_g <= realprec-2, we have (0.5 + 2.25*2^err_g)*u <=
- 0.5*u + 2.25/4 <= 0.6875 and u^2 <= u/4, thus
- (0.5 + 2.25*2^err_g)*u*(2u+u^2) + u^2 <= 0.6875*(2u+u/4) + u/4
- <= 1.8*u, thus the rel. error is bounded by (4.5 + 2.25*2^err_g)*u. */
- mpfr_div (GammaTrial, xp, GammaTrial, MPFR_RNDN);
- /* the error is of the form (1+u)^3/[1 + (4.5 + 2.25*2^err_g)*u].
- For realprec >= 5 and err_g <= realprec-2, [(4.5 + 2.25*2^err_g)*u]^2
- <= 0.71, and for |y|<=0.71, 1/(1-y) can be written 1+a*y with a<=4.
- (1+u)^3 * (1+4*(4.5 + 2.25*2^err_g)*u)
- = 1 + (21 + 9*2^err_g)*u + (57+27*2^err_g)*u^2 + (55+27*2^err_g)*u^3
- + (18+9*2^err_g)*u^4
- <= 1 + (21 + 9*2^err_g)*u + (57+27*2^err_g)*u^2 + (56+28*2^err_g)*u^3
- <= 1 + (21 + 9*2^err_g)*u + (59+28*2^err_g)*u^2
- <= 1 + (23 + 10*2^err_g)*u.
- The final error is thus bounded by (23 + 10*2^err_g) ulps,
- which is <= 2^6 for err_g<=2, and <= 2^(err_g+4) for err_g >= 2. */
- err_g = (err_g <= 2) ? 6 : err_g + 4;
-
- if (MPFR_LIKELY (MPFR_CAN_ROUND (GammaTrial, realprec - err_g,
- MPFR_PREC(gamma), rnd_mode)))
- break;
-
- ziv_next:
- MPFR_ZIV_NEXT (loop, realprec);
- }
-
- end:
- MPFR_ZIV_FREE (loop);
-
- if (inex == 0)
- inex = mpfr_set (gamma, GammaTrial, rnd_mode);
- MPFR_GROUP_CLEAR (group);
- mpz_clear (fact);
-
- MPFR_SAVE_EXPO_FREE (expo);
- return mpfr_check_range (gamma, inex, rnd_mode);
-}