diff options
Diffstat (limited to 'Build/source/libs/mpfr/mpfr-3.1.2/src/exp2.c')
-rw-r--r-- | Build/source/libs/mpfr/mpfr-3.1.2/src/exp2.c | 151 |
1 files changed, 151 insertions, 0 deletions
diff --git a/Build/source/libs/mpfr/mpfr-3.1.2/src/exp2.c b/Build/source/libs/mpfr/mpfr-3.1.2/src/exp2.c new file mode 100644 index 00000000000..a107d8ade72 --- /dev/null +++ b/Build/source/libs/mpfr/mpfr-3.1.2/src/exp2.c @@ -0,0 +1,151 @@ +/* mpfr_exp2 -- power of 2 function 2^y + +Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc. +Contributed by the AriC and Caramel projects, INRIA. + +This file is part of the GNU MPFR Library. + +The GNU MPFR Library is free software; you can redistribute it and/or modify +it under the terms of the GNU Lesser General Public License as published by +the Free Software Foundation; either version 3 of the License, or (at your +option) any later version. + +The GNU MPFR Library is distributed in the hope that it will be useful, but +WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY +or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public +License for more details. + +You should have received a copy of the GNU Lesser General Public License +along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see +http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., +51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ + +#define MPFR_NEED_LONGLONG_H +#include "mpfr-impl.h" + +/* The computation of y = 2^z is done by * + * y = exp(z*log(2)). The result is exact iff z is an integer. */ + +int +mpfr_exp2 (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode) +{ + int inexact; + long xint; + mpfr_t xfrac; + MPFR_SAVE_EXPO_DECL (expo); + + MPFR_LOG_FUNC + (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec(x), mpfr_log_prec, x, rnd_mode), + ("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec(y), mpfr_log_prec, y, + inexact)); + + if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) + { + if (MPFR_IS_NAN (x)) + { + MPFR_SET_NAN (y); + MPFR_RET_NAN; + } + else if (MPFR_IS_INF (x)) + { + if (MPFR_IS_POS (x)) + MPFR_SET_INF (y); + else + MPFR_SET_ZERO (y); + MPFR_SET_POS (y); + MPFR_RET (0); + } + else /* 2^0 = 1 */ + { + MPFR_ASSERTD (MPFR_IS_ZERO(x)); + return mpfr_set_ui (y, 1, rnd_mode); + } + } + + /* since the smallest representable non-zero float is 1/2*2^__gmpfr_emin, + if x < __gmpfr_emin - 1, the result is either 1/2*2^__gmpfr_emin or 0 */ + MPFR_ASSERTN (MPFR_EMIN_MIN >= LONG_MIN + 2); + if (MPFR_UNLIKELY (mpfr_cmp_si (x, __gmpfr_emin - 1) < 0)) + { + mpfr_rnd_t rnd2 = rnd_mode; + /* in round to nearest mode, round to zero when x <= __gmpfr_emin-2 */ + if (rnd_mode == MPFR_RNDN && + mpfr_cmp_si_2exp (x, __gmpfr_emin - 2, 0) <= 0) + rnd2 = MPFR_RNDZ; + return mpfr_underflow (y, rnd2, 1); + } + + MPFR_ASSERTN (MPFR_EMAX_MAX <= LONG_MAX); + if (MPFR_UNLIKELY (mpfr_cmp_si (x, __gmpfr_emax) >= 0)) + return mpfr_overflow (y, rnd_mode, 1); + + /* We now know that emin - 1 <= x < emax. */ + + MPFR_SAVE_EXPO_MARK (expo); + + /* 2^x = 1 + x*log(2) + O(x^2) for x near zero, and for |x| <= 1 we have + |2^x - 1| <= x < 2^EXP(x). If x > 0 we must round away from 0 (dir=1); + if x < 0 we must round toward 0 (dir=0). */ + MPFR_SMALL_INPUT_AFTER_SAVE_EXPO (y, __gmpfr_one, - MPFR_GET_EXP (x), 0, + MPFR_SIGN(x) > 0, rnd_mode, expo, {}); + + xint = mpfr_get_si (x, MPFR_RNDZ); + mpfr_init2 (xfrac, MPFR_PREC (x)); + mpfr_sub_si (xfrac, x, xint, MPFR_RNDN); /* exact */ + + if (MPFR_IS_ZERO (xfrac)) + { + mpfr_set_ui (y, 1, MPFR_RNDN); + inexact = 0; + } + else + { + /* Declaration of the intermediary variable */ + mpfr_t t; + + /* Declaration of the size variable */ + mpfr_prec_t Ny = MPFR_PREC(y); /* target precision */ + mpfr_prec_t Nt; /* working precision */ + mpfr_exp_t err; /* error */ + MPFR_ZIV_DECL (loop); + + /* compute the precision of intermediary variable */ + /* the optimal number of bits : see algorithms.tex */ + Nt = Ny + 5 + MPFR_INT_CEIL_LOG2 (Ny); + + /* initialise of intermediary variable */ + mpfr_init2 (t, Nt); + + /* First computation */ + MPFR_ZIV_INIT (loop, Nt); + for (;;) + { + /* compute exp(x*ln(2))*/ + mpfr_const_log2 (t, MPFR_RNDU); /* ln(2) */ + mpfr_mul (t, xfrac, t, MPFR_RNDU); /* xfrac * ln(2) */ + err = Nt - (MPFR_GET_EXP (t) + 2); /* Estimate of the error */ + mpfr_exp (t, t, MPFR_RNDN); /* exp(xfrac * ln(2)) */ + + if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, Ny, rnd_mode))) + break; + + /* Actualisation of the precision */ + MPFR_ZIV_NEXT (loop, Nt); + mpfr_set_prec (t, Nt); + } + MPFR_ZIV_FREE (loop); + + inexact = mpfr_set (y, t, rnd_mode); + + mpfr_clear (t); + } + + mpfr_clear (xfrac); + mpfr_clear_flags (); + mpfr_mul_2si (y, y, xint, MPFR_RNDN); /* exact or overflow */ + /* Note: We can have an overflow only when t was rounded up to 2. */ + MPFR_ASSERTD (MPFR_IS_PURE_FP (y) || inexact > 0); + MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags); + MPFR_SAVE_EXPO_FREE (expo); + return mpfr_check_range (y, inexact, rnd_mode); +} |