summaryrefslogtreecommitdiff
path: root/Build/source/libs/luajit/LuaJIT-2.0.3/src/lj_ir.c
diff options
context:
space:
mode:
Diffstat (limited to 'Build/source/libs/luajit/LuaJIT-2.0.3/src/lj_ir.c')
-rw-r--r--Build/source/libs/luajit/LuaJIT-2.0.3/src/lj_ir.c501
1 files changed, 501 insertions, 0 deletions
diff --git a/Build/source/libs/luajit/LuaJIT-2.0.3/src/lj_ir.c b/Build/source/libs/luajit/LuaJIT-2.0.3/src/lj_ir.c
new file mode 100644
index 00000000000..b2170a10ebd
--- /dev/null
+++ b/Build/source/libs/luajit/LuaJIT-2.0.3/src/lj_ir.c
@@ -0,0 +1,501 @@
+/*
+** SSA IR (Intermediate Representation) emitter.
+** Copyright (C) 2005-2014 Mike Pall. See Copyright Notice in luajit.h
+*/
+
+#define lj_ir_c
+#define LUA_CORE
+
+/* For pointers to libc/libm functions. */
+#include <stdio.h>
+#include <math.h>
+
+#include "lj_obj.h"
+
+#if LJ_HASJIT
+
+#include "lj_gc.h"
+#include "lj_str.h"
+#include "lj_tab.h"
+#include "lj_ir.h"
+#include "lj_jit.h"
+#include "lj_ircall.h"
+#include "lj_iropt.h"
+#include "lj_trace.h"
+#if LJ_HASFFI
+#include "lj_ctype.h"
+#include "lj_cdata.h"
+#include "lj_carith.h"
+#endif
+#include "lj_vm.h"
+#include "lj_strscan.h"
+#include "lj_lib.h"
+
+/* Some local macros to save typing. Undef'd at the end. */
+#define IR(ref) (&J->cur.ir[(ref)])
+#define fins (&J->fold.ins)
+
+/* Pass IR on to next optimization in chain (FOLD). */
+#define emitir(ot, a, b) (lj_ir_set(J, (ot), (a), (b)), lj_opt_fold(J))
+
+/* -- IR tables ----------------------------------------------------------- */
+
+/* IR instruction modes. */
+LJ_DATADEF const uint8_t lj_ir_mode[IR__MAX+1] = {
+IRDEF(IRMODE)
+ 0
+};
+
+/* IR type sizes. */
+LJ_DATADEF const uint8_t lj_ir_type_size[IRT__MAX+1] = {
+#define IRTSIZE(name, size) size,
+IRTDEF(IRTSIZE)
+#undef IRTSIZE
+ 0
+};
+
+/* C call info for CALL* instructions. */
+LJ_DATADEF const CCallInfo lj_ir_callinfo[] = {
+#define IRCALLCI(cond, name, nargs, kind, type, flags) \
+ { (ASMFunction)IRCALLCOND_##cond(name), \
+ (nargs)|(CCI_CALL_##kind)|(IRT_##type<<CCI_OTSHIFT)|(flags) },
+IRCALLDEF(IRCALLCI)
+#undef IRCALLCI
+ { NULL, 0 }
+};
+
+/* -- IR emitter ---------------------------------------------------------- */
+
+/* Grow IR buffer at the top. */
+void LJ_FASTCALL lj_ir_growtop(jit_State *J)
+{
+ IRIns *baseir = J->irbuf + J->irbotlim;
+ MSize szins = J->irtoplim - J->irbotlim;
+ if (szins) {
+ baseir = (IRIns *)lj_mem_realloc(J->L, baseir, szins*sizeof(IRIns),
+ 2*szins*sizeof(IRIns));
+ J->irtoplim = J->irbotlim + 2*szins;
+ } else {
+ baseir = (IRIns *)lj_mem_realloc(J->L, NULL, 0, LJ_MIN_IRSZ*sizeof(IRIns));
+ J->irbotlim = REF_BASE - LJ_MIN_IRSZ/4;
+ J->irtoplim = J->irbotlim + LJ_MIN_IRSZ;
+ }
+ J->cur.ir = J->irbuf = baseir - J->irbotlim;
+}
+
+/* Grow IR buffer at the bottom or shift it up. */
+static void lj_ir_growbot(jit_State *J)
+{
+ IRIns *baseir = J->irbuf + J->irbotlim;
+ MSize szins = J->irtoplim - J->irbotlim;
+ lua_assert(szins != 0);
+ lua_assert(J->cur.nk == J->irbotlim);
+ if (J->cur.nins + (szins >> 1) < J->irtoplim) {
+ /* More than half of the buffer is free on top: shift up by a quarter. */
+ MSize ofs = szins >> 2;
+ memmove(baseir + ofs, baseir, (J->cur.nins - J->irbotlim)*sizeof(IRIns));
+ J->irbotlim -= ofs;
+ J->irtoplim -= ofs;
+ J->cur.ir = J->irbuf = baseir - J->irbotlim;
+ } else {
+ /* Double the buffer size, but split the growth amongst top/bottom. */
+ IRIns *newbase = lj_mem_newt(J->L, 2*szins*sizeof(IRIns), IRIns);
+ MSize ofs = szins >= 256 ? 128 : (szins >> 1); /* Limit bottom growth. */
+ memcpy(newbase + ofs, baseir, (J->cur.nins - J->irbotlim)*sizeof(IRIns));
+ lj_mem_free(G(J->L), baseir, szins*sizeof(IRIns));
+ J->irbotlim -= ofs;
+ J->irtoplim = J->irbotlim + 2*szins;
+ J->cur.ir = J->irbuf = newbase - J->irbotlim;
+ }
+}
+
+/* Emit IR without any optimizations. */
+TRef LJ_FASTCALL lj_ir_emit(jit_State *J)
+{
+ IRRef ref = lj_ir_nextins(J);
+ IRIns *ir = IR(ref);
+ IROp op = fins->o;
+ ir->prev = J->chain[op];
+ J->chain[op] = (IRRef1)ref;
+ ir->o = op;
+ ir->op1 = fins->op1;
+ ir->op2 = fins->op2;
+ J->guardemit.irt |= fins->t.irt;
+ return TREF(ref, irt_t((ir->t = fins->t)));
+}
+
+/* Emit call to a C function. */
+TRef lj_ir_call(jit_State *J, IRCallID id, ...)
+{
+ const CCallInfo *ci = &lj_ir_callinfo[id];
+ uint32_t n = CCI_NARGS(ci);
+ TRef tr = TREF_NIL;
+ va_list argp;
+ va_start(argp, id);
+ if ((ci->flags & CCI_L)) n--;
+ if (n > 0)
+ tr = va_arg(argp, IRRef);
+ while (n-- > 1)
+ tr = emitir(IRT(IR_CARG, IRT_NIL), tr, va_arg(argp, IRRef));
+ va_end(argp);
+ if (CCI_OP(ci) == IR_CALLS)
+ J->needsnap = 1; /* Need snapshot after call with side effect. */
+ return emitir(CCI_OPTYPE(ci), tr, id);
+}
+
+/* -- Interning of constants ---------------------------------------------- */
+
+/*
+** IR instructions for constants are kept between J->cur.nk >= ref < REF_BIAS.
+** They are chained like all other instructions, but grow downwards.
+** The are interned (like strings in the VM) to facilitate reference
+** comparisons. The same constant must get the same reference.
+*/
+
+/* Get ref of next IR constant and optionally grow IR.
+** Note: this may invalidate all IRIns *!
+*/
+static LJ_AINLINE IRRef ir_nextk(jit_State *J)
+{
+ IRRef ref = J->cur.nk;
+ if (LJ_UNLIKELY(ref <= J->irbotlim)) lj_ir_growbot(J);
+ J->cur.nk = --ref;
+ return ref;
+}
+
+/* Intern int32_t constant. */
+TRef LJ_FASTCALL lj_ir_kint(jit_State *J, int32_t k)
+{
+ IRIns *ir, *cir = J->cur.ir;
+ IRRef ref;
+ for (ref = J->chain[IR_KINT]; ref; ref = cir[ref].prev)
+ if (cir[ref].i == k)
+ goto found;
+ ref = ir_nextk(J);
+ ir = IR(ref);
+ ir->i = k;
+ ir->t.irt = IRT_INT;
+ ir->o = IR_KINT;
+ ir->prev = J->chain[IR_KINT];
+ J->chain[IR_KINT] = (IRRef1)ref;
+found:
+ return TREF(ref, IRT_INT);
+}
+
+/* The MRef inside the KNUM/KINT64 IR instructions holds the address of the
+** 64 bit constant. The constants themselves are stored in a chained array
+** and shared across traces.
+**
+** Rationale for choosing this data structure:
+** - The address of the constants is embedded in the generated machine code
+** and must never move. A resizable array or hash table wouldn't work.
+** - Most apps need very few non-32 bit integer constants (less than a dozen).
+** - Linear search is hard to beat in terms of speed and low complexity.
+*/
+typedef struct K64Array {
+ MRef next; /* Pointer to next list. */
+ MSize numk; /* Number of used elements in this array. */
+ TValue k[LJ_MIN_K64SZ]; /* Array of constants. */
+} K64Array;
+
+/* Free all chained arrays. */
+void lj_ir_k64_freeall(jit_State *J)
+{
+ K64Array *k;
+ for (k = mref(J->k64, K64Array); k; ) {
+ K64Array *next = mref(k->next, K64Array);
+ lj_mem_free(J2G(J), k, sizeof(K64Array));
+ k = next;
+ }
+}
+
+/* Find 64 bit constant in chained array or add it. */
+cTValue *lj_ir_k64_find(jit_State *J, uint64_t u64)
+{
+ K64Array *k, *kp = NULL;
+ TValue *ntv;
+ MSize idx;
+ /* Search for the constant in the whole chain of arrays. */
+ for (k = mref(J->k64, K64Array); k; k = mref(k->next, K64Array)) {
+ kp = k; /* Remember previous element in list. */
+ for (idx = 0; idx < k->numk; idx++) { /* Search one array. */
+ TValue *tv = &k->k[idx];
+ if (tv->u64 == u64) /* Needed for +-0/NaN/absmask. */
+ return tv;
+ }
+ }
+ /* Constant was not found, need to add it. */
+ if (!(kp && kp->numk < LJ_MIN_K64SZ)) { /* Allocate a new array. */
+ K64Array *kn = lj_mem_newt(J->L, sizeof(K64Array), K64Array);
+ setmref(kn->next, NULL);
+ kn->numk = 0;
+ if (kp)
+ setmref(kp->next, kn); /* Chain to the end of the list. */
+ else
+ setmref(J->k64, kn); /* Link first array. */
+ kp = kn;
+ }
+ ntv = &kp->k[kp->numk++]; /* Add to current array. */
+ ntv->u64 = u64;
+ return ntv;
+}
+
+/* Intern 64 bit constant, given by its address. */
+TRef lj_ir_k64(jit_State *J, IROp op, cTValue *tv)
+{
+ IRIns *ir, *cir = J->cur.ir;
+ IRRef ref;
+ IRType t = op == IR_KNUM ? IRT_NUM : IRT_I64;
+ for (ref = J->chain[op]; ref; ref = cir[ref].prev)
+ if (ir_k64(&cir[ref]) == tv)
+ goto found;
+ ref = ir_nextk(J);
+ ir = IR(ref);
+ lua_assert(checkptr32(tv));
+ setmref(ir->ptr, tv);
+ ir->t.irt = t;
+ ir->o = op;
+ ir->prev = J->chain[op];
+ J->chain[op] = (IRRef1)ref;
+found:
+ return TREF(ref, t);
+}
+
+/* Intern FP constant, given by its 64 bit pattern. */
+TRef lj_ir_knum_u64(jit_State *J, uint64_t u64)
+{
+ return lj_ir_k64(J, IR_KNUM, lj_ir_k64_find(J, u64));
+}
+
+/* Intern 64 bit integer constant. */
+TRef lj_ir_kint64(jit_State *J, uint64_t u64)
+{
+ return lj_ir_k64(J, IR_KINT64, lj_ir_k64_find(J, u64));
+}
+
+/* Check whether a number is int and return it. -0 is NOT considered an int. */
+static int numistrueint(lua_Number n, int32_t *kp)
+{
+ int32_t k = lj_num2int(n);
+ if (n == (lua_Number)k) {
+ if (kp) *kp = k;
+ if (k == 0) { /* Special check for -0. */
+ TValue tv;
+ setnumV(&tv, n);
+ if (tv.u32.hi != 0)
+ return 0;
+ }
+ return 1;
+ }
+ return 0;
+}
+
+/* Intern number as int32_t constant if possible, otherwise as FP constant. */
+TRef lj_ir_knumint(jit_State *J, lua_Number n)
+{
+ int32_t k;
+ if (numistrueint(n, &k))
+ return lj_ir_kint(J, k);
+ else
+ return lj_ir_knum(J, n);
+}
+
+/* Intern GC object "constant". */
+TRef lj_ir_kgc(jit_State *J, GCobj *o, IRType t)
+{
+ IRIns *ir, *cir = J->cur.ir;
+ IRRef ref;
+ lua_assert(!isdead(J2G(J), o));
+ for (ref = J->chain[IR_KGC]; ref; ref = cir[ref].prev)
+ if (ir_kgc(&cir[ref]) == o)
+ goto found;
+ ref = ir_nextk(J);
+ ir = IR(ref);
+ /* NOBARRIER: Current trace is a GC root. */
+ setgcref(ir->gcr, o);
+ ir->t.irt = (uint8_t)t;
+ ir->o = IR_KGC;
+ ir->prev = J->chain[IR_KGC];
+ J->chain[IR_KGC] = (IRRef1)ref;
+found:
+ return TREF(ref, t);
+}
+
+/* Intern 32 bit pointer constant. */
+TRef lj_ir_kptr_(jit_State *J, IROp op, void *ptr)
+{
+ IRIns *ir, *cir = J->cur.ir;
+ IRRef ref;
+ lua_assert((void *)(intptr_t)i32ptr(ptr) == ptr);
+ for (ref = J->chain[op]; ref; ref = cir[ref].prev)
+ if (mref(cir[ref].ptr, void) == ptr)
+ goto found;
+ ref = ir_nextk(J);
+ ir = IR(ref);
+ setmref(ir->ptr, ptr);
+ ir->t.irt = IRT_P32;
+ ir->o = op;
+ ir->prev = J->chain[op];
+ J->chain[op] = (IRRef1)ref;
+found:
+ return TREF(ref, IRT_P32);
+}
+
+/* Intern typed NULL constant. */
+TRef lj_ir_knull(jit_State *J, IRType t)
+{
+ IRIns *ir, *cir = J->cur.ir;
+ IRRef ref;
+ for (ref = J->chain[IR_KNULL]; ref; ref = cir[ref].prev)
+ if (irt_t(cir[ref].t) == t)
+ goto found;
+ ref = ir_nextk(J);
+ ir = IR(ref);
+ ir->i = 0;
+ ir->t.irt = (uint8_t)t;
+ ir->o = IR_KNULL;
+ ir->prev = J->chain[IR_KNULL];
+ J->chain[IR_KNULL] = (IRRef1)ref;
+found:
+ return TREF(ref, t);
+}
+
+/* Intern key slot. */
+TRef lj_ir_kslot(jit_State *J, TRef key, IRRef slot)
+{
+ IRIns *ir, *cir = J->cur.ir;
+ IRRef2 op12 = IRREF2((IRRef1)key, (IRRef1)slot);
+ IRRef ref;
+ /* Const part is not touched by CSE/DCE, so 0-65535 is ok for IRMlit here. */
+ lua_assert(tref_isk(key) && slot == (IRRef)(IRRef1)slot);
+ for (ref = J->chain[IR_KSLOT]; ref; ref = cir[ref].prev)
+ if (cir[ref].op12 == op12)
+ goto found;
+ ref = ir_nextk(J);
+ ir = IR(ref);
+ ir->op12 = op12;
+ ir->t.irt = IRT_P32;
+ ir->o = IR_KSLOT;
+ ir->prev = J->chain[IR_KSLOT];
+ J->chain[IR_KSLOT] = (IRRef1)ref;
+found:
+ return TREF(ref, IRT_P32);
+}
+
+/* -- Access to IR constants ---------------------------------------------- */
+
+/* Copy value of IR constant. */
+void lj_ir_kvalue(lua_State *L, TValue *tv, const IRIns *ir)
+{
+ UNUSED(L);
+ lua_assert(ir->o != IR_KSLOT); /* Common mistake. */
+ switch (ir->o) {
+ case IR_KPRI: setitype(tv, irt_toitype(ir->t)); break;
+ case IR_KINT: setintV(tv, ir->i); break;
+ case IR_KGC: setgcV(L, tv, ir_kgc(ir), irt_toitype(ir->t)); break;
+ case IR_KPTR: case IR_KKPTR: case IR_KNULL:
+ setlightudV(tv, mref(ir->ptr, void));
+ break;
+ case IR_KNUM: setnumV(tv, ir_knum(ir)->n); break;
+#if LJ_HASFFI
+ case IR_KINT64: {
+ GCcdata *cd = lj_cdata_new_(L, CTID_INT64, 8);
+ *(uint64_t *)cdataptr(cd) = ir_kint64(ir)->u64;
+ setcdataV(L, tv, cd);
+ break;
+ }
+#endif
+ default: lua_assert(0); break;
+ }
+}
+
+/* -- Convert IR operand types -------------------------------------------- */
+
+/* Convert from string to number. */
+TRef LJ_FASTCALL lj_ir_tonumber(jit_State *J, TRef tr)
+{
+ if (!tref_isnumber(tr)) {
+ if (tref_isstr(tr))
+ tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0);
+ else
+ lj_trace_err(J, LJ_TRERR_BADTYPE);
+ }
+ return tr;
+}
+
+/* Convert from integer or string to number. */
+TRef LJ_FASTCALL lj_ir_tonum(jit_State *J, TRef tr)
+{
+ if (!tref_isnum(tr)) {
+ if (tref_isinteger(tr))
+ tr = emitir(IRTN(IR_CONV), tr, IRCONV_NUM_INT);
+ else if (tref_isstr(tr))
+ tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0);
+ else
+ lj_trace_err(J, LJ_TRERR_BADTYPE);
+ }
+ return tr;
+}
+
+/* Convert from integer or number to string. */
+TRef LJ_FASTCALL lj_ir_tostr(jit_State *J, TRef tr)
+{
+ if (!tref_isstr(tr)) {
+ if (!tref_isnumber(tr))
+ lj_trace_err(J, LJ_TRERR_BADTYPE);
+ tr = emitir(IRT(IR_TOSTR, IRT_STR), tr, 0);
+ }
+ return tr;
+}
+
+/* -- Miscellaneous IR ops ------------------------------------------------ */
+
+/* Evaluate numeric comparison. */
+int lj_ir_numcmp(lua_Number a, lua_Number b, IROp op)
+{
+ switch (op) {
+ case IR_EQ: return (a == b);
+ case IR_NE: return (a != b);
+ case IR_LT: return (a < b);
+ case IR_GE: return (a >= b);
+ case IR_LE: return (a <= b);
+ case IR_GT: return (a > b);
+ case IR_ULT: return !(a >= b);
+ case IR_UGE: return !(a < b);
+ case IR_ULE: return !(a > b);
+ case IR_UGT: return !(a <= b);
+ default: lua_assert(0); return 0;
+ }
+}
+
+/* Evaluate string comparison. */
+int lj_ir_strcmp(GCstr *a, GCstr *b, IROp op)
+{
+ int res = lj_str_cmp(a, b);
+ switch (op) {
+ case IR_LT: return (res < 0);
+ case IR_GE: return (res >= 0);
+ case IR_LE: return (res <= 0);
+ case IR_GT: return (res > 0);
+ default: lua_assert(0); return 0;
+ }
+}
+
+/* Rollback IR to previous state. */
+void lj_ir_rollback(jit_State *J, IRRef ref)
+{
+ IRRef nins = J->cur.nins;
+ while (nins > ref) {
+ IRIns *ir;
+ nins--;
+ ir = IR(nins);
+ J->chain[ir->o] = ir->prev;
+ }
+ J->cur.nins = nins;
+}
+
+#undef IR
+#undef fins
+#undef emitir
+
+#endif