summaryrefslogtreecommitdiff
path: root/Build/source/libs/icu/icu-xetex/i18n/rematch.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'Build/source/libs/icu/icu-xetex/i18n/rematch.cpp')
-rw-r--r--Build/source/libs/icu/icu-xetex/i18n/rematch.cpp2299
1 files changed, 2299 insertions, 0 deletions
diff --git a/Build/source/libs/icu/icu-xetex/i18n/rematch.cpp b/Build/source/libs/icu/icu-xetex/i18n/rematch.cpp
new file mode 100644
index 00000000000..503303e7930
--- /dev/null
+++ b/Build/source/libs/icu/icu-xetex/i18n/rematch.cpp
@@ -0,0 +1,2299 @@
+/*
+**************************************************************************
+* Copyright (C) 2002-2007 International Business Machines Corporation *
+* and others. All rights reserved. *
+**************************************************************************
+*/
+//
+// file: rematch.cpp
+//
+// Contains the implementation of class RegexMatcher,
+// which is one of the main API classes for the ICU regular expression package.
+//
+
+#include "unicode/utypes.h"
+#if !UCONFIG_NO_REGULAR_EXPRESSIONS
+
+#include "unicode/regex.h"
+#include "unicode/uniset.h"
+#include "unicode/uchar.h"
+#include "unicode/ustring.h"
+#include "unicode/rbbi.h"
+#include "uassert.h"
+#include "cmemory.h"
+#include "uvector.h"
+#include "uvectr32.h"
+#include "regeximp.h"
+#include "regexst.h"
+
+// #include <malloc.h> // Needed for heapcheck testing
+
+U_NAMESPACE_BEGIN
+
+//-----------------------------------------------------------------------------
+//
+// Constructor and Destructor
+//
+//-----------------------------------------------------------------------------
+RegexMatcher::RegexMatcher(const RegexPattern *pat) {
+ fPattern = pat;
+ fPatternOwned = NULL;
+ fInput = NULL;
+ fTraceDebug = FALSE;
+ fDeferredStatus = U_ZERO_ERROR;
+ fStack = new UVector32(fDeferredStatus);
+ fData = fSmallData;
+ fWordBreakItr = NULL;
+ if (pat==NULL) {
+ fDeferredStatus = U_ILLEGAL_ARGUMENT_ERROR;
+ return;
+ }
+ if (pat->fDataSize > (int32_t)(sizeof(fSmallData)/sizeof(int32_t))) {
+ fData = (int32_t *)uprv_malloc(pat->fDataSize * sizeof(int32_t));
+ }
+ if (fStack == NULL || fData == NULL) {
+ fDeferredStatus = U_MEMORY_ALLOCATION_ERROR;
+ }
+
+ reset(RegexStaticSets::gStaticSets->fEmptyString);
+}
+
+
+
+RegexMatcher::RegexMatcher(const UnicodeString &regexp, const UnicodeString &input,
+ uint32_t flags, UErrorCode &status) {
+ UParseError pe;
+ fPatternOwned = RegexPattern::compile(regexp, flags, pe, status);
+ fPattern = fPatternOwned;
+ fTraceDebug = FALSE;
+ fDeferredStatus = U_ZERO_ERROR;
+ fStack = new UVector32(status);
+ fData = fSmallData;
+ fWordBreakItr = NULL;
+ if (U_FAILURE(status)) {
+ return;
+ }
+ if (fPattern->fDataSize > (int32_t)(sizeof(fSmallData)/sizeof(int32_t))) {
+ fData = (int32_t *)uprv_malloc(fPattern->fDataSize * sizeof(int32_t));
+ }
+ if (fStack == NULL || fData == NULL) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ }
+ reset(input);
+}
+
+
+RegexMatcher::RegexMatcher(const UnicodeString &regexp,
+ uint32_t flags, UErrorCode &status) {
+ UParseError pe;
+ fTraceDebug = FALSE;
+ fDeferredStatus = U_ZERO_ERROR;
+ fStack = new UVector32(status);
+ fData = fSmallData;
+ fPatternOwned = RegexPattern::compile(regexp, flags, pe, status);
+ fPattern = fPatternOwned;
+ fWordBreakItr = NULL;
+ if (U_FAILURE(status)) {
+ return;
+ }
+
+ if (fPattern->fDataSize > (int32_t)(sizeof(fSmallData)/sizeof(int32_t))) {
+ fData = (int32_t *)uprv_malloc(fPattern->fDataSize * sizeof(int32_t));
+ }
+ if (fStack == NULL || fData == NULL) {
+ status = U_MEMORY_ALLOCATION_ERROR;
+ }
+ reset(RegexStaticSets::gStaticSets->fEmptyString);
+}
+
+
+
+RegexMatcher::~RegexMatcher() {
+ delete fStack;
+ if (fData != fSmallData) {
+ uprv_free(fData);
+ fData = NULL;
+ }
+ if (fPatternOwned) {
+ delete fPatternOwned;
+ fPatternOwned = NULL;
+ fPattern = NULL;
+ }
+ #if UCONFIG_NO_BREAK_ITERATION==0
+ delete fWordBreakItr;
+ #endif
+}
+
+
+
+static const UChar BACKSLASH = 0x5c;
+static const UChar DOLLARSIGN = 0x24;
+//--------------------------------------------------------------------------------
+//
+// appendReplacement
+//
+//--------------------------------------------------------------------------------
+RegexMatcher &RegexMatcher::appendReplacement(UnicodeString &dest,
+ const UnicodeString &replacement,
+ UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return *this;
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return *this;
+ }
+ if (fMatch == FALSE) {
+ status = U_REGEX_INVALID_STATE;
+ return *this;
+ }
+
+ // Copy input string from the end of previous match to start of current match
+ int32_t len = fMatchStart-fLastReplaceEnd;
+ if (len > 0) {
+ dest.append(*fInput, fLastReplaceEnd, len);
+ }
+ fLastReplaceEnd = fMatchEnd;
+
+
+ // scan the replacement text, looking for substitutions ($n) and \escapes.
+ // TODO: optimize this loop by efficiently scanning for '$' or '\',
+ // move entire ranges not containing substitutions.
+ int32_t replLen = replacement.length();
+ int32_t replIdx = 0;
+ while (replIdx<replLen) {
+ UChar c = replacement.charAt(replIdx);
+ replIdx++;
+ if (c == BACKSLASH) {
+ // Backslash Escape. Copy the following char out without further checks.
+ // Note: Surrogate pairs don't need any special handling
+ // The second half wont be a '$' or a '\', and
+ // will move to the dest normally on the next
+ // loop iteration.
+ if (replIdx >= replLen) {
+ break;
+ }
+ c = replacement.charAt(replIdx);
+
+ if (c==0x55/*U*/ || c==0x75/*u*/) {
+ // We have a \udddd or \Udddddddd escape sequence.
+ UChar32 escapedChar = replacement.unescapeAt(replIdx);
+ if (escapedChar != (UChar32)0xFFFFFFFF) {
+ dest.append(escapedChar);
+ // TODO: Report errors for mal-formed \u escapes?
+ // As this is, the original sequence is output, which may be OK.
+ continue;
+ }
+ }
+
+ // Plain backslash escape. Just put out the escaped character.
+ dest.append(c);
+ replIdx++;
+ continue;
+ }
+
+ if (c != DOLLARSIGN) {
+ // Normal char, not a $. Copy it out without further checks.
+ dest.append(c);
+ continue;
+ }
+
+ // We've got a $. Pick up a capture group number if one follows.
+ // Consume at most the number of digits necessary for the largest capture
+ // number that is valid for this pattern.
+
+ int32_t numDigits = 0;
+ int32_t groupNum = 0;
+ UChar32 digitC;
+ for (;;) {
+ if (replIdx >= replLen) {
+ break;
+ }
+ digitC = replacement.char32At(replIdx);
+ if (u_isdigit(digitC) == FALSE) {
+ break;
+ }
+ replIdx = replacement.moveIndex32(replIdx, 1);
+ groupNum=groupNum*10 + u_charDigitValue(digitC);
+ numDigits++;
+ if (numDigits >= fPattern->fMaxCaptureDigits) {
+ break;
+ }
+ }
+
+
+ if (numDigits == 0) {
+ // The $ didn't introduce a group number at all.
+ // Treat it as just part of the substitution text.
+ dest.append(DOLLARSIGN);
+ continue;
+ }
+
+ // Finally, append the capture group data to the destination.
+ dest.append(group(groupNum, status));
+ if (U_FAILURE(status)) {
+ // Can fail if group number is out of range.
+ break;
+ }
+
+ }
+
+ return *this;
+}
+
+
+
+//--------------------------------------------------------------------------------
+//
+// appendTail Intended to be used in conjunction with appendReplacement()
+// To the destination string, append everything following
+// the last match position from the input string.
+//
+//--------------------------------------------------------------------------------
+UnicodeString &RegexMatcher::appendTail(UnicodeString &dest) {
+ int32_t len = fInput->length()-fMatchEnd;
+ if (len > 0) {
+ dest.append(*fInput, fMatchEnd, len);
+ }
+ return dest;
+}
+
+
+
+//--------------------------------------------------------------------------------
+//
+// end
+//
+//--------------------------------------------------------------------------------
+int32_t RegexMatcher::end(UErrorCode &err) const {
+ return end(0, err);
+}
+
+
+
+int32_t RegexMatcher::end(int32_t group, UErrorCode &err) const {
+ if (U_FAILURE(err)) {
+ return -1;
+ }
+ if (fMatch == FALSE) {
+ err = U_REGEX_INVALID_STATE;
+ return -1;
+ }
+ if (group < 0 || group > fPattern->fGroupMap->size()) {
+ err = U_INDEX_OUTOFBOUNDS_ERROR;
+ return -1;
+ }
+ int32_t e = -1;
+ if (group == 0) {
+ e = fMatchEnd;
+ } else {
+ // Get the position within the stack frame of the variables for
+ // this capture group.
+ int32_t groupOffset = fPattern->fGroupMap->elementAti(group-1);
+ U_ASSERT(groupOffset < fPattern->fFrameSize);
+ U_ASSERT(groupOffset >= 0);
+ e = fFrame->fExtra[groupOffset + 1];
+ }
+ return e;
+}
+
+
+
+//--------------------------------------------------------------------------------
+//
+// find()
+//
+//--------------------------------------------------------------------------------
+UBool RegexMatcher::find() {
+ // Start at the position of the last match end. (Will be zero if the
+ // matcher has been reset.
+ //
+ if (U_FAILURE(fDeferredStatus)) {
+ return FALSE;
+ }
+
+ int32_t startPos = fMatchEnd;
+
+ if (fMatch) {
+ // Save the position of any previous successful match.
+ fLastMatchEnd = fMatchEnd;
+
+ if (fMatchStart == fMatchEnd) {
+ // Previous match had zero length. Move start position up one position
+ // to avoid sending find() into a loop on zero-length matches.
+ if (startPos == fInput->length()) {
+ fMatch = FALSE;
+ return FALSE;
+ }
+ startPos = fInput->moveIndex32(startPos, 1);
+ }
+ } else {
+ if (fLastMatchEnd >= 0) {
+ // A previous find() failed to match. Don't try again.
+ // (without this test, a pattern with a zero-length match
+ // could match again at the end of an input string.)
+ return FALSE;
+ }
+ }
+
+ int32_t inputLen = fInput->length();
+
+ // Compute the position in the input string beyond which a match can not begin, because
+ // the minimum length match would extend past the end of the input.
+ int32_t testLen = inputLen - fPattern->fMinMatchLen;
+ if (startPos > testLen) {
+ fMatch = FALSE;
+ return FALSE;
+ }
+
+ const UChar *inputBuf = fInput->getBuffer();
+ UChar32 c;
+ U_ASSERT(startPos >= 0);
+
+ switch (fPattern->fStartType) {
+ case START_NO_INFO:
+ // No optimization was found.
+ // Try a match at each input position.
+ for (;;) {
+ MatchAt(startPos, fDeferredStatus);
+ if (U_FAILURE(fDeferredStatus)) {
+ return FALSE;
+ }
+ if (fMatch) {
+ return TRUE;
+ }
+ if (startPos >= testLen) {
+ return FALSE;
+ }
+ U16_FWD_1(inputBuf, startPos, inputLen);
+ // Note that it's perfectly OK for a pattern to have a zero-length
+ // match at the end of a string, so we must make sure that the loop
+ // runs with startPos == testLen the last time through.
+ }
+ U_ASSERT(FALSE);
+
+ case START_START:
+ // Matches are only possible at the start of the input string
+ // (pattern begins with ^ or \A)
+ if (startPos > 0) {
+ fMatch = FALSE;
+ return FALSE;
+ }
+ MatchAt(startPos, fDeferredStatus);
+ if (U_FAILURE(fDeferredStatus)) {
+ return FALSE;
+ }
+ return fMatch;
+
+
+ case START_SET:
+ {
+ // Match may start on any char from a pre-computed set.
+ U_ASSERT(fPattern->fMinMatchLen > 0);
+ for (;;) {
+ int32_t pos = startPos;
+ U16_NEXT(inputBuf, startPos, inputLen, c); // like c = inputBuf[startPos++];
+ if (c<256 && fPattern->fInitialChars8->contains(c) ||
+ c>=256 && fPattern->fInitialChars->contains(c)) {
+ MatchAt(pos, fDeferredStatus);
+ if (U_FAILURE(fDeferredStatus)) {
+ return FALSE;
+ }
+ if (fMatch) {
+ return TRUE;
+ }
+ }
+ if (pos >= testLen) {
+ fMatch = FALSE;
+ return FALSE;
+ }
+ }
+ }
+ U_ASSERT(FALSE);
+
+ case START_STRING:
+ case START_CHAR:
+ {
+ // Match starts on exactly one char.
+ U_ASSERT(fPattern->fMinMatchLen > 0);
+ UChar32 theChar = fPattern->fInitialChar;
+ for (;;) {
+ int32_t pos = startPos;
+ U16_NEXT(inputBuf, startPos, inputLen, c); // like c = inputBuf[startPos++];
+ if (c == theChar) {
+ MatchAt(pos, fDeferredStatus);
+ if (U_FAILURE(fDeferredStatus)) {
+ return FALSE;
+ }
+ if (fMatch) {
+ return TRUE;
+ }
+ }
+ if (pos >= testLen) {
+ fMatch = FALSE;
+ return FALSE;
+ }
+ }
+ }
+ U_ASSERT(FALSE);
+
+ case START_LINE:
+ {
+ UChar32 c;
+ if (startPos == 0) {
+ MatchAt(startPos, fDeferredStatus);
+ if (U_FAILURE(fDeferredStatus)) {
+ return FALSE;
+ }
+ if (fMatch) {
+ return TRUE;
+ }
+ U16_NEXT(inputBuf, startPos, inputLen, c); // like c = inputBuf[startPos++];
+ }
+
+ for (;;) {
+ c = inputBuf[startPos-1];
+ if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible
+ ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029 )) {
+ if (c == 0x0d && startPos < inputLen && inputBuf[startPos] == 0x0a) {
+ startPos++;
+ }
+ MatchAt(startPos, fDeferredStatus);
+ if (U_FAILURE(fDeferredStatus)) {
+ return FALSE;
+ }
+ if (fMatch) {
+ return TRUE;
+ }
+ }
+ if (startPos >= testLen) {
+ fMatch = FALSE;
+ return FALSE;
+ }
+ U16_NEXT(inputBuf, startPos, inputLen, c); // like c = inputBuf[startPos++];
+ // Note that it's perfectly OK for a pattern to have a zero-length
+ // match at the end of a string, so we must make sure that the loop
+ // runs with startPos == testLen the last time through.
+ }
+ }
+
+ default:
+ U_ASSERT(FALSE);
+ }
+
+ U_ASSERT(FALSE);
+ return FALSE;
+}
+
+
+
+UBool RegexMatcher::find(int32_t start, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return FALSE;
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return FALSE;
+ }
+ int32_t inputLen = fInput->length();
+ if (start < 0 || start > inputLen) {
+ status = U_INDEX_OUTOFBOUNDS_ERROR;
+ return FALSE;
+ }
+ this->reset();
+ fMatchEnd = start;
+ return find();
+}
+
+
+
+//--------------------------------------------------------------------------------
+//
+// group()
+//
+//--------------------------------------------------------------------------------
+UnicodeString RegexMatcher::group(UErrorCode &status) const {
+ return group(0, status);
+}
+
+
+
+UnicodeString RegexMatcher::group(int32_t groupNum, UErrorCode &status) const {
+ int32_t s = start(groupNum, status);
+ int32_t e = end(groupNum, status);
+
+ // Note: calling start() and end() above will do all necessary checking that
+ // the group number is OK and that a match exists. status will be set.
+ if (U_FAILURE(status)) {
+ return UnicodeString();
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return UnicodeString();
+ }
+
+ if (s < 0) {
+ // A capture group wasn't part of the match
+ return UnicodeString();
+ }
+ U_ASSERT(s <= e);
+ return UnicodeString(*fInput, s, e-s);
+}
+
+
+
+
+int32_t RegexMatcher::groupCount() const {
+ return fPattern->fGroupMap->size();
+}
+
+
+
+const UnicodeString &RegexMatcher::input() const {
+ return *fInput;
+}
+
+
+
+
+//--------------------------------------------------------------------------------
+//
+// lookingAt()
+//
+//--------------------------------------------------------------------------------
+UBool RegexMatcher::lookingAt(UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return FALSE;
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return FALSE;
+ }
+ reset();
+ MatchAt(0, status);
+ return fMatch;
+}
+
+
+UBool RegexMatcher::lookingAt(int32_t start, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return FALSE;
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return FALSE;
+ }
+ if (start < 0 || start > fInput->length()) {
+ status = U_INDEX_OUTOFBOUNDS_ERROR;
+ return FALSE;
+ }
+ reset();
+ MatchAt(start, status);
+ return fMatch;
+}
+
+
+
+//--------------------------------------------------------------------------------
+//
+// matches()
+//
+//--------------------------------------------------------------------------------
+UBool RegexMatcher::matches(UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return FALSE;
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return FALSE;
+ }
+ reset();
+ MatchAt(0, status);
+ UBool success = (fMatch && fMatchEnd==fInput->length());
+ return success;
+}
+
+
+UBool RegexMatcher::matches(int32_t start, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return FALSE;
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return FALSE;
+ }
+ if (start < 0 || start > fInput->length()) {
+ status = U_INDEX_OUTOFBOUNDS_ERROR;
+ return FALSE;
+ }
+ reset();
+ MatchAt(start, status);
+ UBool success = (fMatch && fMatchEnd==fInput->length());
+ return success;
+}
+
+
+
+const RegexPattern &RegexMatcher::pattern() const {
+ return *fPattern;
+}
+
+
+
+//--------------------------------------------------------------------------------
+//
+// replaceAll
+//
+//--------------------------------------------------------------------------------
+UnicodeString RegexMatcher::replaceAll(const UnicodeString &replacement, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return *fInput;
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return *fInput;
+ }
+ UnicodeString destString;
+ for (reset(); find(); ) {
+ appendReplacement(destString, replacement, status);
+ if (U_FAILURE(status)) {
+ break;
+ }
+ }
+ appendTail(destString);
+ return destString;
+}
+
+
+
+
+//--------------------------------------------------------------------------------
+//
+// replaceFirst
+//
+//--------------------------------------------------------------------------------
+UnicodeString RegexMatcher::replaceFirst(const UnicodeString &replacement, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return *fInput;
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return *fInput;
+ }
+
+ reset();
+ if (!find()) {
+ return *fInput;
+ }
+
+ UnicodeString destString;
+ appendReplacement(destString, replacement, status);
+ appendTail(destString);
+ return destString;
+}
+
+
+
+//--------------------------------------------------------------------------------
+//
+// reset
+//
+//--------------------------------------------------------------------------------
+RegexMatcher &RegexMatcher::reset() {
+ fMatchStart = 0;
+ fMatchEnd = 0;
+ fLastMatchEnd = -1;
+ fLastReplaceEnd = 0;
+ fMatch = FALSE;
+ resetStack();
+ return *this;
+}
+
+
+
+RegexMatcher &RegexMatcher::reset(const UnicodeString &input) {
+ fInput = &input;
+ reset();
+ if (fWordBreakItr != NULL) {
+ #if UCONFIG_NO_BREAK_ITERATION==0
+ fWordBreakItr->setText(input);
+ #endif
+ }
+ return *this;
+}
+
+/*RegexMatcher &RegexMatcher::reset(const UChar *) {
+ fDeferredStatus = U_INTERNAL_PROGRAM_ERROR;
+ return *this;
+}*/
+
+
+RegexMatcher &RegexMatcher::reset(int32_t position, UErrorCode &status) {
+ if (U_FAILURE(status)) {
+ return *this;
+ }
+ reset();
+ if (position < 0 || position >= fInput->length()) {
+ status = U_INDEX_OUTOFBOUNDS_ERROR;
+ return *this;
+ }
+ fMatchEnd = position;
+ return *this;
+}
+
+
+
+
+
+//--------------------------------------------------------------------------------
+//
+// setTrace
+//
+//--------------------------------------------------------------------------------
+void RegexMatcher::setTrace(UBool state) {
+ fTraceDebug = state;
+}
+
+
+
+//---------------------------------------------------------------------
+//
+// split
+//
+//---------------------------------------------------------------------
+int32_t RegexMatcher::split(const UnicodeString &input,
+ UnicodeString dest[],
+ int32_t destCapacity,
+ UErrorCode &status)
+{
+ //
+ // Check arguements for validity
+ //
+ if (U_FAILURE(status)) {
+ return 0;
+ };
+
+ if (destCapacity < 1) {
+ status = U_ILLEGAL_ARGUMENT_ERROR;
+ return 0;
+ }
+
+
+ //
+ // Reset for the input text
+ //
+ reset(input);
+ int32_t inputLen = input.length();
+ int32_t nextOutputStringStart = 0;
+ if (inputLen == 0) {
+ return 0;
+ }
+
+
+ //
+ // Loop through the input text, searching for the delimiter pattern
+ //
+ int32_t i;
+ int32_t numCaptureGroups = fPattern->fGroupMap->size();
+ for (i=0; ; i++) {
+ if (i>=destCapacity-1) {
+ // There is one or zero output string left.
+ // Fill the last output string with whatever is left from the input, then exit the loop.
+ // ( i will be == destCapicity if we filled the output array while processing
+ // capture groups of the delimiter expression, in which case we will discard the
+ // last capture group saved in favor of the unprocessed remainder of the
+ // input string.)
+ i = destCapacity-1;
+ int32_t remainingLength = inputLen-nextOutputStringStart;
+ if (remainingLength > 0) {
+ dest[i].setTo(input, nextOutputStringStart, remainingLength);
+ }
+ break;
+ }
+ if (find()) {
+ // We found another delimiter. Move everything from where we started looking
+ // up until the start of the delimiter into the next output string.
+ int32_t fieldLen = fMatchStart - nextOutputStringStart;
+ dest[i].setTo(input, nextOutputStringStart, fieldLen);
+ nextOutputStringStart = fMatchEnd;
+
+ // If the delimiter pattern has capturing parentheses, the captured
+ // text goes out into the next n destination strings.
+ int32_t groupNum;
+ for (groupNum=1; groupNum<=numCaptureGroups; groupNum++) {
+ if (i==destCapacity-1) {
+ break;
+ }
+ i++;
+ dest[i] = group(groupNum, status);
+ }
+
+ if (nextOutputStringStart == inputLen) {
+ // The delimiter was at the end of the string. We're done.
+ break;
+ }
+
+ }
+ else
+ {
+ // We ran off the end of the input while looking for the next delimiter.
+ // All the remaining text goes into the current output string.
+ dest[i].setTo(input, nextOutputStringStart, inputLen-nextOutputStringStart);
+ break;
+ }
+ }
+ return i+1;
+}
+
+
+
+//--------------------------------------------------------------------------------
+//
+// start
+//
+//--------------------------------------------------------------------------------
+int32_t RegexMatcher::start(UErrorCode &status) const {
+ return start(0, status);
+}
+
+
+
+
+int32_t RegexMatcher::start(int32_t group, UErrorCode &status) const {
+ if (U_FAILURE(status)) {
+ return -1;
+ }
+ if (U_FAILURE(fDeferredStatus)) {
+ status = fDeferredStatus;
+ return -1;
+ }
+ if (fMatch == FALSE) {
+ status = U_REGEX_INVALID_STATE;
+ return -1;
+ }
+ if (group < 0 || group > fPattern->fGroupMap->size()) {
+ status = U_INDEX_OUTOFBOUNDS_ERROR;
+ return -1;
+ }
+ int32_t s;
+ if (group == 0) {
+ s = fMatchStart;
+ } else {
+ int32_t groupOffset = fPattern->fGroupMap->elementAti(group-1);
+ U_ASSERT(groupOffset < fPattern->fFrameSize);
+ U_ASSERT(groupOffset >= 0);
+ s = fFrame->fExtra[groupOffset];
+ }
+ return s;
+}
+
+
+
+//================================================================================
+//
+// Code following this point in this file is the internal
+// Match Engine Implementation.
+//
+//================================================================================
+
+
+//--------------------------------------------------------------------------------
+//
+// resetStack
+// Discard any previous contents of the state save stack, and initialize a
+// new stack frame to all -1. The -1s are needed for capture group limits,
+// where they indicate that a group has not yet matched anything.
+//--------------------------------------------------------------------------------
+REStackFrame *RegexMatcher::resetStack() {
+ // Discard any previous contents of the state save stack, and initialize a
+ // new stack frame to all -1. The -1s are needed for capture group limits, where
+ // they indicate that a group has not yet matched anything.
+ fStack->removeAllElements();
+
+ int32_t *iFrame = fStack->reserveBlock(fPattern->fFrameSize, fDeferredStatus);
+ int32_t i;
+ for (i=0; i<fPattern->fFrameSize; i++) {
+ iFrame[i] = -1;
+ }
+ return (REStackFrame *)iFrame;
+}
+
+
+
+//--------------------------------------------------------------------------------
+//
+// isWordBoundary
+// in perl, "xab..cd..", \b is true at positions 0,3,5,7
+// For us,
+// If the current char is a combining mark,
+// \b is FALSE.
+// Else Scan backwards to the first non-combining char.
+// We are at a boundary if the this char and the original chars are
+// opposite in membership in \w set
+//
+// parameters: pos - the current position in the input buffer
+//
+//--------------------------------------------------------------------------------
+UBool RegexMatcher::isWordBoundary(int32_t pos) {
+ UBool isBoundary = FALSE;
+ UBool cIsWord = FALSE;
+
+ // Determine whether char c at current position is a member of the word set of chars.
+ // If we're off the end of the string, behave as though we're not at a word char.
+ if (pos < fInput->length()) {
+ UChar32 c = fInput->char32At(pos);
+ if (u_hasBinaryProperty(c, UCHAR_GRAPHEME_EXTEND) || u_charType(c) == U_FORMAT_CHAR) {
+ // Current char is a combining one. Not a boundary.
+ return FALSE;
+ }
+ cIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(c);
+ }
+
+ // Back up until we come to a non-combining char, determine whether
+ // that char is a word char.
+ UBool prevCIsWord = FALSE;
+ int32_t prevPos = pos;
+ for (;;) {
+ if (prevPos == 0) {
+ break;
+ }
+ prevPos = fInput->moveIndex32(prevPos, -1);
+ UChar32 prevChar = fInput->char32At(prevPos);
+ if (!(u_hasBinaryProperty(prevChar, UCHAR_GRAPHEME_EXTEND)
+ || u_charType(prevChar) == U_FORMAT_CHAR)) {
+ prevCIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(prevChar);
+ break;
+ }
+ }
+ isBoundary = cIsWord ^ prevCIsWord;
+ return isBoundary;
+}
+
+//--------------------------------------------------------------------------------
+//
+// isUWordBoundary
+//
+// Test for a word boundary using RBBI word break.
+//
+// parameters: pos - the current position in the input buffer
+//
+//--------------------------------------------------------------------------------
+UBool RegexMatcher::isUWordBoundary(int32_t pos) {
+ UBool returnVal = FALSE;
+#if UCONFIG_NO_BREAK_ITERATION==0
+ UErrorCode status = U_ZERO_ERROR;
+
+ // If we haven't yet created a break iterator for this matcher, do it now.
+ if (fWordBreakItr == NULL) {
+ fWordBreakItr =
+ (RuleBasedBreakIterator *)BreakIterator::createWordInstance(Locale::getEnglish(), status);
+ if (U_FAILURE(status)) {
+ // TODO: reliable error reporting for BI failures.
+ return FALSE;
+ }
+ fWordBreakItr->setText(*fInput);
+ }
+
+ returnVal = fWordBreakItr->isBoundary(pos);
+#endif
+ return returnVal;
+}
+
+//--------------------------------------------------------------------------------
+//
+// StateSave
+// Make a new stack frame, initialized as a copy of the current stack frame.
+// Set the pattern index in the original stack frame from the operand value
+// in the opcode. Execution of the engine continues with the state in
+// the newly created stack frame
+//
+// Note that reserveBlock() may grow the stack, resulting in the
+// whole thing being relocated in memory.
+//
+//--------------------------------------------------------------------------------
+inline REStackFrame *RegexMatcher::StateSave(REStackFrame *fp, int32_t savePatIdx, int32_t frameSize, UErrorCode &status) {
+ // push storage for a new frame.
+ int32_t *newFP = fStack->reserveBlock(frameSize, status);
+ fp = (REStackFrame *)(newFP - frameSize); // in case of realloc of stack.
+
+ // New stack frame = copy of old top frame.
+ int32_t *source = (int32_t *)fp;
+ int32_t *dest = newFP;
+ for (;;) {
+ *dest++ = *source++;
+ if (source == newFP) {
+ break;
+ }
+ }
+
+ fp->fPatIdx = savePatIdx;
+ return (REStackFrame *)newFP;
+}
+
+
+//--------------------------------------------------------------------------------
+//
+// MatchAt This is the actual matching engine.
+//
+//--------------------------------------------------------------------------------
+void RegexMatcher::MatchAt(int32_t startIdx, UErrorCode &status) {
+ UBool isMatch = FALSE; // True if the we have a match.
+
+ int32_t op; // Operation from the compiled pattern, split into
+ int32_t opType; // the opcode
+ int32_t opValue; // and the operand value.
+
+ #ifdef REGEX_RUN_DEBUG
+ if (fTraceDebug)
+ {
+ printf("MatchAt(startIdx=%d)\n", startIdx);
+ printf("Original Pattern: ");
+ int32_t i;
+ for (i=0; i<fPattern->fPattern.length(); i++) {
+ printf("%c", fPattern->fPattern.charAt(i));
+ }
+ printf("\n");
+ printf("Input String: ");
+ for (i=0; i<fInput->length(); i++) {
+ UChar c = fInput->charAt(i);
+ if (c<32 || c>256) {
+ c = '.';
+ }
+ printf("%c", c);
+ }
+ printf("\n");
+ printf("\n");
+ }
+ #endif
+
+ if (U_FAILURE(status)) {
+ return;
+ }
+
+ // Cache frequently referenced items from the compiled pattern
+ // in local variables.
+ //
+ int32_t *pat = fPattern->fCompiledPat->getBuffer();
+
+ const UChar *litText = fPattern->fLiteralText.getBuffer();
+ UVector *sets = fPattern->fSets;
+ int32_t inputLen = fInput->length();
+ const UChar *inputBuf = fInput->getBuffer();
+
+ REStackFrame *fp = resetStack();
+ int32_t frameSize = fPattern->fFrameSize;
+
+ fp->fPatIdx = 0;
+ fp->fInputIdx = startIdx;
+
+ // Zero out the pattern's static data
+ int32_t i;
+ for (i = 0; i<fPattern->fDataSize; i++) {
+ fData[i] = 0;
+ }
+
+ //
+ // Main loop for interpreting the compiled pattern.
+ // One iteration of the loop per pattern operation performed.
+ //
+ for (;;) {
+#if 0
+ if (_heapchk() != _HEAPOK) {
+ fprintf(stderr, "Heap Trouble\n");
+ }
+#endif
+ op = pat[fp->fPatIdx];
+ opType = URX_TYPE(op);
+ opValue = URX_VAL(op);
+ #ifdef REGEX_RUN_DEBUG
+ if (fTraceDebug) {
+ printf("inputIdx=%d inputChar=%c sp=%3d ", fp->fInputIdx,
+ fInput->char32At(fp->fInputIdx), (int32_t *)fp-fStack->getBuffer());
+ fPattern->dumpOp(fp->fPatIdx);
+ }
+ #endif
+ fp->fPatIdx++;
+
+ switch (opType) {
+
+
+ case URX_NOP:
+ break;
+
+
+ case URX_BACKTRACK:
+ // Force a backtrack. In some circumstances, the pattern compiler
+ // will notice that the pattern can't possibly match anything, and will
+ // emit one of these at that point.
+ fp = (REStackFrame *)fStack->popFrame(frameSize);
+ break;
+
+
+ case URX_ONECHAR:
+ if (fp->fInputIdx < inputLen) {
+ UChar32 c;
+ U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
+ if (c == opValue) {
+ break;
+ }
+ }
+ fp = (REStackFrame *)fStack->popFrame(frameSize);
+ break;
+
+
+ case URX_STRING:
+ {
+ // Test input against a literal string.
+ // Strings require two slots in the compiled pattern, one for the
+ // offset to the string text, and one for the length.
+ int32_t stringStartIdx = opValue;
+ int32_t stringLen;
+
+ op = pat[fp->fPatIdx]; // Fetch the second operand
+ fp->fPatIdx++;
+ opType = URX_TYPE(op);
+ stringLen = URX_VAL(op);
+ U_ASSERT(opType == URX_STRING_LEN);
+ U_ASSERT(stringLen >= 2);
+
+ if (fp->fInputIdx + stringLen > inputLen) {
+ // No match. String is longer than the remaining input text.
+ fp = (REStackFrame *)fStack->popFrame(frameSize);
+ break;
+ }
+
+ const UChar * pInp = inputBuf + fp->fInputIdx;
+ const UChar * pPat = litText+stringStartIdx;
+ const UChar * pEnd = pInp + stringLen;
+ for(;;) {
+ if (*pInp == *pPat) {
+ pInp++;
+ pPat++;
+ if (pInp == pEnd) {
+ // Successful Match.
+ fp->fInputIdx += stringLen;
+ break;
+ }
+ } else {
+ // Match failed.
+ fp = (REStackFrame *)fStack->popFrame(frameSize);
+ break;
+ }
+ }
+ }
+ break;
+
+
+
+ case URX_STATE_SAVE:
+ fp = StateSave(fp, opValue, frameSize, status);
+ break;
+
+
+ case URX_END:
+ // The match loop will exit via this path on a successful match,
+ // when we reach the end of the pattern.
+ isMatch = TRUE;
+ goto breakFromLoop;
+
+ // Start and End Capture stack frame variables are layout out like this:
+ // fp->fExtra[opValue] - The start of a completed capture group
+ // opValue+1 - The end of a completed capture group
+ // opValue+2 - the start of a capture group whose end
+ // has not yet been reached (and might not ever be).
+ case URX_START_CAPTURE:
+ U_ASSERT(opValue >= 0 && opValue < frameSize-3);
+ fp->fExtra[opValue+2] = fp->fInputIdx;
+ break;
+
+
+ case URX_END_CAPTURE:
+ U_ASSERT(opValue >= 0 && opValue < frameSize-3);
+ U_ASSERT(fp->fExtra[opValue+2] >= 0); // Start pos for this group must be set.
+ fp->fExtra[opValue] = fp->fExtra[opValue+2]; // Tentative start becomes real.
+ fp->fExtra[opValue+1] = fp->fInputIdx; // End position
+ U_ASSERT(fp->fExtra[opValue] <= fp->fExtra[opValue+1]);
+ break;
+
+
+ case URX_DOLLAR: // $, test for End of line
+ // or for position before new line at end of input
+ if (fp->fInputIdx < inputLen-2) {
+ // We are no where near the end of input. Fail.
+ fp = (REStackFrame *)fStack->popFrame(frameSize);
+ break;
+ }
+ if (fp->fInputIdx >= inputLen) {
+ // We really are at the end of input. Success.
+ break;
+ }
+ // If we are positioned just before a new-line that is located at the
+ // end of input, succeed.
+ if (fp->fInputIdx == inputLen-1) {
+ UChar32 c = fInput->char32At(fp->fInputIdx);
+ if ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029) {
+ // If not in the middle of a CR/LF sequence
+ if ( !(c==0x0a && fp->fInputIdx>0 && inputBuf[fp->fInputIdx-1]==0x0d)) {
+ break;
+ // At new-line at end of input. Success
+ }
+ }
+ }
+
+ if (fp->fInputIdx == inputLen-2) {
+ if (fInput->char32At(fp->fInputIdx) == 0x0d && fInput->char32At(fp->fInputIdx+1) == 0x0a) {
+ break; // At CR/LF at end of input. Success
+ }
+ }
+
+ fp = (REStackFrame *)fStack->popFrame(frameSize);
+
+ break;
+
+
+ case URX_DOLLAR_M: // $, test for End of line in multi-line mode
+ {
+ if (fp->fInputIdx >= inputLen) {
+ // We really are at the end of input. Success.
+ break;
+ }
+ // If we are positioned just before a new-line, succeed.
+ // It makes no difference where the new-line is within the input.
+ UChar32 c = inputBuf[fp->fInputIdx];
+ if ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029) {
+ // At a line end, except for the odd chance of being in the middle of a CR/LF sequence
+ if ( !(c==0x0a && fp->fInputIdx>0 && inputBuf[fp->fInputIdx-1]==0x0d)) {
+ break; // At new-line at end of input. Success
+ }
+ }
+
+ // not at a new line. Fail.
+ fp = (REStackFrame *)fStack->popFrame(frameSize);
+ }
+ break;
+
+
+ case URX_CARET: // ^, test for start of line
+ if (fp->fInputIdx != 0) {
+ fp = (REStackFrame *)fStack->popFrame(frameSize);
+ }
+ break;
+
+
+ case URX_CARET_M: // ^, test for start of line in mulit-line mode
+ {
+ if (fp->fInputIdx == 0) {
+ // We are at the start input. Success.
+ break;
+ }
+ // Check whether character just before the current pos is a new-line
+ // unless we are at the end of input
+ UChar c = inputBuf[fp->fInputIdx - 1];
+ if ((fp->fInputIdx < inputLen) &&
+ ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029)) {
+ // It's a new-line. ^ is true. Success.
+ break;
+ }
+ // Not at the start of a line. Fail.
+ fp = (REStackFrame *)fStack->popFrame(frameSize);
+ }
+ break;
+
+
+ case URX_BACKSLASH_B: // Test for word boundaries
+ {
+ UBool success = isWordBoundary(fp->fInputIdx);
+ success ^= (opValue != 0); // flip sense for \B
+ if (!success) {
+ fp = (REStackFrame *)fStack->popFrame(frameSize);
+ }
+ }
+ break;
+
+
+ case URX_BACKSLASH_BU: // Test for word boundaries, Unicode-style
+ {
+ UBool success = isUWordBoundary(fp->fInputIdx);
+ success ^= (opValue != 0); // flip sense for \B
+ if (!success) {
+ fp = (REStackFrame *)fStack->popFrame(frameSize);
+ }
+ }
+ break;
+
+
+ case URX_BACKSLASH_D: // Test for decimal digit
+ {
+ if (fp->fInputIdx >= inputLen) {
+ fp = (REStackFrame *)fStack->popFrame(frameSize);
+ break;
+ }
+
+ UChar32 c = fInput->char32At(fp->fInputIdx);
+ int8_t ctype = u_charType(c);
+ UBool success = (ctype == U_DECIMAL_DIGIT_NUMBER);
+ success ^= (opValue != 0); // flip sense for \D
+ if (success) {
+ fp->fInputIdx = fInput->moveIndex32(fp->fInputIdx, 1);
+ } else {
+ fp = (REStackFrame *)fStack->popFrame(frameSize);
+ }
+ }
+ break;
+
+
+
+
+ case URX_BACKSLASH_G: // Test for position at end of previous match
+ if (!((fMatch && fp->fInputIdx==fMatchEnd) || fMatch==FALSE && fp->fInputIdx==0)) {
+ fp = (REStackFrame *)fStack->popFrame(frameSize);
+ }
+ break;
+
+
+ case URX_BACKSLASH_X:
+ // Match a Grapheme, as defined by Unicode TR 29.
+ // Differs slightly from Perl, which consumes combining marks independently
+ // of context.
+ {
+
+ // Fail if at end of input
+ if (fp->fInputIdx >= inputLen) {
+ fp = (REStackFrame *)fStack->popFrame(frameSize);
+ break;
+ }
+
+ // Examine (and consume) the current char.
+ // Dispatch into a little state machine, based on the char.
+ UChar32 c;
+ U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
+ UnicodeSet **sets = fPattern->fStaticSets;
+ if (sets[URX_GC_NORMAL]->contains(c)) goto GC_Extend;
+ if (sets[URX_GC_CONTROL]->contains(c)) goto GC_Control;
+ if (sets[URX_GC_L]->contains(c)) goto GC_L;
+ if (sets[URX_GC_LV]->contains(c)) goto GC_V;
+ if (sets[URX_GC_LVT]->contains(c)) goto GC_T;
+ if (sets[URX_GC_V]->contains(c)) goto GC_V;
+ if (sets[URX_GC_T]->contains(c)) goto GC_T;
+ goto GC_Extend;
+
+
+
+GC_L:
+ if (fp->fInputIdx >= inputLen) goto GC_Done;
+ U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
+ if (sets[URX_GC_L]->contains(c)) goto GC_L;
+ if (sets[URX_GC_LV]->contains(c)) goto GC_V;
+ if (sets[URX_GC_LVT]->contains(c)) goto GC_T;
+ if (sets[URX_GC_V]->contains(c)) goto GC_V;
+ U16_PREV(inputBuf, 0, fp->fInputIdx, c);
+ goto GC_Extend;
+
+GC_V:
+ if (fp->fInputIdx >= inputLen) goto GC_Done;
+ U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
+ if (sets[URX_GC_V]->contains(c)) goto GC_V;
+ if (sets[URX_GC_T]->contains(c)) goto GC_T;
+ U16_PREV(inputBuf, 0, fp->fInputIdx, c);
+ goto GC_Extend;
+
+GC_T:
+ if (fp->fInputIdx >= inputLen) goto GC_Done;
+ U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
+ if (sets[URX_GC_T]->contains(c)) goto GC_T;
+ U16_PREV(inputBuf, 0, fp->fInputIdx, c);
+ goto GC_Extend;
+
+GC_Extend:
+ // Combining characters are consumed here
+ for (;;) {
+ if (fp->fInputIdx >= inputLen) {
+ break;
+ }
+ U16_GET(inputBuf, 0, fp->fInputIdx, inputLen, c);
+ if (sets[URX_GC_EXTEND]->contains(c) == FALSE) {
+ break;
+ }
+ U16_FWD_1(inputBuf, fp->fInputIdx, inputLen);
+ }
+ goto GC_Done;
+
+GC_Control:
+ // Most control chars stand alone (don't combine with combining chars),
+ // except for that CR/LF sequence is a single grapheme cluster.
+ if (c == 0x0d && fp->fInputIdx < inputLen && inputBuf[fp->fInputIdx] == 0x0a) {
+ fp->fInputIdx++;
+ }
+
+GC_Done:
+ break;
+ }
+
+
+
+
+ case URX_BACKSLASH_Z: // Test for end of line
+ if (fp->fInputIdx < inputLen) {
+ fp = (REStackFrame *)fStack->popFrame(frameSize);
+ }
+ break;
+
+
+
+ case URX_STATIC_SETREF:
+ {
+ // Test input character against one of the predefined sets
+ // (Word Characters, for example)
+ // The high bit of the op value is a flag for the match polarity.
+ // 0: success if input char is in set.
+ // 1: success if input char is not in set.
+ if (fp->fInputIdx >= inputLen) {
+ fp = (REStackFrame *)fStack->popFrame(frameSize);
+ break;
+ }
+
+ UBool success = ((opValue & URX_NEG_SET) == URX_NEG_SET);
+ opValue &= ~URX_NEG_SET;
+ U_ASSERT(opValue > 0 && opValue < URX_LAST_SET);
+ UChar32 c;
+ U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
+ if (c < 256) {
+ Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue];
+ if (s8->contains(c)) {
+ success = !success;
+ }
+ } else {
+ const UnicodeSet *s = fPattern->fStaticSets[opValue];
+ if (s->contains(c)) {
+ success = !success;
+ }
+ }
+ if (!success) {
+ fp = (REStackFrame *)fStack->popFrame(frameSize);
+ }
+ }
+ break;
+
+
+ case URX_STAT_SETREF_N:
+ {
+ // Test input character for NOT being a member of one of
+ // the predefined sets (Word Characters, for example)
+ if (fp->fInputIdx >= inputLen) {
+ fp = (REStackFrame *)fStack->popFrame(frameSize);
+ break;
+ }
+
+ U_ASSERT(opValue > 0 && opValue < URX_LAST_SET);
+ UChar32 c;
+ U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
+ if (c < 256) {
+ Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue];
+ if (s8->contains(c) == FALSE) {
+ break;
+ }
+ } else {
+ const UnicodeSet *s = fPattern->fStaticSets[opValue];
+ if (s->contains(c) == FALSE) {
+ break;
+ }
+ }
+
+ fp = (REStackFrame *)fStack->popFrame(frameSize);
+ }
+ break;
+
+
+ case URX_SETREF:
+ if (fp->fInputIdx < inputLen) {
+ // There is input left. Pick up one char and test it for set membership.
+ UChar32 c;
+ U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
+ U_ASSERT(opValue > 0 && opValue < sets->size());
+ if (c<256) {
+ Regex8BitSet *s8 = &fPattern->fSets8[opValue];
+ if (s8->contains(c)) {
+ break;
+ }
+ } else {
+
+ UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue);
+ if (s->contains(c)) {
+ // The character is in the set. A Match.
+ break;
+ }
+ }
+ }
+ // Either at end of input, or the character wasn't in the set.
+ // Either way, we need to back track out.
+ fp = (REStackFrame *)fStack->popFrame(frameSize);
+ break;
+
+
+ case URX_DOTANY:
+ {
+ // . matches anything, but stops at end-of-line.
+ if (fp->fInputIdx >= inputLen) {
+ // At end of input. Match failed. Backtrack out.
+ fp = (REStackFrame *)fStack->popFrame(frameSize);
+ break;
+ }
+ // There is input left. Advance over one char, unless we've hit end-of-line
+ UChar32 c;
+ U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
+ if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible
+ ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029)) {
+ // End of line in normal mode. . does not match.
+ fp = (REStackFrame *)fStack->popFrame(frameSize);
+ break;
+ }
+ }
+ break;
+
+
+ case URX_DOTANY_ALL:
+ {
+ // ., in dot-matches-all (including new lines) mode
+ if (fp->fInputIdx >= inputLen) {
+ // At end of input. Match failed. Backtrack out.
+ fp = (REStackFrame *)fStack->popFrame(frameSize);
+ break;
+ }
+ // There is input left. Advance over one char, except if we are
+ // at a cr/lf, advance over both of them.
+ UChar32 c;
+ U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
+ if (c==0x0d) {
+ // In the case of a CR/LF, we need to advance over both.
+ UChar nextc = inputBuf[fp->fInputIdx];
+ if (nextc == 0x0a) {
+ fp->fInputIdx++;
+ }
+ }
+ }
+ break;
+
+ case URX_DOTANY_PL:
+ // Match all up to and end-of-line or end-of-input.
+ {
+ // Fail if input already exhausted.
+ if (fp->fInputIdx >= inputLen) {
+ fp = (REStackFrame *)fStack->popFrame(frameSize);
+ break;
+ }
+
+ // There is input left. Fail if we are at the end of a line.
+ UChar32 c;
+ U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
+ if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible
+ ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029)) {
+ // End of line in normal mode. . does not match.
+ fp = (REStackFrame *)fStack->popFrame(frameSize);
+ break;
+ }
+
+ // There was input left. Consume it until we hit the end of a line,
+ // or until it's exhausted.
+ while (fp->fInputIdx < inputLen) {
+ U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
+ if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible
+ ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029)) {
+ U16_BACK_1(inputBuf, 0, fp->fInputIdx)
+ // Scan has reached a line-end. We are done.
+ break;
+ }
+ }
+ }
+ break;
+
+ case URX_DOTANY_ALL_PL:
+ {
+ // Match up to end of input. Fail if already at end of input.
+ if (fp->fInputIdx >= inputLen) {
+ fp = (REStackFrame *)fStack->popFrame(frameSize);
+ } else {
+ fp->fInputIdx = inputLen;
+ }
+ }
+ break;
+
+
+ case URX_JMP:
+ fp->fPatIdx = opValue;
+ break;
+
+ case URX_FAIL:
+ isMatch = FALSE;
+ goto breakFromLoop;
+
+ case URX_JMP_SAV:
+ U_ASSERT(opValue < fPattern->fCompiledPat->size());
+ fp = StateSave(fp, fp->fPatIdx, frameSize, status); // State save to loc following current
+ fp->fPatIdx = opValue; // Then JMP.
+ break;
+
+ case URX_JMP_SAV_X:
+ // This opcode is used with (x)+, when x can match a zero length string.
+ // Same as JMP_SAV, except conditional on the match having made forward progress.
+ // Destination of the JMP must be a URX_STO_INP_LOC, from which we get the
+ // data address of the input position at the start of the loop.
+ {
+ U_ASSERT(opValue > 0 && opValue < fPattern->fCompiledPat->size());
+ int32_t stoOp = pat[opValue-1];
+ U_ASSERT(URX_TYPE(stoOp) == URX_STO_INP_LOC);
+ int32_t frameLoc = URX_VAL(stoOp);
+ U_ASSERT(frameLoc >= 0 && frameLoc < frameSize);
+ int32_t prevInputIdx = fp->fExtra[frameLoc];
+ U_ASSERT(prevInputIdx <= fp->fInputIdx);
+ if (prevInputIdx < fp->fInputIdx) {
+ // The match did make progress. Repeat the loop.
+ fp = StateSave(fp, fp->fPatIdx, frameSize, status); // State save to loc following current
+ fp->fPatIdx = opValue;
+ fp->fExtra[frameLoc] = fp->fInputIdx;
+ }
+ // If the input position did not advance, we do nothing here,
+ // execution will fall out of the loop.
+ }
+ break;
+
+ case URX_CTR_INIT:
+ {
+ U_ASSERT(opValue >= 0 && opValue < frameSize-2);
+ fp->fExtra[opValue] = 0; // Set the loop counter variable to zero
+
+ // Pick up the three extra operands that CTR_INIT has, and
+ // skip the pattern location counter past
+ int32_t instrOperandLoc = fp->fPatIdx;
+ fp->fPatIdx += 3;
+ int32_t loopLoc = URX_VAL(pat[instrOperandLoc]);
+ int32_t minCount = pat[instrOperandLoc+1];
+ int32_t maxCount = pat[instrOperandLoc+2];
+ U_ASSERT(minCount>=0);
+ U_ASSERT(maxCount>=minCount || maxCount==-1);
+ U_ASSERT(loopLoc>fp->fPatIdx);
+
+ if (minCount == 0) {
+ fp = StateSave(fp, loopLoc+1, frameSize, status);
+ }
+ if (maxCount == 0) {
+ fp = (REStackFrame *)fStack->popFrame(frameSize);
+ }
+ }
+ break;
+
+ case URX_CTR_LOOP:
+ {
+ U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2);
+ int32_t initOp = pat[opValue];
+ U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT);
+ int32_t *pCounter = &fp->fExtra[URX_VAL(initOp)];
+ int32_t minCount = pat[opValue+2];
+ int32_t maxCount = pat[opValue+3];
+ // Increment the counter. Note: we're not worrying about counter
+ // overflow, since the data comes from UnicodeStrings, which
+ // stores its length in an int32_t.
+ (*pCounter)++;
+ U_ASSERT(*pCounter > 0);
+ if ((uint32_t)*pCounter >= (uint32_t)maxCount) {
+ U_ASSERT(*pCounter == maxCount || maxCount == -1);
+ break;
+ }
+ if (*pCounter >= minCount) {
+ fp = StateSave(fp, fp->fPatIdx, frameSize, status);
+ }
+ fp->fPatIdx = opValue + 4; // Loop back.
+ }
+ break;
+
+ case URX_CTR_INIT_NG:
+ {
+ U_ASSERT(opValue >= 0 && opValue < frameSize-2);
+ fp->fExtra[opValue] = 0; // Set the loop counter variable to zero
+
+ // Pick up the three extra operands that CTR_INIT has, and
+ // skip the pattern location counter past
+ int32_t instrOperandLoc = fp->fPatIdx;
+ fp->fPatIdx += 3;
+ int32_t loopLoc = URX_VAL(pat[instrOperandLoc]);
+ int32_t minCount = pat[instrOperandLoc+1];
+ int32_t maxCount = pat[instrOperandLoc+2];
+ U_ASSERT(minCount>=0);
+ U_ASSERT(maxCount>=minCount || maxCount==-1);
+ U_ASSERT(loopLoc>fp->fPatIdx);
+
+ if (minCount == 0) {
+ if (maxCount != 0) {
+ fp = StateSave(fp, fp->fPatIdx, frameSize, status);
+ }
+ fp->fPatIdx = loopLoc+1; // Continue with stuff after repeated block
+ }
+ }
+ break;
+
+ case URX_CTR_LOOP_NG:
+ {
+ U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2);
+ int32_t initOp = pat[opValue];
+ U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT_NG);
+ int32_t *pCounter = &fp->fExtra[URX_VAL(initOp)];
+ int32_t minCount = pat[opValue+2];
+ int32_t maxCount = pat[opValue+3];
+ // Increment the counter. Note: we're not worrying about counter
+ // overflow, since the data comes from UnicodeStrings, which
+ // stores its length in an int32_t.
+ (*pCounter)++;
+ U_ASSERT(*pCounter > 0);
+
+ if ((uint32_t)*pCounter >= (uint32_t)maxCount) {
+ // The loop has matched the maximum permitted number of times.
+ // Break out of here with no action. Matching will
+ // continue with the following pattern.
+ U_ASSERT(*pCounter == maxCount || maxCount == -1);
+ break;
+ }
+
+ if (*pCounter < minCount) {
+ // We haven't met the minimum number of matches yet.
+ // Loop back for another one.
+ fp->fPatIdx = opValue + 4; // Loop back.
+ } else {
+ // We do have the minimum number of matches.
+ // Fall into the following pattern, but first do
+ // a state save to the top of the loop, so that a failure
+ // in the following pattern will try another iteration of the loop.
+ fp = StateSave(fp, opValue + 4, frameSize, status);
+ }
+ }
+ break;
+
+ // TODO: Possessive flavor of loop ops, or take them out if no longer needed.
+
+ case URX_STO_SP:
+ U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize);
+ fData[opValue] = fStack->size();
+ break;
+
+ case URX_LD_SP:
+ {
+ U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize);
+ int32_t newStackSize = fData[opValue];
+ U_ASSERT(newStackSize <= fStack->size());
+ int32_t *newFP = fStack->getBuffer() + newStackSize - frameSize;
+ if (newFP == (int32_t *)fp) {
+ break;
+ }
+ int32_t i;
+ for (i=0; i<frameSize; i++) {
+ newFP[i] = ((int32_t *)fp)[i];
+ }
+ fp = (REStackFrame *)newFP;
+ fStack->setSize(newStackSize);
+ }
+ break;
+
+ case URX_BACKREF:
+ case URX_BACKREF_I:
+ {
+ U_ASSERT(opValue < frameSize);
+ int32_t groupStartIdx = fp->fExtra[opValue];
+ int32_t groupEndIdx = fp->fExtra[opValue+1];
+ U_ASSERT(groupStartIdx <= groupEndIdx);
+ int32_t len = groupEndIdx-groupStartIdx;
+ if (groupStartIdx < 0) {
+ // This capture group has not participated in the match thus far,
+ fp = (REStackFrame *)fStack->popFrame(frameSize); // FAIL, no match.
+ }
+
+ if (len == 0) {
+ // The capture group match was of an empty string.
+ // Verified by testing: Perl matches succeed in this case, so
+ // we do too.
+ break;
+ }
+
+ UBool haveMatch = FALSE;
+ if (fp->fInputIdx + len <= inputLen) {
+ if (opType == URX_BACKREF) {
+ if (u_strncmp(inputBuf+groupStartIdx, inputBuf+fp->fInputIdx, len) == 0) {
+ haveMatch = TRUE;
+ }
+ } else {
+ if (u_strncasecmp(inputBuf+groupStartIdx, inputBuf+fp->fInputIdx,
+ len, U_FOLD_CASE_DEFAULT) == 0) {
+ haveMatch = TRUE;
+ }
+ }
+ }
+ if (haveMatch) {
+ fp->fInputIdx += len; // Match. Advance current input position.
+ } else {
+ fp = (REStackFrame *)fStack->popFrame(frameSize); // FAIL, no match.
+ }
+ }
+ break;
+
+ case URX_STO_INP_LOC:
+ {
+ U_ASSERT(opValue >= 0 && opValue < frameSize);
+ fp->fExtra[opValue] = fp->fInputIdx;
+ }
+ break;
+
+ case URX_JMPX:
+ {
+ int32_t instrOperandLoc = fp->fPatIdx;
+ fp->fPatIdx += 1;
+ int32_t dataLoc = URX_VAL(pat[instrOperandLoc]);
+ U_ASSERT(dataLoc >= 0 && dataLoc < frameSize);
+ int32_t savedInputIdx = fp->fExtra[dataLoc];
+ U_ASSERT(savedInputIdx <= fp->fInputIdx);
+ if (savedInputIdx < fp->fInputIdx) {
+ fp->fPatIdx = opValue; // JMP
+ } else {
+ fp = (REStackFrame *)fStack->popFrame(frameSize); // FAIL, no progress in loop.
+ }
+ }
+ break;
+
+ case URX_LA_START:
+ {
+ // Entering a lookahead block.
+ // Save Stack Ptr, Input Pos.
+ U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
+ fData[opValue] = fStack->size();
+ fData[opValue+1] = fp->fInputIdx;
+ }
+ break;
+
+ case URX_LA_END:
+ {
+ // Leaving a look-ahead block.
+ // restore Stack Ptr, Input Pos to positions they had on entry to block.
+ U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
+ int32_t stackSize = fStack->size();
+ int32_t newStackSize = fData[opValue];
+ U_ASSERT(stackSize >= newStackSize);
+ if (stackSize > newStackSize) {
+ int32_t *newFP = fStack->getBuffer() + newStackSize - frameSize;
+ int32_t i;
+ for (i=0; i<frameSize; i++) {
+ newFP[i] = ((int32_t *)fp)[i];
+ }
+ fp = (REStackFrame *)newFP;
+ fStack->setSize(newStackSize);
+ }
+ fp->fInputIdx = fData[opValue+1];
+ }
+ break;
+
+ case URX_ONECHAR_I:
+ if (fp->fInputIdx < inputLen) {
+ UChar32 c;
+ U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
+ if (u_foldCase(c, U_FOLD_CASE_DEFAULT) == opValue) {
+ break;
+ }
+ }
+ fp = (REStackFrame *)fStack->popFrame(frameSize);
+ break;
+
+ case URX_STRING_I:
+ {
+ // Test input against a literal string.
+ // Strings require two slots in the compiled pattern, one for the
+ // offset to the string text, and one for the length.
+ int32_t stringStartIdx, stringLen;
+ stringStartIdx = opValue;
+
+ op = pat[fp->fPatIdx];
+ fp->fPatIdx++;
+ opType = URX_TYPE(op);
+ opValue = URX_VAL(op);
+ U_ASSERT(opType == URX_STRING_LEN);
+ stringLen = opValue;
+
+ int32_t stringEndIndex = fp->fInputIdx + stringLen;
+ if (stringEndIndex <= inputLen) {
+ if (u_strncasecmp(inputBuf+fp->fInputIdx, litText+stringStartIdx,
+ stringLen, U_FOLD_CASE_DEFAULT) == 0) {
+ // Success. Advance the current input position.
+ fp->fInputIdx = stringEndIndex;
+ break;
+ }
+ }
+ // No match. Back up matching to a saved state
+ fp = (REStackFrame *)fStack->popFrame(frameSize);
+ }
+ break;
+
+ case URX_LB_START:
+ {
+ // Entering a look-behind block.
+ // Save Stack Ptr, Input Pos.
+ U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
+ fData[opValue] = fStack->size();
+ fData[opValue+1] = fp->fInputIdx;
+ // Init the variable containing the start index for attempted matches.
+ fData[opValue+2] = -1;
+ // Save input string length, then reset to pin any matches to end at
+ // the current position.
+ fData[opValue+3] = inputLen;
+ inputLen = fp->fInputIdx;
+ }
+ break;
+
+
+ case URX_LB_CONT:
+ {
+ // Positive Look-Behind, at top of loop checking for matches of LB expression
+ // at all possible input starting positions.
+
+ // Fetch the min and max possible match lengths. They are the operands
+ // of this op in the pattern.
+ int32_t minML = pat[fp->fPatIdx++];
+ int32_t maxML = pat[fp->fPatIdx++];
+ U_ASSERT(minML <= maxML);
+ U_ASSERT(minML >= 0);
+
+ // Fetch (from data) the last input index where a match was attempted.
+ U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
+ int32_t *lbStartIdx = &fData[opValue+2];
+ if (*lbStartIdx < 0) {
+ // First time through loop.
+ *lbStartIdx = fp->fInputIdx - minML;
+ } else {
+ // 2nd through nth time through the loop.
+ // Back up start position for match by one.
+ if (*lbStartIdx == 0) {
+ (*lbStartIdx)--; // Because U16_BACK is unsafe starting at 0.
+ } else {
+ U16_BACK_1(inputBuf, 0, *lbStartIdx);
+ }
+ }
+
+ if (*lbStartIdx < 0 || *lbStartIdx < fp->fInputIdx - maxML) {
+ // We have tried all potential match starting points without
+ // getting a match. Backtrack out, and out of the
+ // Look Behind altogether.
+ fp = (REStackFrame *)fStack->popFrame(frameSize);
+ int32_t restoreInputLen = fData[opValue+3];
+ U_ASSERT(restoreInputLen >= inputLen);
+ U_ASSERT(restoreInputLen <= fInput->length());
+ inputLen = restoreInputLen;
+ break;
+ }
+
+ // Save state to this URX_LB_CONT op, so failure to match will repeat the loop.
+ // (successful match will fall off the end of the loop.)
+ fp = StateSave(fp, fp->fPatIdx-3, frameSize, status);
+ fp->fInputIdx = *lbStartIdx;
+ }
+ break;
+
+ case URX_LB_END:
+ // End of a look-behind block, after a successful match.
+ {
+ U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
+ if (fp->fInputIdx != inputLen) {
+ // The look-behind expression matched, but the match did not
+ // extend all the way to the point that we are looking behind from.
+ // FAIL out of here, which will take us back to the LB_CONT, which
+ // will retry the match starting at another position or fail
+ // the look-behind altogether, whichever is appropriate.
+ fp = (REStackFrame *)fStack->popFrame(frameSize);
+ break;
+ }
+
+ // Look-behind match is good. Restore the orignal input string length,
+ // which had been truncated to pin the end of the lookbehind match to the
+ // position being looked-behind.
+ int32_t originalInputLen = fData[opValue+3];
+ U_ASSERT(originalInputLen >= inputLen);
+ U_ASSERT(originalInputLen <= fInput->length());
+ inputLen = originalInputLen;
+ }
+ break;
+
+
+ case URX_LBN_CONT:
+ {
+ // Negative Look-Behind, at top of loop checking for matches of LB expression
+ // at all possible input starting positions.
+
+ // Fetch the extra parameters of this op.
+ int32_t minML = pat[fp->fPatIdx++];
+ int32_t maxML = pat[fp->fPatIdx++];
+ int32_t continueLoc = pat[fp->fPatIdx++];
+ continueLoc = URX_VAL(continueLoc);
+ U_ASSERT(minML <= maxML);
+ U_ASSERT(minML >= 0);
+ U_ASSERT(continueLoc > fp->fPatIdx);
+
+ // Fetch (from data) the last input index where a match was attempted.
+ U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
+ int32_t *lbStartIdx = &fData[opValue+2];
+ if (*lbStartIdx < 0) {
+ // First time through loop.
+ *lbStartIdx = fp->fInputIdx - minML;
+ } else {
+ // 2nd through nth time through the loop.
+ // Back up start position for match by one.
+ if (*lbStartIdx == 0) {
+ (*lbStartIdx)--; // Because U16_BACK is unsafe starting at 0.
+ } else {
+ U16_BACK_1(inputBuf, 0, *lbStartIdx);
+ }
+ }
+
+ if (*lbStartIdx < 0 || *lbStartIdx < fp->fInputIdx - maxML) {
+ // We have tried all potential match starting points without
+ // getting a match, which means that the negative lookbehind as
+ // a whole has succeeded. Jump forward to the continue location
+ int32_t restoreInputLen = fData[opValue+3];
+ U_ASSERT(restoreInputLen >= inputLen);
+ U_ASSERT(restoreInputLen <= fInput->length());
+ inputLen = restoreInputLen;
+ fp->fPatIdx = continueLoc;
+ break;
+ }
+
+ // Save state to this URX_LB_CONT op, so failure to match will repeat the loop.
+ // (successful match will cause a FAIL out of the loop altogether.)
+ fp = StateSave(fp, fp->fPatIdx-4, frameSize, status);
+ fp->fInputIdx = *lbStartIdx;
+ }
+ break;
+
+ case URX_LBN_END:
+ // End of a negative look-behind block, after a successful match.
+ {
+ U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
+ if (fp->fInputIdx != inputLen) {
+ // The look-behind expression matched, but the match did not
+ // extend all the way to the point that we are looking behind from.
+ // FAIL out of here, which will take us back to the LB_CONT, which
+ // will retry the match starting at another position or succeed
+ // the look-behind altogether, whichever is appropriate.
+ fp = (REStackFrame *)fStack->popFrame(frameSize);
+ break;
+ }
+
+ // Look-behind expression matched, which means look-behind test as
+ // a whole Fails
+
+ // Restore the orignal input string length, which had been truncated
+ // inorder to pin the end of the lookbehind match
+ // to the position being looked-behind.
+ int32_t originalInputLen = fData[opValue+3];
+ U_ASSERT(originalInputLen >= inputLen);
+ U_ASSERT(originalInputLen <= fInput->length());
+ inputLen = originalInputLen;
+
+ // Restore original stack position, discarding any state saved
+ // by the successful pattern match.
+ U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
+ int32_t newStackSize = fData[opValue];
+ U_ASSERT(fStack->size() > newStackSize);
+ fStack->setSize(newStackSize);
+
+ // FAIL, which will take control back to someplace
+ // prior to entering the look-behind test.
+ fp = (REStackFrame *)fStack->popFrame(frameSize);
+ }
+ break;
+
+
+ case URX_LOOP_SR_I:
+ // Loop Initialization for the optimized implementation of
+ // [some character set]*
+ // This op scans through all matching input.
+ // The following LOOP_C op emulates stack unwinding if the following pattern fails.
+ {
+ U_ASSERT(opValue > 0 && opValue < sets->size());
+ Regex8BitSet *s8 = &fPattern->fSets8[opValue];
+ UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue);
+
+ // Loop through input, until either the input is exhausted or
+ // we reach a character that is not a member of the set.
+ int32_t ix = fp->fInputIdx;
+ for (;;) {
+ if (ix >= inputLen) {
+ break;
+ }
+ UChar32 c;
+ U16_NEXT(inputBuf, ix, inputLen, c);
+ if (c<256) {
+ if (s8->contains(c) == FALSE) {
+ U16_BACK_1(inputBuf, 0, ix);
+ break;
+ }
+ } else {
+ if (s->contains(c) == FALSE) {
+ U16_BACK_1(inputBuf, 0, ix);
+ break;
+ }
+ }
+ }
+
+ // If there were no matching characters, skip over the loop altogether.
+ // The loop doesn't run at all, a * op always succeeds.
+ if (ix == fp->fInputIdx) {
+ fp->fPatIdx++; // skip the URX_LOOP_C op.
+ break;
+ }
+
+ // Peek ahead in the compiled pattern, to the URX_LOOP_C that
+ // must follow. It's operand is the stack location
+ // that holds the starting input index for the match of this [set]*
+ int32_t loopcOp = pat[fp->fPatIdx];
+ U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C);
+ int32_t stackLoc = URX_VAL(loopcOp);
+ U_ASSERT(stackLoc >= 0 && stackLoc < frameSize);
+ fp->fExtra[stackLoc] = fp->fInputIdx;
+ fp->fInputIdx = ix;
+
+ // Save State to the URX_LOOP_C op that follows this one,
+ // so that match failures in the following code will return to there.
+ // Then bump the pattern idx so the LOOP_C is skipped on the way out of here.
+ fp = StateSave(fp, fp->fPatIdx, frameSize, status);
+ fp->fPatIdx++;
+ }
+ break;
+
+
+ case URX_LOOP_DOT_I:
+ // Loop Initialization for the optimized implementation of .*
+ // This op scans through all remaining input.
+ // The following LOOP_C op emulates stack unwinding if the following pattern fails.
+ {
+ // Loop through input until the input is exhausted (we reach an end-of-line)
+ // In multi-line mode, we can just go straight to the end of the input.
+ int32_t ix;
+ if (opValue == 1) {
+ // Multi-line mode.
+ ix = inputLen;
+ } else {
+ // NOT multi-line mode. Line endings do not match '.'
+ // Scan forward until a line ending or end of input.
+ ix = fp->fInputIdx;
+ for (;;) {
+ if (ix >= inputLen) {
+ ix = inputLen;
+ break;
+ }
+ UChar32 c;
+ U16_NEXT(inputBuf, ix, inputLen, c); // c = inputBuf[ix++]
+ if (((c & 0x7f) <= 0x29) &&
+ ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029)) {
+ // char is a line ending. Put the input pos back to the
+ // line ending char, and exit the scanning loop.
+ U16_BACK_1(inputBuf, 0, ix);
+ break;
+ }
+ }
+ }
+
+ // If there were no matching characters, skip over the loop altogether.
+ // The loop doesn't run at all, a * op always succeeds.
+ if (ix == fp->fInputIdx) {
+ fp->fPatIdx++; // skip the URX_LOOP_C op.
+ break;
+ }
+
+ // Peek ahead in the compiled pattern, to the URX_LOOP_C that
+ // must follow. It's operand is the stack location
+ // that holds the starting input index for the match of this [set]*
+ int32_t loopcOp = pat[fp->fPatIdx];
+ U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C);
+ int32_t stackLoc = URX_VAL(loopcOp);
+ U_ASSERT(stackLoc >= 0 && stackLoc < frameSize);
+ fp->fExtra[stackLoc] = fp->fInputIdx;
+ fp->fInputIdx = ix;
+
+ // Save State to the URX_LOOP_C op that follows this one,
+ // so that match failures in the following code will return to there.
+ // Then bump the pattern idx so the LOOP_C is skipped on the way out of here.
+ fp = StateSave(fp, fp->fPatIdx, frameSize, status);
+ fp->fPatIdx++;
+ }
+ break;
+
+
+ case URX_LOOP_C:
+ {
+ U_ASSERT(opValue>=0 && opValue<frameSize);
+ int32_t terminalIdx = fp->fExtra[opValue];
+ U_ASSERT(terminalIdx <= fp->fInputIdx);
+ if (terminalIdx == fp->fInputIdx) {
+ // We've backed up the input idx to the point that the loop started.
+ // The loop is done. Leave here without saving state.
+ // Subsequent failures won't come back here.
+ break;
+ }
+ // Set up for the next iteration of the loop, with input index
+ // backed up by one from the last time through,
+ // and a state save to this instruction in case the following code fails again.
+ // (We're going backwards because this loop emulates stack unwinding, not
+ // the initial scan forward.)
+ U_ASSERT(fp->fInputIdx > 0);
+ U16_BACK_1(inputBuf, 0, fp->fInputIdx);
+ if (inputBuf[fp->fInputIdx] == 0x0a &&
+ fp->fInputIdx > terminalIdx &&
+ inputBuf[fp->fInputIdx-1] == 0x0d) {
+ int32_t prevOp = pat[fp->fPatIdx-2];
+ if (URX_TYPE(prevOp) == URX_LOOP_DOT_I) {
+ // .*, stepping back over CRLF pair.
+ fp->fInputIdx--;
+ }
+ }
+
+
+ fp = StateSave(fp, fp->fPatIdx-1, frameSize, status);
+ }
+ break;
+
+
+
+ default:
+ // Trouble. The compiled pattern contains an entry with an
+ // unrecognized type tag.
+ U_ASSERT(FALSE);
+ }
+
+ if (U_FAILURE(status)) {
+ break;
+ }
+ }
+
+breakFromLoop:
+ fMatch = isMatch;
+ if (isMatch) {
+ fLastMatchEnd = fMatchEnd;
+ fMatchStart = startIdx;
+ fMatchEnd = fp->fInputIdx;
+ if (fTraceDebug) {
+ REGEX_RUN_DEBUG_PRINTF(("Match. start=%d end=%d\n\n", fMatchStart, fMatchEnd));
+ }
+ }
+ else
+ {
+ if (fTraceDebug) {
+ REGEX_RUN_DEBUG_PRINTF(("No match\n\n"));
+ }
+ }
+
+ fFrame = fp; // The active stack frame when the engine stopped.
+ // Contains the capture group results that we need to
+ // access later.
+
+ return;
+}
+
+
+
+UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RegexMatcher)
+
+U_NAMESPACE_END
+
+#endif // !UCONFIG_NO_REGULAR_EXPRESSIONS
+