diff options
Diffstat (limited to 'Build/source/libs/icu/icu-xetex/i18n/rematch.cpp')
-rw-r--r-- | Build/source/libs/icu/icu-xetex/i18n/rematch.cpp | 2299 |
1 files changed, 2299 insertions, 0 deletions
diff --git a/Build/source/libs/icu/icu-xetex/i18n/rematch.cpp b/Build/source/libs/icu/icu-xetex/i18n/rematch.cpp new file mode 100644 index 00000000000..503303e7930 --- /dev/null +++ b/Build/source/libs/icu/icu-xetex/i18n/rematch.cpp @@ -0,0 +1,2299 @@ +/* +************************************************************************** +* Copyright (C) 2002-2007 International Business Machines Corporation * +* and others. All rights reserved. * +************************************************************************** +*/ +// +// file: rematch.cpp +// +// Contains the implementation of class RegexMatcher, +// which is one of the main API classes for the ICU regular expression package. +// + +#include "unicode/utypes.h" +#if !UCONFIG_NO_REGULAR_EXPRESSIONS + +#include "unicode/regex.h" +#include "unicode/uniset.h" +#include "unicode/uchar.h" +#include "unicode/ustring.h" +#include "unicode/rbbi.h" +#include "uassert.h" +#include "cmemory.h" +#include "uvector.h" +#include "uvectr32.h" +#include "regeximp.h" +#include "regexst.h" + +// #include <malloc.h> // Needed for heapcheck testing + +U_NAMESPACE_BEGIN + +//----------------------------------------------------------------------------- +// +// Constructor and Destructor +// +//----------------------------------------------------------------------------- +RegexMatcher::RegexMatcher(const RegexPattern *pat) { + fPattern = pat; + fPatternOwned = NULL; + fInput = NULL; + fTraceDebug = FALSE; + fDeferredStatus = U_ZERO_ERROR; + fStack = new UVector32(fDeferredStatus); + fData = fSmallData; + fWordBreakItr = NULL; + if (pat==NULL) { + fDeferredStatus = U_ILLEGAL_ARGUMENT_ERROR; + return; + } + if (pat->fDataSize > (int32_t)(sizeof(fSmallData)/sizeof(int32_t))) { + fData = (int32_t *)uprv_malloc(pat->fDataSize * sizeof(int32_t)); + } + if (fStack == NULL || fData == NULL) { + fDeferredStatus = U_MEMORY_ALLOCATION_ERROR; + } + + reset(RegexStaticSets::gStaticSets->fEmptyString); +} + + + +RegexMatcher::RegexMatcher(const UnicodeString ®exp, const UnicodeString &input, + uint32_t flags, UErrorCode &status) { + UParseError pe; + fPatternOwned = RegexPattern::compile(regexp, flags, pe, status); + fPattern = fPatternOwned; + fTraceDebug = FALSE; + fDeferredStatus = U_ZERO_ERROR; + fStack = new UVector32(status); + fData = fSmallData; + fWordBreakItr = NULL; + if (U_FAILURE(status)) { + return; + } + if (fPattern->fDataSize > (int32_t)(sizeof(fSmallData)/sizeof(int32_t))) { + fData = (int32_t *)uprv_malloc(fPattern->fDataSize * sizeof(int32_t)); + } + if (fStack == NULL || fData == NULL) { + status = U_MEMORY_ALLOCATION_ERROR; + } + reset(input); +} + + +RegexMatcher::RegexMatcher(const UnicodeString ®exp, + uint32_t flags, UErrorCode &status) { + UParseError pe; + fTraceDebug = FALSE; + fDeferredStatus = U_ZERO_ERROR; + fStack = new UVector32(status); + fData = fSmallData; + fPatternOwned = RegexPattern::compile(regexp, flags, pe, status); + fPattern = fPatternOwned; + fWordBreakItr = NULL; + if (U_FAILURE(status)) { + return; + } + + if (fPattern->fDataSize > (int32_t)(sizeof(fSmallData)/sizeof(int32_t))) { + fData = (int32_t *)uprv_malloc(fPattern->fDataSize * sizeof(int32_t)); + } + if (fStack == NULL || fData == NULL) { + status = U_MEMORY_ALLOCATION_ERROR; + } + reset(RegexStaticSets::gStaticSets->fEmptyString); +} + + + +RegexMatcher::~RegexMatcher() { + delete fStack; + if (fData != fSmallData) { + uprv_free(fData); + fData = NULL; + } + if (fPatternOwned) { + delete fPatternOwned; + fPatternOwned = NULL; + fPattern = NULL; + } + #if UCONFIG_NO_BREAK_ITERATION==0 + delete fWordBreakItr; + #endif +} + + + +static const UChar BACKSLASH = 0x5c; +static const UChar DOLLARSIGN = 0x24; +//-------------------------------------------------------------------------------- +// +// appendReplacement +// +//-------------------------------------------------------------------------------- +RegexMatcher &RegexMatcher::appendReplacement(UnicodeString &dest, + const UnicodeString &replacement, + UErrorCode &status) { + if (U_FAILURE(status)) { + return *this; + } + if (U_FAILURE(fDeferredStatus)) { + status = fDeferredStatus; + return *this; + } + if (fMatch == FALSE) { + status = U_REGEX_INVALID_STATE; + return *this; + } + + // Copy input string from the end of previous match to start of current match + int32_t len = fMatchStart-fLastReplaceEnd; + if (len > 0) { + dest.append(*fInput, fLastReplaceEnd, len); + } + fLastReplaceEnd = fMatchEnd; + + + // scan the replacement text, looking for substitutions ($n) and \escapes. + // TODO: optimize this loop by efficiently scanning for '$' or '\', + // move entire ranges not containing substitutions. + int32_t replLen = replacement.length(); + int32_t replIdx = 0; + while (replIdx<replLen) { + UChar c = replacement.charAt(replIdx); + replIdx++; + if (c == BACKSLASH) { + // Backslash Escape. Copy the following char out without further checks. + // Note: Surrogate pairs don't need any special handling + // The second half wont be a '$' or a '\', and + // will move to the dest normally on the next + // loop iteration. + if (replIdx >= replLen) { + break; + } + c = replacement.charAt(replIdx); + + if (c==0x55/*U*/ || c==0x75/*u*/) { + // We have a \udddd or \Udddddddd escape sequence. + UChar32 escapedChar = replacement.unescapeAt(replIdx); + if (escapedChar != (UChar32)0xFFFFFFFF) { + dest.append(escapedChar); + // TODO: Report errors for mal-formed \u escapes? + // As this is, the original sequence is output, which may be OK. + continue; + } + } + + // Plain backslash escape. Just put out the escaped character. + dest.append(c); + replIdx++; + continue; + } + + if (c != DOLLARSIGN) { + // Normal char, not a $. Copy it out without further checks. + dest.append(c); + continue; + } + + // We've got a $. Pick up a capture group number if one follows. + // Consume at most the number of digits necessary for the largest capture + // number that is valid for this pattern. + + int32_t numDigits = 0; + int32_t groupNum = 0; + UChar32 digitC; + for (;;) { + if (replIdx >= replLen) { + break; + } + digitC = replacement.char32At(replIdx); + if (u_isdigit(digitC) == FALSE) { + break; + } + replIdx = replacement.moveIndex32(replIdx, 1); + groupNum=groupNum*10 + u_charDigitValue(digitC); + numDigits++; + if (numDigits >= fPattern->fMaxCaptureDigits) { + break; + } + } + + + if (numDigits == 0) { + // The $ didn't introduce a group number at all. + // Treat it as just part of the substitution text. + dest.append(DOLLARSIGN); + continue; + } + + // Finally, append the capture group data to the destination. + dest.append(group(groupNum, status)); + if (U_FAILURE(status)) { + // Can fail if group number is out of range. + break; + } + + } + + return *this; +} + + + +//-------------------------------------------------------------------------------- +// +// appendTail Intended to be used in conjunction with appendReplacement() +// To the destination string, append everything following +// the last match position from the input string. +// +//-------------------------------------------------------------------------------- +UnicodeString &RegexMatcher::appendTail(UnicodeString &dest) { + int32_t len = fInput->length()-fMatchEnd; + if (len > 0) { + dest.append(*fInput, fMatchEnd, len); + } + return dest; +} + + + +//-------------------------------------------------------------------------------- +// +// end +// +//-------------------------------------------------------------------------------- +int32_t RegexMatcher::end(UErrorCode &err) const { + return end(0, err); +} + + + +int32_t RegexMatcher::end(int32_t group, UErrorCode &err) const { + if (U_FAILURE(err)) { + return -1; + } + if (fMatch == FALSE) { + err = U_REGEX_INVALID_STATE; + return -1; + } + if (group < 0 || group > fPattern->fGroupMap->size()) { + err = U_INDEX_OUTOFBOUNDS_ERROR; + return -1; + } + int32_t e = -1; + if (group == 0) { + e = fMatchEnd; + } else { + // Get the position within the stack frame of the variables for + // this capture group. + int32_t groupOffset = fPattern->fGroupMap->elementAti(group-1); + U_ASSERT(groupOffset < fPattern->fFrameSize); + U_ASSERT(groupOffset >= 0); + e = fFrame->fExtra[groupOffset + 1]; + } + return e; +} + + + +//-------------------------------------------------------------------------------- +// +// find() +// +//-------------------------------------------------------------------------------- +UBool RegexMatcher::find() { + // Start at the position of the last match end. (Will be zero if the + // matcher has been reset. + // + if (U_FAILURE(fDeferredStatus)) { + return FALSE; + } + + int32_t startPos = fMatchEnd; + + if (fMatch) { + // Save the position of any previous successful match. + fLastMatchEnd = fMatchEnd; + + if (fMatchStart == fMatchEnd) { + // Previous match had zero length. Move start position up one position + // to avoid sending find() into a loop on zero-length matches. + if (startPos == fInput->length()) { + fMatch = FALSE; + return FALSE; + } + startPos = fInput->moveIndex32(startPos, 1); + } + } else { + if (fLastMatchEnd >= 0) { + // A previous find() failed to match. Don't try again. + // (without this test, a pattern with a zero-length match + // could match again at the end of an input string.) + return FALSE; + } + } + + int32_t inputLen = fInput->length(); + + // Compute the position in the input string beyond which a match can not begin, because + // the minimum length match would extend past the end of the input. + int32_t testLen = inputLen - fPattern->fMinMatchLen; + if (startPos > testLen) { + fMatch = FALSE; + return FALSE; + } + + const UChar *inputBuf = fInput->getBuffer(); + UChar32 c; + U_ASSERT(startPos >= 0); + + switch (fPattern->fStartType) { + case START_NO_INFO: + // No optimization was found. + // Try a match at each input position. + for (;;) { + MatchAt(startPos, fDeferredStatus); + if (U_FAILURE(fDeferredStatus)) { + return FALSE; + } + if (fMatch) { + return TRUE; + } + if (startPos >= testLen) { + return FALSE; + } + U16_FWD_1(inputBuf, startPos, inputLen); + // Note that it's perfectly OK for a pattern to have a zero-length + // match at the end of a string, so we must make sure that the loop + // runs with startPos == testLen the last time through. + } + U_ASSERT(FALSE); + + case START_START: + // Matches are only possible at the start of the input string + // (pattern begins with ^ or \A) + if (startPos > 0) { + fMatch = FALSE; + return FALSE; + } + MatchAt(startPos, fDeferredStatus); + if (U_FAILURE(fDeferredStatus)) { + return FALSE; + } + return fMatch; + + + case START_SET: + { + // Match may start on any char from a pre-computed set. + U_ASSERT(fPattern->fMinMatchLen > 0); + for (;;) { + int32_t pos = startPos; + U16_NEXT(inputBuf, startPos, inputLen, c); // like c = inputBuf[startPos++]; + if (c<256 && fPattern->fInitialChars8->contains(c) || + c>=256 && fPattern->fInitialChars->contains(c)) { + MatchAt(pos, fDeferredStatus); + if (U_FAILURE(fDeferredStatus)) { + return FALSE; + } + if (fMatch) { + return TRUE; + } + } + if (pos >= testLen) { + fMatch = FALSE; + return FALSE; + } + } + } + U_ASSERT(FALSE); + + case START_STRING: + case START_CHAR: + { + // Match starts on exactly one char. + U_ASSERT(fPattern->fMinMatchLen > 0); + UChar32 theChar = fPattern->fInitialChar; + for (;;) { + int32_t pos = startPos; + U16_NEXT(inputBuf, startPos, inputLen, c); // like c = inputBuf[startPos++]; + if (c == theChar) { + MatchAt(pos, fDeferredStatus); + if (U_FAILURE(fDeferredStatus)) { + return FALSE; + } + if (fMatch) { + return TRUE; + } + } + if (pos >= testLen) { + fMatch = FALSE; + return FALSE; + } + } + } + U_ASSERT(FALSE); + + case START_LINE: + { + UChar32 c; + if (startPos == 0) { + MatchAt(startPos, fDeferredStatus); + if (U_FAILURE(fDeferredStatus)) { + return FALSE; + } + if (fMatch) { + return TRUE; + } + U16_NEXT(inputBuf, startPos, inputLen, c); // like c = inputBuf[startPos++]; + } + + for (;;) { + c = inputBuf[startPos-1]; + if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible + ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029 )) { + if (c == 0x0d && startPos < inputLen && inputBuf[startPos] == 0x0a) { + startPos++; + } + MatchAt(startPos, fDeferredStatus); + if (U_FAILURE(fDeferredStatus)) { + return FALSE; + } + if (fMatch) { + return TRUE; + } + } + if (startPos >= testLen) { + fMatch = FALSE; + return FALSE; + } + U16_NEXT(inputBuf, startPos, inputLen, c); // like c = inputBuf[startPos++]; + // Note that it's perfectly OK for a pattern to have a zero-length + // match at the end of a string, so we must make sure that the loop + // runs with startPos == testLen the last time through. + } + } + + default: + U_ASSERT(FALSE); + } + + U_ASSERT(FALSE); + return FALSE; +} + + + +UBool RegexMatcher::find(int32_t start, UErrorCode &status) { + if (U_FAILURE(status)) { + return FALSE; + } + if (U_FAILURE(fDeferredStatus)) { + status = fDeferredStatus; + return FALSE; + } + int32_t inputLen = fInput->length(); + if (start < 0 || start > inputLen) { + status = U_INDEX_OUTOFBOUNDS_ERROR; + return FALSE; + } + this->reset(); + fMatchEnd = start; + return find(); +} + + + +//-------------------------------------------------------------------------------- +// +// group() +// +//-------------------------------------------------------------------------------- +UnicodeString RegexMatcher::group(UErrorCode &status) const { + return group(0, status); +} + + + +UnicodeString RegexMatcher::group(int32_t groupNum, UErrorCode &status) const { + int32_t s = start(groupNum, status); + int32_t e = end(groupNum, status); + + // Note: calling start() and end() above will do all necessary checking that + // the group number is OK and that a match exists. status will be set. + if (U_FAILURE(status)) { + return UnicodeString(); + } + if (U_FAILURE(fDeferredStatus)) { + status = fDeferredStatus; + return UnicodeString(); + } + + if (s < 0) { + // A capture group wasn't part of the match + return UnicodeString(); + } + U_ASSERT(s <= e); + return UnicodeString(*fInput, s, e-s); +} + + + + +int32_t RegexMatcher::groupCount() const { + return fPattern->fGroupMap->size(); +} + + + +const UnicodeString &RegexMatcher::input() const { + return *fInput; +} + + + + +//-------------------------------------------------------------------------------- +// +// lookingAt() +// +//-------------------------------------------------------------------------------- +UBool RegexMatcher::lookingAt(UErrorCode &status) { + if (U_FAILURE(status)) { + return FALSE; + } + if (U_FAILURE(fDeferredStatus)) { + status = fDeferredStatus; + return FALSE; + } + reset(); + MatchAt(0, status); + return fMatch; +} + + +UBool RegexMatcher::lookingAt(int32_t start, UErrorCode &status) { + if (U_FAILURE(status)) { + return FALSE; + } + if (U_FAILURE(fDeferredStatus)) { + status = fDeferredStatus; + return FALSE; + } + if (start < 0 || start > fInput->length()) { + status = U_INDEX_OUTOFBOUNDS_ERROR; + return FALSE; + } + reset(); + MatchAt(start, status); + return fMatch; +} + + + +//-------------------------------------------------------------------------------- +// +// matches() +// +//-------------------------------------------------------------------------------- +UBool RegexMatcher::matches(UErrorCode &status) { + if (U_FAILURE(status)) { + return FALSE; + } + if (U_FAILURE(fDeferredStatus)) { + status = fDeferredStatus; + return FALSE; + } + reset(); + MatchAt(0, status); + UBool success = (fMatch && fMatchEnd==fInput->length()); + return success; +} + + +UBool RegexMatcher::matches(int32_t start, UErrorCode &status) { + if (U_FAILURE(status)) { + return FALSE; + } + if (U_FAILURE(fDeferredStatus)) { + status = fDeferredStatus; + return FALSE; + } + if (start < 0 || start > fInput->length()) { + status = U_INDEX_OUTOFBOUNDS_ERROR; + return FALSE; + } + reset(); + MatchAt(start, status); + UBool success = (fMatch && fMatchEnd==fInput->length()); + return success; +} + + + +const RegexPattern &RegexMatcher::pattern() const { + return *fPattern; +} + + + +//-------------------------------------------------------------------------------- +// +// replaceAll +// +//-------------------------------------------------------------------------------- +UnicodeString RegexMatcher::replaceAll(const UnicodeString &replacement, UErrorCode &status) { + if (U_FAILURE(status)) { + return *fInput; + } + if (U_FAILURE(fDeferredStatus)) { + status = fDeferredStatus; + return *fInput; + } + UnicodeString destString; + for (reset(); find(); ) { + appendReplacement(destString, replacement, status); + if (U_FAILURE(status)) { + break; + } + } + appendTail(destString); + return destString; +} + + + + +//-------------------------------------------------------------------------------- +// +// replaceFirst +// +//-------------------------------------------------------------------------------- +UnicodeString RegexMatcher::replaceFirst(const UnicodeString &replacement, UErrorCode &status) { + if (U_FAILURE(status)) { + return *fInput; + } + if (U_FAILURE(fDeferredStatus)) { + status = fDeferredStatus; + return *fInput; + } + + reset(); + if (!find()) { + return *fInput; + } + + UnicodeString destString; + appendReplacement(destString, replacement, status); + appendTail(destString); + return destString; +} + + + +//-------------------------------------------------------------------------------- +// +// reset +// +//-------------------------------------------------------------------------------- +RegexMatcher &RegexMatcher::reset() { + fMatchStart = 0; + fMatchEnd = 0; + fLastMatchEnd = -1; + fLastReplaceEnd = 0; + fMatch = FALSE; + resetStack(); + return *this; +} + + + +RegexMatcher &RegexMatcher::reset(const UnicodeString &input) { + fInput = &input; + reset(); + if (fWordBreakItr != NULL) { + #if UCONFIG_NO_BREAK_ITERATION==0 + fWordBreakItr->setText(input); + #endif + } + return *this; +} + +/*RegexMatcher &RegexMatcher::reset(const UChar *) { + fDeferredStatus = U_INTERNAL_PROGRAM_ERROR; + return *this; +}*/ + + +RegexMatcher &RegexMatcher::reset(int32_t position, UErrorCode &status) { + if (U_FAILURE(status)) { + return *this; + } + reset(); + if (position < 0 || position >= fInput->length()) { + status = U_INDEX_OUTOFBOUNDS_ERROR; + return *this; + } + fMatchEnd = position; + return *this; +} + + + + + +//-------------------------------------------------------------------------------- +// +// setTrace +// +//-------------------------------------------------------------------------------- +void RegexMatcher::setTrace(UBool state) { + fTraceDebug = state; +} + + + +//--------------------------------------------------------------------- +// +// split +// +//--------------------------------------------------------------------- +int32_t RegexMatcher::split(const UnicodeString &input, + UnicodeString dest[], + int32_t destCapacity, + UErrorCode &status) +{ + // + // Check arguements for validity + // + if (U_FAILURE(status)) { + return 0; + }; + + if (destCapacity < 1) { + status = U_ILLEGAL_ARGUMENT_ERROR; + return 0; + } + + + // + // Reset for the input text + // + reset(input); + int32_t inputLen = input.length(); + int32_t nextOutputStringStart = 0; + if (inputLen == 0) { + return 0; + } + + + // + // Loop through the input text, searching for the delimiter pattern + // + int32_t i; + int32_t numCaptureGroups = fPattern->fGroupMap->size(); + for (i=0; ; i++) { + if (i>=destCapacity-1) { + // There is one or zero output string left. + // Fill the last output string with whatever is left from the input, then exit the loop. + // ( i will be == destCapicity if we filled the output array while processing + // capture groups of the delimiter expression, in which case we will discard the + // last capture group saved in favor of the unprocessed remainder of the + // input string.) + i = destCapacity-1; + int32_t remainingLength = inputLen-nextOutputStringStart; + if (remainingLength > 0) { + dest[i].setTo(input, nextOutputStringStart, remainingLength); + } + break; + } + if (find()) { + // We found another delimiter. Move everything from where we started looking + // up until the start of the delimiter into the next output string. + int32_t fieldLen = fMatchStart - nextOutputStringStart; + dest[i].setTo(input, nextOutputStringStart, fieldLen); + nextOutputStringStart = fMatchEnd; + + // If the delimiter pattern has capturing parentheses, the captured + // text goes out into the next n destination strings. + int32_t groupNum; + for (groupNum=1; groupNum<=numCaptureGroups; groupNum++) { + if (i==destCapacity-1) { + break; + } + i++; + dest[i] = group(groupNum, status); + } + + if (nextOutputStringStart == inputLen) { + // The delimiter was at the end of the string. We're done. + break; + } + + } + else + { + // We ran off the end of the input while looking for the next delimiter. + // All the remaining text goes into the current output string. + dest[i].setTo(input, nextOutputStringStart, inputLen-nextOutputStringStart); + break; + } + } + return i+1; +} + + + +//-------------------------------------------------------------------------------- +// +// start +// +//-------------------------------------------------------------------------------- +int32_t RegexMatcher::start(UErrorCode &status) const { + return start(0, status); +} + + + + +int32_t RegexMatcher::start(int32_t group, UErrorCode &status) const { + if (U_FAILURE(status)) { + return -1; + } + if (U_FAILURE(fDeferredStatus)) { + status = fDeferredStatus; + return -1; + } + if (fMatch == FALSE) { + status = U_REGEX_INVALID_STATE; + return -1; + } + if (group < 0 || group > fPattern->fGroupMap->size()) { + status = U_INDEX_OUTOFBOUNDS_ERROR; + return -1; + } + int32_t s; + if (group == 0) { + s = fMatchStart; + } else { + int32_t groupOffset = fPattern->fGroupMap->elementAti(group-1); + U_ASSERT(groupOffset < fPattern->fFrameSize); + U_ASSERT(groupOffset >= 0); + s = fFrame->fExtra[groupOffset]; + } + return s; +} + + + +//================================================================================ +// +// Code following this point in this file is the internal +// Match Engine Implementation. +// +//================================================================================ + + +//-------------------------------------------------------------------------------- +// +// resetStack +// Discard any previous contents of the state save stack, and initialize a +// new stack frame to all -1. The -1s are needed for capture group limits, +// where they indicate that a group has not yet matched anything. +//-------------------------------------------------------------------------------- +REStackFrame *RegexMatcher::resetStack() { + // Discard any previous contents of the state save stack, and initialize a + // new stack frame to all -1. The -1s are needed for capture group limits, where + // they indicate that a group has not yet matched anything. + fStack->removeAllElements(); + + int32_t *iFrame = fStack->reserveBlock(fPattern->fFrameSize, fDeferredStatus); + int32_t i; + for (i=0; i<fPattern->fFrameSize; i++) { + iFrame[i] = -1; + } + return (REStackFrame *)iFrame; +} + + + +//-------------------------------------------------------------------------------- +// +// isWordBoundary +// in perl, "xab..cd..", \b is true at positions 0,3,5,7 +// For us, +// If the current char is a combining mark, +// \b is FALSE. +// Else Scan backwards to the first non-combining char. +// We are at a boundary if the this char and the original chars are +// opposite in membership in \w set +// +// parameters: pos - the current position in the input buffer +// +//-------------------------------------------------------------------------------- +UBool RegexMatcher::isWordBoundary(int32_t pos) { + UBool isBoundary = FALSE; + UBool cIsWord = FALSE; + + // Determine whether char c at current position is a member of the word set of chars. + // If we're off the end of the string, behave as though we're not at a word char. + if (pos < fInput->length()) { + UChar32 c = fInput->char32At(pos); + if (u_hasBinaryProperty(c, UCHAR_GRAPHEME_EXTEND) || u_charType(c) == U_FORMAT_CHAR) { + // Current char is a combining one. Not a boundary. + return FALSE; + } + cIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(c); + } + + // Back up until we come to a non-combining char, determine whether + // that char is a word char. + UBool prevCIsWord = FALSE; + int32_t prevPos = pos; + for (;;) { + if (prevPos == 0) { + break; + } + prevPos = fInput->moveIndex32(prevPos, -1); + UChar32 prevChar = fInput->char32At(prevPos); + if (!(u_hasBinaryProperty(prevChar, UCHAR_GRAPHEME_EXTEND) + || u_charType(prevChar) == U_FORMAT_CHAR)) { + prevCIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(prevChar); + break; + } + } + isBoundary = cIsWord ^ prevCIsWord; + return isBoundary; +} + +//-------------------------------------------------------------------------------- +// +// isUWordBoundary +// +// Test for a word boundary using RBBI word break. +// +// parameters: pos - the current position in the input buffer +// +//-------------------------------------------------------------------------------- +UBool RegexMatcher::isUWordBoundary(int32_t pos) { + UBool returnVal = FALSE; +#if UCONFIG_NO_BREAK_ITERATION==0 + UErrorCode status = U_ZERO_ERROR; + + // If we haven't yet created a break iterator for this matcher, do it now. + if (fWordBreakItr == NULL) { + fWordBreakItr = + (RuleBasedBreakIterator *)BreakIterator::createWordInstance(Locale::getEnglish(), status); + if (U_FAILURE(status)) { + // TODO: reliable error reporting for BI failures. + return FALSE; + } + fWordBreakItr->setText(*fInput); + } + + returnVal = fWordBreakItr->isBoundary(pos); +#endif + return returnVal; +} + +//-------------------------------------------------------------------------------- +// +// StateSave +// Make a new stack frame, initialized as a copy of the current stack frame. +// Set the pattern index in the original stack frame from the operand value +// in the opcode. Execution of the engine continues with the state in +// the newly created stack frame +// +// Note that reserveBlock() may grow the stack, resulting in the +// whole thing being relocated in memory. +// +//-------------------------------------------------------------------------------- +inline REStackFrame *RegexMatcher::StateSave(REStackFrame *fp, int32_t savePatIdx, int32_t frameSize, UErrorCode &status) { + // push storage for a new frame. + int32_t *newFP = fStack->reserveBlock(frameSize, status); + fp = (REStackFrame *)(newFP - frameSize); // in case of realloc of stack. + + // New stack frame = copy of old top frame. + int32_t *source = (int32_t *)fp; + int32_t *dest = newFP; + for (;;) { + *dest++ = *source++; + if (source == newFP) { + break; + } + } + + fp->fPatIdx = savePatIdx; + return (REStackFrame *)newFP; +} + + +//-------------------------------------------------------------------------------- +// +// MatchAt This is the actual matching engine. +// +//-------------------------------------------------------------------------------- +void RegexMatcher::MatchAt(int32_t startIdx, UErrorCode &status) { + UBool isMatch = FALSE; // True if the we have a match. + + int32_t op; // Operation from the compiled pattern, split into + int32_t opType; // the opcode + int32_t opValue; // and the operand value. + + #ifdef REGEX_RUN_DEBUG + if (fTraceDebug) + { + printf("MatchAt(startIdx=%d)\n", startIdx); + printf("Original Pattern: "); + int32_t i; + for (i=0; i<fPattern->fPattern.length(); i++) { + printf("%c", fPattern->fPattern.charAt(i)); + } + printf("\n"); + printf("Input String: "); + for (i=0; i<fInput->length(); i++) { + UChar c = fInput->charAt(i); + if (c<32 || c>256) { + c = '.'; + } + printf("%c", c); + } + printf("\n"); + printf("\n"); + } + #endif + + if (U_FAILURE(status)) { + return; + } + + // Cache frequently referenced items from the compiled pattern + // in local variables. + // + int32_t *pat = fPattern->fCompiledPat->getBuffer(); + + const UChar *litText = fPattern->fLiteralText.getBuffer(); + UVector *sets = fPattern->fSets; + int32_t inputLen = fInput->length(); + const UChar *inputBuf = fInput->getBuffer(); + + REStackFrame *fp = resetStack(); + int32_t frameSize = fPattern->fFrameSize; + + fp->fPatIdx = 0; + fp->fInputIdx = startIdx; + + // Zero out the pattern's static data + int32_t i; + for (i = 0; i<fPattern->fDataSize; i++) { + fData[i] = 0; + } + + // + // Main loop for interpreting the compiled pattern. + // One iteration of the loop per pattern operation performed. + // + for (;;) { +#if 0 + if (_heapchk() != _HEAPOK) { + fprintf(stderr, "Heap Trouble\n"); + } +#endif + op = pat[fp->fPatIdx]; + opType = URX_TYPE(op); + opValue = URX_VAL(op); + #ifdef REGEX_RUN_DEBUG + if (fTraceDebug) { + printf("inputIdx=%d inputChar=%c sp=%3d ", fp->fInputIdx, + fInput->char32At(fp->fInputIdx), (int32_t *)fp-fStack->getBuffer()); + fPattern->dumpOp(fp->fPatIdx); + } + #endif + fp->fPatIdx++; + + switch (opType) { + + + case URX_NOP: + break; + + + case URX_BACKTRACK: + // Force a backtrack. In some circumstances, the pattern compiler + // will notice that the pattern can't possibly match anything, and will + // emit one of these at that point. + fp = (REStackFrame *)fStack->popFrame(frameSize); + break; + + + case URX_ONECHAR: + if (fp->fInputIdx < inputLen) { + UChar32 c; + U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c); + if (c == opValue) { + break; + } + } + fp = (REStackFrame *)fStack->popFrame(frameSize); + break; + + + case URX_STRING: + { + // Test input against a literal string. + // Strings require two slots in the compiled pattern, one for the + // offset to the string text, and one for the length. + int32_t stringStartIdx = opValue; + int32_t stringLen; + + op = pat[fp->fPatIdx]; // Fetch the second operand + fp->fPatIdx++; + opType = URX_TYPE(op); + stringLen = URX_VAL(op); + U_ASSERT(opType == URX_STRING_LEN); + U_ASSERT(stringLen >= 2); + + if (fp->fInputIdx + stringLen > inputLen) { + // No match. String is longer than the remaining input text. + fp = (REStackFrame *)fStack->popFrame(frameSize); + break; + } + + const UChar * pInp = inputBuf + fp->fInputIdx; + const UChar * pPat = litText+stringStartIdx; + const UChar * pEnd = pInp + stringLen; + for(;;) { + if (*pInp == *pPat) { + pInp++; + pPat++; + if (pInp == pEnd) { + // Successful Match. + fp->fInputIdx += stringLen; + break; + } + } else { + // Match failed. + fp = (REStackFrame *)fStack->popFrame(frameSize); + break; + } + } + } + break; + + + + case URX_STATE_SAVE: + fp = StateSave(fp, opValue, frameSize, status); + break; + + + case URX_END: + // The match loop will exit via this path on a successful match, + // when we reach the end of the pattern. + isMatch = TRUE; + goto breakFromLoop; + + // Start and End Capture stack frame variables are layout out like this: + // fp->fExtra[opValue] - The start of a completed capture group + // opValue+1 - The end of a completed capture group + // opValue+2 - the start of a capture group whose end + // has not yet been reached (and might not ever be). + case URX_START_CAPTURE: + U_ASSERT(opValue >= 0 && opValue < frameSize-3); + fp->fExtra[opValue+2] = fp->fInputIdx; + break; + + + case URX_END_CAPTURE: + U_ASSERT(opValue >= 0 && opValue < frameSize-3); + U_ASSERT(fp->fExtra[opValue+2] >= 0); // Start pos for this group must be set. + fp->fExtra[opValue] = fp->fExtra[opValue+2]; // Tentative start becomes real. + fp->fExtra[opValue+1] = fp->fInputIdx; // End position + U_ASSERT(fp->fExtra[opValue] <= fp->fExtra[opValue+1]); + break; + + + case URX_DOLLAR: // $, test for End of line + // or for position before new line at end of input + if (fp->fInputIdx < inputLen-2) { + // We are no where near the end of input. Fail. + fp = (REStackFrame *)fStack->popFrame(frameSize); + break; + } + if (fp->fInputIdx >= inputLen) { + // We really are at the end of input. Success. + break; + } + // If we are positioned just before a new-line that is located at the + // end of input, succeed. + if (fp->fInputIdx == inputLen-1) { + UChar32 c = fInput->char32At(fp->fInputIdx); + if ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029) { + // If not in the middle of a CR/LF sequence + if ( !(c==0x0a && fp->fInputIdx>0 && inputBuf[fp->fInputIdx-1]==0x0d)) { + break; + // At new-line at end of input. Success + } + } + } + + if (fp->fInputIdx == inputLen-2) { + if (fInput->char32At(fp->fInputIdx) == 0x0d && fInput->char32At(fp->fInputIdx+1) == 0x0a) { + break; // At CR/LF at end of input. Success + } + } + + fp = (REStackFrame *)fStack->popFrame(frameSize); + + break; + + + case URX_DOLLAR_M: // $, test for End of line in multi-line mode + { + if (fp->fInputIdx >= inputLen) { + // We really are at the end of input. Success. + break; + } + // If we are positioned just before a new-line, succeed. + // It makes no difference where the new-line is within the input. + UChar32 c = inputBuf[fp->fInputIdx]; + if ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029) { + // At a line end, except for the odd chance of being in the middle of a CR/LF sequence + if ( !(c==0x0a && fp->fInputIdx>0 && inputBuf[fp->fInputIdx-1]==0x0d)) { + break; // At new-line at end of input. Success + } + } + + // not at a new line. Fail. + fp = (REStackFrame *)fStack->popFrame(frameSize); + } + break; + + + case URX_CARET: // ^, test for start of line + if (fp->fInputIdx != 0) { + fp = (REStackFrame *)fStack->popFrame(frameSize); + } + break; + + + case URX_CARET_M: // ^, test for start of line in mulit-line mode + { + if (fp->fInputIdx == 0) { + // We are at the start input. Success. + break; + } + // Check whether character just before the current pos is a new-line + // unless we are at the end of input + UChar c = inputBuf[fp->fInputIdx - 1]; + if ((fp->fInputIdx < inputLen) && + ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029)) { + // It's a new-line. ^ is true. Success. + break; + } + // Not at the start of a line. Fail. + fp = (REStackFrame *)fStack->popFrame(frameSize); + } + break; + + + case URX_BACKSLASH_B: // Test for word boundaries + { + UBool success = isWordBoundary(fp->fInputIdx); + success ^= (opValue != 0); // flip sense for \B + if (!success) { + fp = (REStackFrame *)fStack->popFrame(frameSize); + } + } + break; + + + case URX_BACKSLASH_BU: // Test for word boundaries, Unicode-style + { + UBool success = isUWordBoundary(fp->fInputIdx); + success ^= (opValue != 0); // flip sense for \B + if (!success) { + fp = (REStackFrame *)fStack->popFrame(frameSize); + } + } + break; + + + case URX_BACKSLASH_D: // Test for decimal digit + { + if (fp->fInputIdx >= inputLen) { + fp = (REStackFrame *)fStack->popFrame(frameSize); + break; + } + + UChar32 c = fInput->char32At(fp->fInputIdx); + int8_t ctype = u_charType(c); + UBool success = (ctype == U_DECIMAL_DIGIT_NUMBER); + success ^= (opValue != 0); // flip sense for \D + if (success) { + fp->fInputIdx = fInput->moveIndex32(fp->fInputIdx, 1); + } else { + fp = (REStackFrame *)fStack->popFrame(frameSize); + } + } + break; + + + + + case URX_BACKSLASH_G: // Test for position at end of previous match + if (!((fMatch && fp->fInputIdx==fMatchEnd) || fMatch==FALSE && fp->fInputIdx==0)) { + fp = (REStackFrame *)fStack->popFrame(frameSize); + } + break; + + + case URX_BACKSLASH_X: + // Match a Grapheme, as defined by Unicode TR 29. + // Differs slightly from Perl, which consumes combining marks independently + // of context. + { + + // Fail if at end of input + if (fp->fInputIdx >= inputLen) { + fp = (REStackFrame *)fStack->popFrame(frameSize); + break; + } + + // Examine (and consume) the current char. + // Dispatch into a little state machine, based on the char. + UChar32 c; + U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c); + UnicodeSet **sets = fPattern->fStaticSets; + if (sets[URX_GC_NORMAL]->contains(c)) goto GC_Extend; + if (sets[URX_GC_CONTROL]->contains(c)) goto GC_Control; + if (sets[URX_GC_L]->contains(c)) goto GC_L; + if (sets[URX_GC_LV]->contains(c)) goto GC_V; + if (sets[URX_GC_LVT]->contains(c)) goto GC_T; + if (sets[URX_GC_V]->contains(c)) goto GC_V; + if (sets[URX_GC_T]->contains(c)) goto GC_T; + goto GC_Extend; + + + +GC_L: + if (fp->fInputIdx >= inputLen) goto GC_Done; + U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c); + if (sets[URX_GC_L]->contains(c)) goto GC_L; + if (sets[URX_GC_LV]->contains(c)) goto GC_V; + if (sets[URX_GC_LVT]->contains(c)) goto GC_T; + if (sets[URX_GC_V]->contains(c)) goto GC_V; + U16_PREV(inputBuf, 0, fp->fInputIdx, c); + goto GC_Extend; + +GC_V: + if (fp->fInputIdx >= inputLen) goto GC_Done; + U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c); + if (sets[URX_GC_V]->contains(c)) goto GC_V; + if (sets[URX_GC_T]->contains(c)) goto GC_T; + U16_PREV(inputBuf, 0, fp->fInputIdx, c); + goto GC_Extend; + +GC_T: + if (fp->fInputIdx >= inputLen) goto GC_Done; + U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c); + if (sets[URX_GC_T]->contains(c)) goto GC_T; + U16_PREV(inputBuf, 0, fp->fInputIdx, c); + goto GC_Extend; + +GC_Extend: + // Combining characters are consumed here + for (;;) { + if (fp->fInputIdx >= inputLen) { + break; + } + U16_GET(inputBuf, 0, fp->fInputIdx, inputLen, c); + if (sets[URX_GC_EXTEND]->contains(c) == FALSE) { + break; + } + U16_FWD_1(inputBuf, fp->fInputIdx, inputLen); + } + goto GC_Done; + +GC_Control: + // Most control chars stand alone (don't combine with combining chars), + // except for that CR/LF sequence is a single grapheme cluster. + if (c == 0x0d && fp->fInputIdx < inputLen && inputBuf[fp->fInputIdx] == 0x0a) { + fp->fInputIdx++; + } + +GC_Done: + break; + } + + + + + case URX_BACKSLASH_Z: // Test for end of line + if (fp->fInputIdx < inputLen) { + fp = (REStackFrame *)fStack->popFrame(frameSize); + } + break; + + + + case URX_STATIC_SETREF: + { + // Test input character against one of the predefined sets + // (Word Characters, for example) + // The high bit of the op value is a flag for the match polarity. + // 0: success if input char is in set. + // 1: success if input char is not in set. + if (fp->fInputIdx >= inputLen) { + fp = (REStackFrame *)fStack->popFrame(frameSize); + break; + } + + UBool success = ((opValue & URX_NEG_SET) == URX_NEG_SET); + opValue &= ~URX_NEG_SET; + U_ASSERT(opValue > 0 && opValue < URX_LAST_SET); + UChar32 c; + U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c); + if (c < 256) { + Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue]; + if (s8->contains(c)) { + success = !success; + } + } else { + const UnicodeSet *s = fPattern->fStaticSets[opValue]; + if (s->contains(c)) { + success = !success; + } + } + if (!success) { + fp = (REStackFrame *)fStack->popFrame(frameSize); + } + } + break; + + + case URX_STAT_SETREF_N: + { + // Test input character for NOT being a member of one of + // the predefined sets (Word Characters, for example) + if (fp->fInputIdx >= inputLen) { + fp = (REStackFrame *)fStack->popFrame(frameSize); + break; + } + + U_ASSERT(opValue > 0 && opValue < URX_LAST_SET); + UChar32 c; + U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c); + if (c < 256) { + Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue]; + if (s8->contains(c) == FALSE) { + break; + } + } else { + const UnicodeSet *s = fPattern->fStaticSets[opValue]; + if (s->contains(c) == FALSE) { + break; + } + } + + fp = (REStackFrame *)fStack->popFrame(frameSize); + } + break; + + + case URX_SETREF: + if (fp->fInputIdx < inputLen) { + // There is input left. Pick up one char and test it for set membership. + UChar32 c; + U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c); + U_ASSERT(opValue > 0 && opValue < sets->size()); + if (c<256) { + Regex8BitSet *s8 = &fPattern->fSets8[opValue]; + if (s8->contains(c)) { + break; + } + } else { + + UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue); + if (s->contains(c)) { + // The character is in the set. A Match. + break; + } + } + } + // Either at end of input, or the character wasn't in the set. + // Either way, we need to back track out. + fp = (REStackFrame *)fStack->popFrame(frameSize); + break; + + + case URX_DOTANY: + { + // . matches anything, but stops at end-of-line. + if (fp->fInputIdx >= inputLen) { + // At end of input. Match failed. Backtrack out. + fp = (REStackFrame *)fStack->popFrame(frameSize); + break; + } + // There is input left. Advance over one char, unless we've hit end-of-line + UChar32 c; + U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c); + if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible + ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029)) { + // End of line in normal mode. . does not match. + fp = (REStackFrame *)fStack->popFrame(frameSize); + break; + } + } + break; + + + case URX_DOTANY_ALL: + { + // ., in dot-matches-all (including new lines) mode + if (fp->fInputIdx >= inputLen) { + // At end of input. Match failed. Backtrack out. + fp = (REStackFrame *)fStack->popFrame(frameSize); + break; + } + // There is input left. Advance over one char, except if we are + // at a cr/lf, advance over both of them. + UChar32 c; + U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c); + if (c==0x0d) { + // In the case of a CR/LF, we need to advance over both. + UChar nextc = inputBuf[fp->fInputIdx]; + if (nextc == 0x0a) { + fp->fInputIdx++; + } + } + } + break; + + case URX_DOTANY_PL: + // Match all up to and end-of-line or end-of-input. + { + // Fail if input already exhausted. + if (fp->fInputIdx >= inputLen) { + fp = (REStackFrame *)fStack->popFrame(frameSize); + break; + } + + // There is input left. Fail if we are at the end of a line. + UChar32 c; + U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c); + if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible + ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029)) { + // End of line in normal mode. . does not match. + fp = (REStackFrame *)fStack->popFrame(frameSize); + break; + } + + // There was input left. Consume it until we hit the end of a line, + // or until it's exhausted. + while (fp->fInputIdx < inputLen) { + U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c); + if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible + ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029)) { + U16_BACK_1(inputBuf, 0, fp->fInputIdx) + // Scan has reached a line-end. We are done. + break; + } + } + } + break; + + case URX_DOTANY_ALL_PL: + { + // Match up to end of input. Fail if already at end of input. + if (fp->fInputIdx >= inputLen) { + fp = (REStackFrame *)fStack->popFrame(frameSize); + } else { + fp->fInputIdx = inputLen; + } + } + break; + + + case URX_JMP: + fp->fPatIdx = opValue; + break; + + case URX_FAIL: + isMatch = FALSE; + goto breakFromLoop; + + case URX_JMP_SAV: + U_ASSERT(opValue < fPattern->fCompiledPat->size()); + fp = StateSave(fp, fp->fPatIdx, frameSize, status); // State save to loc following current + fp->fPatIdx = opValue; // Then JMP. + break; + + case URX_JMP_SAV_X: + // This opcode is used with (x)+, when x can match a zero length string. + // Same as JMP_SAV, except conditional on the match having made forward progress. + // Destination of the JMP must be a URX_STO_INP_LOC, from which we get the + // data address of the input position at the start of the loop. + { + U_ASSERT(opValue > 0 && opValue < fPattern->fCompiledPat->size()); + int32_t stoOp = pat[opValue-1]; + U_ASSERT(URX_TYPE(stoOp) == URX_STO_INP_LOC); + int32_t frameLoc = URX_VAL(stoOp); + U_ASSERT(frameLoc >= 0 && frameLoc < frameSize); + int32_t prevInputIdx = fp->fExtra[frameLoc]; + U_ASSERT(prevInputIdx <= fp->fInputIdx); + if (prevInputIdx < fp->fInputIdx) { + // The match did make progress. Repeat the loop. + fp = StateSave(fp, fp->fPatIdx, frameSize, status); // State save to loc following current + fp->fPatIdx = opValue; + fp->fExtra[frameLoc] = fp->fInputIdx; + } + // If the input position did not advance, we do nothing here, + // execution will fall out of the loop. + } + break; + + case URX_CTR_INIT: + { + U_ASSERT(opValue >= 0 && opValue < frameSize-2); + fp->fExtra[opValue] = 0; // Set the loop counter variable to zero + + // Pick up the three extra operands that CTR_INIT has, and + // skip the pattern location counter past + int32_t instrOperandLoc = fp->fPatIdx; + fp->fPatIdx += 3; + int32_t loopLoc = URX_VAL(pat[instrOperandLoc]); + int32_t minCount = pat[instrOperandLoc+1]; + int32_t maxCount = pat[instrOperandLoc+2]; + U_ASSERT(minCount>=0); + U_ASSERT(maxCount>=minCount || maxCount==-1); + U_ASSERT(loopLoc>fp->fPatIdx); + + if (minCount == 0) { + fp = StateSave(fp, loopLoc+1, frameSize, status); + } + if (maxCount == 0) { + fp = (REStackFrame *)fStack->popFrame(frameSize); + } + } + break; + + case URX_CTR_LOOP: + { + U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2); + int32_t initOp = pat[opValue]; + U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT); + int32_t *pCounter = &fp->fExtra[URX_VAL(initOp)]; + int32_t minCount = pat[opValue+2]; + int32_t maxCount = pat[opValue+3]; + // Increment the counter. Note: we're not worrying about counter + // overflow, since the data comes from UnicodeStrings, which + // stores its length in an int32_t. + (*pCounter)++; + U_ASSERT(*pCounter > 0); + if ((uint32_t)*pCounter >= (uint32_t)maxCount) { + U_ASSERT(*pCounter == maxCount || maxCount == -1); + break; + } + if (*pCounter >= minCount) { + fp = StateSave(fp, fp->fPatIdx, frameSize, status); + } + fp->fPatIdx = opValue + 4; // Loop back. + } + break; + + case URX_CTR_INIT_NG: + { + U_ASSERT(opValue >= 0 && opValue < frameSize-2); + fp->fExtra[opValue] = 0; // Set the loop counter variable to zero + + // Pick up the three extra operands that CTR_INIT has, and + // skip the pattern location counter past + int32_t instrOperandLoc = fp->fPatIdx; + fp->fPatIdx += 3; + int32_t loopLoc = URX_VAL(pat[instrOperandLoc]); + int32_t minCount = pat[instrOperandLoc+1]; + int32_t maxCount = pat[instrOperandLoc+2]; + U_ASSERT(minCount>=0); + U_ASSERT(maxCount>=minCount || maxCount==-1); + U_ASSERT(loopLoc>fp->fPatIdx); + + if (minCount == 0) { + if (maxCount != 0) { + fp = StateSave(fp, fp->fPatIdx, frameSize, status); + } + fp->fPatIdx = loopLoc+1; // Continue with stuff after repeated block + } + } + break; + + case URX_CTR_LOOP_NG: + { + U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2); + int32_t initOp = pat[opValue]; + U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT_NG); + int32_t *pCounter = &fp->fExtra[URX_VAL(initOp)]; + int32_t minCount = pat[opValue+2]; + int32_t maxCount = pat[opValue+3]; + // Increment the counter. Note: we're not worrying about counter + // overflow, since the data comes from UnicodeStrings, which + // stores its length in an int32_t. + (*pCounter)++; + U_ASSERT(*pCounter > 0); + + if ((uint32_t)*pCounter >= (uint32_t)maxCount) { + // The loop has matched the maximum permitted number of times. + // Break out of here with no action. Matching will + // continue with the following pattern. + U_ASSERT(*pCounter == maxCount || maxCount == -1); + break; + } + + if (*pCounter < minCount) { + // We haven't met the minimum number of matches yet. + // Loop back for another one. + fp->fPatIdx = opValue + 4; // Loop back. + } else { + // We do have the minimum number of matches. + // Fall into the following pattern, but first do + // a state save to the top of the loop, so that a failure + // in the following pattern will try another iteration of the loop. + fp = StateSave(fp, opValue + 4, frameSize, status); + } + } + break; + + // TODO: Possessive flavor of loop ops, or take them out if no longer needed. + + case URX_STO_SP: + U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize); + fData[opValue] = fStack->size(); + break; + + case URX_LD_SP: + { + U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize); + int32_t newStackSize = fData[opValue]; + U_ASSERT(newStackSize <= fStack->size()); + int32_t *newFP = fStack->getBuffer() + newStackSize - frameSize; + if (newFP == (int32_t *)fp) { + break; + } + int32_t i; + for (i=0; i<frameSize; i++) { + newFP[i] = ((int32_t *)fp)[i]; + } + fp = (REStackFrame *)newFP; + fStack->setSize(newStackSize); + } + break; + + case URX_BACKREF: + case URX_BACKREF_I: + { + U_ASSERT(opValue < frameSize); + int32_t groupStartIdx = fp->fExtra[opValue]; + int32_t groupEndIdx = fp->fExtra[opValue+1]; + U_ASSERT(groupStartIdx <= groupEndIdx); + int32_t len = groupEndIdx-groupStartIdx; + if (groupStartIdx < 0) { + // This capture group has not participated in the match thus far, + fp = (REStackFrame *)fStack->popFrame(frameSize); // FAIL, no match. + } + + if (len == 0) { + // The capture group match was of an empty string. + // Verified by testing: Perl matches succeed in this case, so + // we do too. + break; + } + + UBool haveMatch = FALSE; + if (fp->fInputIdx + len <= inputLen) { + if (opType == URX_BACKREF) { + if (u_strncmp(inputBuf+groupStartIdx, inputBuf+fp->fInputIdx, len) == 0) { + haveMatch = TRUE; + } + } else { + if (u_strncasecmp(inputBuf+groupStartIdx, inputBuf+fp->fInputIdx, + len, U_FOLD_CASE_DEFAULT) == 0) { + haveMatch = TRUE; + } + } + } + if (haveMatch) { + fp->fInputIdx += len; // Match. Advance current input position. + } else { + fp = (REStackFrame *)fStack->popFrame(frameSize); // FAIL, no match. + } + } + break; + + case URX_STO_INP_LOC: + { + U_ASSERT(opValue >= 0 && opValue < frameSize); + fp->fExtra[opValue] = fp->fInputIdx; + } + break; + + case URX_JMPX: + { + int32_t instrOperandLoc = fp->fPatIdx; + fp->fPatIdx += 1; + int32_t dataLoc = URX_VAL(pat[instrOperandLoc]); + U_ASSERT(dataLoc >= 0 && dataLoc < frameSize); + int32_t savedInputIdx = fp->fExtra[dataLoc]; + U_ASSERT(savedInputIdx <= fp->fInputIdx); + if (savedInputIdx < fp->fInputIdx) { + fp->fPatIdx = opValue; // JMP + } else { + fp = (REStackFrame *)fStack->popFrame(frameSize); // FAIL, no progress in loop. + } + } + break; + + case URX_LA_START: + { + // Entering a lookahead block. + // Save Stack Ptr, Input Pos. + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); + fData[opValue] = fStack->size(); + fData[opValue+1] = fp->fInputIdx; + } + break; + + case URX_LA_END: + { + // Leaving a look-ahead block. + // restore Stack Ptr, Input Pos to positions they had on entry to block. + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); + int32_t stackSize = fStack->size(); + int32_t newStackSize = fData[opValue]; + U_ASSERT(stackSize >= newStackSize); + if (stackSize > newStackSize) { + int32_t *newFP = fStack->getBuffer() + newStackSize - frameSize; + int32_t i; + for (i=0; i<frameSize; i++) { + newFP[i] = ((int32_t *)fp)[i]; + } + fp = (REStackFrame *)newFP; + fStack->setSize(newStackSize); + } + fp->fInputIdx = fData[opValue+1]; + } + break; + + case URX_ONECHAR_I: + if (fp->fInputIdx < inputLen) { + UChar32 c; + U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c); + if (u_foldCase(c, U_FOLD_CASE_DEFAULT) == opValue) { + break; + } + } + fp = (REStackFrame *)fStack->popFrame(frameSize); + break; + + case URX_STRING_I: + { + // Test input against a literal string. + // Strings require two slots in the compiled pattern, one for the + // offset to the string text, and one for the length. + int32_t stringStartIdx, stringLen; + stringStartIdx = opValue; + + op = pat[fp->fPatIdx]; + fp->fPatIdx++; + opType = URX_TYPE(op); + opValue = URX_VAL(op); + U_ASSERT(opType == URX_STRING_LEN); + stringLen = opValue; + + int32_t stringEndIndex = fp->fInputIdx + stringLen; + if (stringEndIndex <= inputLen) { + if (u_strncasecmp(inputBuf+fp->fInputIdx, litText+stringStartIdx, + stringLen, U_FOLD_CASE_DEFAULT) == 0) { + // Success. Advance the current input position. + fp->fInputIdx = stringEndIndex; + break; + } + } + // No match. Back up matching to a saved state + fp = (REStackFrame *)fStack->popFrame(frameSize); + } + break; + + case URX_LB_START: + { + // Entering a look-behind block. + // Save Stack Ptr, Input Pos. + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); + fData[opValue] = fStack->size(); + fData[opValue+1] = fp->fInputIdx; + // Init the variable containing the start index for attempted matches. + fData[opValue+2] = -1; + // Save input string length, then reset to pin any matches to end at + // the current position. + fData[opValue+3] = inputLen; + inputLen = fp->fInputIdx; + } + break; + + + case URX_LB_CONT: + { + // Positive Look-Behind, at top of loop checking for matches of LB expression + // at all possible input starting positions. + + // Fetch the min and max possible match lengths. They are the operands + // of this op in the pattern. + int32_t minML = pat[fp->fPatIdx++]; + int32_t maxML = pat[fp->fPatIdx++]; + U_ASSERT(minML <= maxML); + U_ASSERT(minML >= 0); + + // Fetch (from data) the last input index where a match was attempted. + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); + int32_t *lbStartIdx = &fData[opValue+2]; + if (*lbStartIdx < 0) { + // First time through loop. + *lbStartIdx = fp->fInputIdx - minML; + } else { + // 2nd through nth time through the loop. + // Back up start position for match by one. + if (*lbStartIdx == 0) { + (*lbStartIdx)--; // Because U16_BACK is unsafe starting at 0. + } else { + U16_BACK_1(inputBuf, 0, *lbStartIdx); + } + } + + if (*lbStartIdx < 0 || *lbStartIdx < fp->fInputIdx - maxML) { + // We have tried all potential match starting points without + // getting a match. Backtrack out, and out of the + // Look Behind altogether. + fp = (REStackFrame *)fStack->popFrame(frameSize); + int32_t restoreInputLen = fData[opValue+3]; + U_ASSERT(restoreInputLen >= inputLen); + U_ASSERT(restoreInputLen <= fInput->length()); + inputLen = restoreInputLen; + break; + } + + // Save state to this URX_LB_CONT op, so failure to match will repeat the loop. + // (successful match will fall off the end of the loop.) + fp = StateSave(fp, fp->fPatIdx-3, frameSize, status); + fp->fInputIdx = *lbStartIdx; + } + break; + + case URX_LB_END: + // End of a look-behind block, after a successful match. + { + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); + if (fp->fInputIdx != inputLen) { + // The look-behind expression matched, but the match did not + // extend all the way to the point that we are looking behind from. + // FAIL out of here, which will take us back to the LB_CONT, which + // will retry the match starting at another position or fail + // the look-behind altogether, whichever is appropriate. + fp = (REStackFrame *)fStack->popFrame(frameSize); + break; + } + + // Look-behind match is good. Restore the orignal input string length, + // which had been truncated to pin the end of the lookbehind match to the + // position being looked-behind. + int32_t originalInputLen = fData[opValue+3]; + U_ASSERT(originalInputLen >= inputLen); + U_ASSERT(originalInputLen <= fInput->length()); + inputLen = originalInputLen; + } + break; + + + case URX_LBN_CONT: + { + // Negative Look-Behind, at top of loop checking for matches of LB expression + // at all possible input starting positions. + + // Fetch the extra parameters of this op. + int32_t minML = pat[fp->fPatIdx++]; + int32_t maxML = pat[fp->fPatIdx++]; + int32_t continueLoc = pat[fp->fPatIdx++]; + continueLoc = URX_VAL(continueLoc); + U_ASSERT(minML <= maxML); + U_ASSERT(minML >= 0); + U_ASSERT(continueLoc > fp->fPatIdx); + + // Fetch (from data) the last input index where a match was attempted. + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); + int32_t *lbStartIdx = &fData[opValue+2]; + if (*lbStartIdx < 0) { + // First time through loop. + *lbStartIdx = fp->fInputIdx - minML; + } else { + // 2nd through nth time through the loop. + // Back up start position for match by one. + if (*lbStartIdx == 0) { + (*lbStartIdx)--; // Because U16_BACK is unsafe starting at 0. + } else { + U16_BACK_1(inputBuf, 0, *lbStartIdx); + } + } + + if (*lbStartIdx < 0 || *lbStartIdx < fp->fInputIdx - maxML) { + // We have tried all potential match starting points without + // getting a match, which means that the negative lookbehind as + // a whole has succeeded. Jump forward to the continue location + int32_t restoreInputLen = fData[opValue+3]; + U_ASSERT(restoreInputLen >= inputLen); + U_ASSERT(restoreInputLen <= fInput->length()); + inputLen = restoreInputLen; + fp->fPatIdx = continueLoc; + break; + } + + // Save state to this URX_LB_CONT op, so failure to match will repeat the loop. + // (successful match will cause a FAIL out of the loop altogether.) + fp = StateSave(fp, fp->fPatIdx-4, frameSize, status); + fp->fInputIdx = *lbStartIdx; + } + break; + + case URX_LBN_END: + // End of a negative look-behind block, after a successful match. + { + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); + if (fp->fInputIdx != inputLen) { + // The look-behind expression matched, but the match did not + // extend all the way to the point that we are looking behind from. + // FAIL out of here, which will take us back to the LB_CONT, which + // will retry the match starting at another position or succeed + // the look-behind altogether, whichever is appropriate. + fp = (REStackFrame *)fStack->popFrame(frameSize); + break; + } + + // Look-behind expression matched, which means look-behind test as + // a whole Fails + + // Restore the orignal input string length, which had been truncated + // inorder to pin the end of the lookbehind match + // to the position being looked-behind. + int32_t originalInputLen = fData[opValue+3]; + U_ASSERT(originalInputLen >= inputLen); + U_ASSERT(originalInputLen <= fInput->length()); + inputLen = originalInputLen; + + // Restore original stack position, discarding any state saved + // by the successful pattern match. + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); + int32_t newStackSize = fData[opValue]; + U_ASSERT(fStack->size() > newStackSize); + fStack->setSize(newStackSize); + + // FAIL, which will take control back to someplace + // prior to entering the look-behind test. + fp = (REStackFrame *)fStack->popFrame(frameSize); + } + break; + + + case URX_LOOP_SR_I: + // Loop Initialization for the optimized implementation of + // [some character set]* + // This op scans through all matching input. + // The following LOOP_C op emulates stack unwinding if the following pattern fails. + { + U_ASSERT(opValue > 0 && opValue < sets->size()); + Regex8BitSet *s8 = &fPattern->fSets8[opValue]; + UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue); + + // Loop through input, until either the input is exhausted or + // we reach a character that is not a member of the set. + int32_t ix = fp->fInputIdx; + for (;;) { + if (ix >= inputLen) { + break; + } + UChar32 c; + U16_NEXT(inputBuf, ix, inputLen, c); + if (c<256) { + if (s8->contains(c) == FALSE) { + U16_BACK_1(inputBuf, 0, ix); + break; + } + } else { + if (s->contains(c) == FALSE) { + U16_BACK_1(inputBuf, 0, ix); + break; + } + } + } + + // If there were no matching characters, skip over the loop altogether. + // The loop doesn't run at all, a * op always succeeds. + if (ix == fp->fInputIdx) { + fp->fPatIdx++; // skip the URX_LOOP_C op. + break; + } + + // Peek ahead in the compiled pattern, to the URX_LOOP_C that + // must follow. It's operand is the stack location + // that holds the starting input index for the match of this [set]* + int32_t loopcOp = pat[fp->fPatIdx]; + U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C); + int32_t stackLoc = URX_VAL(loopcOp); + U_ASSERT(stackLoc >= 0 && stackLoc < frameSize); + fp->fExtra[stackLoc] = fp->fInputIdx; + fp->fInputIdx = ix; + + // Save State to the URX_LOOP_C op that follows this one, + // so that match failures in the following code will return to there. + // Then bump the pattern idx so the LOOP_C is skipped on the way out of here. + fp = StateSave(fp, fp->fPatIdx, frameSize, status); + fp->fPatIdx++; + } + break; + + + case URX_LOOP_DOT_I: + // Loop Initialization for the optimized implementation of .* + // This op scans through all remaining input. + // The following LOOP_C op emulates stack unwinding if the following pattern fails. + { + // Loop through input until the input is exhausted (we reach an end-of-line) + // In multi-line mode, we can just go straight to the end of the input. + int32_t ix; + if (opValue == 1) { + // Multi-line mode. + ix = inputLen; + } else { + // NOT multi-line mode. Line endings do not match '.' + // Scan forward until a line ending or end of input. + ix = fp->fInputIdx; + for (;;) { + if (ix >= inputLen) { + ix = inputLen; + break; + } + UChar32 c; + U16_NEXT(inputBuf, ix, inputLen, c); // c = inputBuf[ix++] + if (((c & 0x7f) <= 0x29) && + ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029)) { + // char is a line ending. Put the input pos back to the + // line ending char, and exit the scanning loop. + U16_BACK_1(inputBuf, 0, ix); + break; + } + } + } + + // If there were no matching characters, skip over the loop altogether. + // The loop doesn't run at all, a * op always succeeds. + if (ix == fp->fInputIdx) { + fp->fPatIdx++; // skip the URX_LOOP_C op. + break; + } + + // Peek ahead in the compiled pattern, to the URX_LOOP_C that + // must follow. It's operand is the stack location + // that holds the starting input index for the match of this [set]* + int32_t loopcOp = pat[fp->fPatIdx]; + U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C); + int32_t stackLoc = URX_VAL(loopcOp); + U_ASSERT(stackLoc >= 0 && stackLoc < frameSize); + fp->fExtra[stackLoc] = fp->fInputIdx; + fp->fInputIdx = ix; + + // Save State to the URX_LOOP_C op that follows this one, + // so that match failures in the following code will return to there. + // Then bump the pattern idx so the LOOP_C is skipped on the way out of here. + fp = StateSave(fp, fp->fPatIdx, frameSize, status); + fp->fPatIdx++; + } + break; + + + case URX_LOOP_C: + { + U_ASSERT(opValue>=0 && opValue<frameSize); + int32_t terminalIdx = fp->fExtra[opValue]; + U_ASSERT(terminalIdx <= fp->fInputIdx); + if (terminalIdx == fp->fInputIdx) { + // We've backed up the input idx to the point that the loop started. + // The loop is done. Leave here without saving state. + // Subsequent failures won't come back here. + break; + } + // Set up for the next iteration of the loop, with input index + // backed up by one from the last time through, + // and a state save to this instruction in case the following code fails again. + // (We're going backwards because this loop emulates stack unwinding, not + // the initial scan forward.) + U_ASSERT(fp->fInputIdx > 0); + U16_BACK_1(inputBuf, 0, fp->fInputIdx); + if (inputBuf[fp->fInputIdx] == 0x0a && + fp->fInputIdx > terminalIdx && + inputBuf[fp->fInputIdx-1] == 0x0d) { + int32_t prevOp = pat[fp->fPatIdx-2]; + if (URX_TYPE(prevOp) == URX_LOOP_DOT_I) { + // .*, stepping back over CRLF pair. + fp->fInputIdx--; + } + } + + + fp = StateSave(fp, fp->fPatIdx-1, frameSize, status); + } + break; + + + + default: + // Trouble. The compiled pattern contains an entry with an + // unrecognized type tag. + U_ASSERT(FALSE); + } + + if (U_FAILURE(status)) { + break; + } + } + +breakFromLoop: + fMatch = isMatch; + if (isMatch) { + fLastMatchEnd = fMatchEnd; + fMatchStart = startIdx; + fMatchEnd = fp->fInputIdx; + if (fTraceDebug) { + REGEX_RUN_DEBUG_PRINTF(("Match. start=%d end=%d\n\n", fMatchStart, fMatchEnd)); + } + } + else + { + if (fTraceDebug) { + REGEX_RUN_DEBUG_PRINTF(("No match\n\n")); + } + } + + fFrame = fp; // The active stack frame when the engine stopped. + // Contains the capture group results that we need to + // access later. + + return; +} + + + +UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RegexMatcher) + +U_NAMESPACE_END + +#endif // !UCONFIG_NO_REGULAR_EXPRESSIONS + |