diff options
Diffstat (limited to 'Build/source/libs/icu/icu-50.1/i18n/nfrule.cpp')
-rw-r--r-- | Build/source/libs/icu/icu-50.1/i18n/nfrule.cpp | 1474 |
1 files changed, 1474 insertions, 0 deletions
diff --git a/Build/source/libs/icu/icu-50.1/i18n/nfrule.cpp b/Build/source/libs/icu/icu-50.1/i18n/nfrule.cpp new file mode 100644 index 00000000000..b96a84eb91d --- /dev/null +++ b/Build/source/libs/icu/icu-50.1/i18n/nfrule.cpp @@ -0,0 +1,1474 @@ +/* +****************************************************************************** +* Copyright (C) 1997-2011, International Business Machines +* Corporation and others. All Rights Reserved. +****************************************************************************** +* file name: nfrule.cpp +* encoding: US-ASCII +* tab size: 8 (not used) +* indentation:4 +* +* Modification history +* Date Name Comments +* 10/11/2001 Doug Ported from ICU4J +*/ + +#include "nfrule.h" + +#if U_HAVE_RBNF + +#include "unicode/rbnf.h" +#include "unicode/tblcoll.h" +#include "unicode/coleitr.h" +#include "unicode/uchar.h" +#include "nfrs.h" +#include "nfrlist.h" +#include "nfsubs.h" +#include "patternprops.h" + +U_NAMESPACE_BEGIN + +NFRule::NFRule(const RuleBasedNumberFormat* _rbnf) + : baseValue((int32_t)0) + , radix(0) + , exponent(0) + , ruleText() + , sub1(NULL) + , sub2(NULL) + , formatter(_rbnf) +{ +} + +NFRule::~NFRule() +{ + delete sub1; + delete sub2; +} + +static const UChar gLeftBracket = 0x005b; +static const UChar gRightBracket = 0x005d; +static const UChar gColon = 0x003a; +static const UChar gZero = 0x0030; +static const UChar gNine = 0x0039; +static const UChar gSpace = 0x0020; +static const UChar gSlash = 0x002f; +static const UChar gGreaterThan = 0x003e; +static const UChar gLessThan = 0x003c; +static const UChar gComma = 0x002c; +static const UChar gDot = 0x002e; +static const UChar gTick = 0x0027; +//static const UChar gMinus = 0x002d; +static const UChar gSemicolon = 0x003b; + +static const UChar gMinusX[] = {0x2D, 0x78, 0}; /* "-x" */ +static const UChar gXDotX[] = {0x78, 0x2E, 0x78, 0}; /* "x.x" */ +static const UChar gXDotZero[] = {0x78, 0x2E, 0x30, 0}; /* "x.0" */ +static const UChar gZeroDotX[] = {0x30, 0x2E, 0x78, 0}; /* "0.x" */ + +static const UChar gLessLess[] = {0x3C, 0x3C, 0}; /* "<<" */ +static const UChar gLessPercent[] = {0x3C, 0x25, 0}; /* "<%" */ +static const UChar gLessHash[] = {0x3C, 0x23, 0}; /* "<#" */ +static const UChar gLessZero[] = {0x3C, 0x30, 0}; /* "<0" */ +static const UChar gGreaterGreater[] = {0x3E, 0x3E, 0}; /* ">>" */ +static const UChar gGreaterPercent[] = {0x3E, 0x25, 0}; /* ">%" */ +static const UChar gGreaterHash[] = {0x3E, 0x23, 0}; /* ">#" */ +static const UChar gGreaterZero[] = {0x3E, 0x30, 0}; /* ">0" */ +static const UChar gEqualPercent[] = {0x3D, 0x25, 0}; /* "=%" */ +static const UChar gEqualHash[] = {0x3D, 0x23, 0}; /* "=#" */ +static const UChar gEqualZero[] = {0x3D, 0x30, 0}; /* "=0" */ +static const UChar gGreaterGreaterGreater[] = {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */ + +static const UChar * const tokenStrings[] = { + gLessLess, gLessPercent, gLessHash, gLessZero, + gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero, + gEqualPercent, gEqualHash, gEqualZero, NULL +}; + +void +NFRule::makeRules(UnicodeString& description, + const NFRuleSet *ruleSet, + const NFRule *predecessor, + const RuleBasedNumberFormat *rbnf, + NFRuleList& rules, + UErrorCode& status) +{ + // we know we're making at least one rule, so go ahead and + // new it up and initialize its basevalue and divisor + // (this also strips the rule descriptor, if any, off the + // descripton string) + NFRule* rule1 = new NFRule(rbnf); + /* test for NULL */ + if (rule1 == 0) { + status = U_MEMORY_ALLOCATION_ERROR; + return; + } + rule1->parseRuleDescriptor(description, status); + + // check the description to see whether there's text enclosed + // in brackets + int32_t brack1 = description.indexOf(gLeftBracket); + int32_t brack2 = description.indexOf(gRightBracket); + + // if the description doesn't contain a matched pair of brackets, + // or if it's of a type that doesn't recognize bracketed text, + // then leave the description alone, initialize the rule's + // rule text and substitutions, and return that rule + if (brack1 == -1 || brack2 == -1 || brack1 > brack2 + || rule1->getType() == kProperFractionRule + || rule1->getType() == kNegativeNumberRule) { + rule1->ruleText = description; + rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status); + rules.add(rule1); + } else { + // if the description does contain a matched pair of brackets, + // then it's really shorthand for two rules (with one exception) + NFRule* rule2 = NULL; + UnicodeString sbuf; + + // we'll actually only split the rule into two rules if its + // base value is an even multiple of its divisor (or it's one + // of the special rules) + if ((rule1->baseValue > 0 + && (rule1->baseValue % util64_pow(rule1->radix, rule1->exponent)) == 0) + || rule1->getType() == kImproperFractionRule + || rule1->getType() == kMasterRule) { + + // if it passes that test, new up the second rule. If the + // rule set both rules will belong to is a fraction rule + // set, they both have the same base value; otherwise, + // increment the original rule's base value ("rule1" actually + // goes SECOND in the rule set's rule list) + rule2 = new NFRule(rbnf); + /* test for NULL */ + if (rule2 == 0) { + status = U_MEMORY_ALLOCATION_ERROR; + return; + } + if (rule1->baseValue >= 0) { + rule2->baseValue = rule1->baseValue; + if (!ruleSet->isFractionRuleSet()) { + ++rule1->baseValue; + } + } + + // if the description began with "x.x" and contains bracketed + // text, it describes both the improper fraction rule and + // the proper fraction rule + else if (rule1->getType() == kImproperFractionRule) { + rule2->setType(kProperFractionRule); + } + + // if the description began with "x.0" and contains bracketed + // text, it describes both the master rule and the + // improper fraction rule + else if (rule1->getType() == kMasterRule) { + rule2->baseValue = rule1->baseValue; + rule1->setType(kImproperFractionRule); + } + + // both rules have the same radix and exponent (i.e., the + // same divisor) + rule2->radix = rule1->radix; + rule2->exponent = rule1->exponent; + + // rule2's rule text omits the stuff in brackets: initalize + // its rule text and substitutions accordingly + sbuf.append(description, 0, brack1); + if (brack2 + 1 < description.length()) { + sbuf.append(description, brack2 + 1, description.length() - brack2 - 1); + } + rule2->ruleText.setTo(sbuf); + rule2->extractSubstitutions(ruleSet, predecessor, rbnf, status); + } + + // rule1's text includes the text in the brackets but omits + // the brackets themselves: initialize _its_ rule text and + // substitutions accordingly + sbuf.setTo(description, 0, brack1); + sbuf.append(description, brack1 + 1, brack2 - brack1 - 1); + if (brack2 + 1 < description.length()) { + sbuf.append(description, brack2 + 1, description.length() - brack2 - 1); + } + rule1->ruleText.setTo(sbuf); + rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status); + + // if we only have one rule, return it; if we have two, return + // a two-element array containing them (notice that rule2 goes + // BEFORE rule1 in the list: in all cases, rule2 OMITS the + // material in the brackets and rule1 INCLUDES the material + // in the brackets) + if (rule2 != NULL) { + rules.add(rule2); + } + rules.add(rule1); + } +} + +/** + * This function parses the rule's rule descriptor (i.e., the base + * value and/or other tokens that precede the rule's rule text + * in the description) and sets the rule's base value, radix, and + * exponent according to the descriptor. (If the description doesn't + * include a rule descriptor, then this function sets everything to + * default values and the rule set sets the rule's real base value). + * @param description The rule's description + * @return If "description" included a rule descriptor, this is + * "description" with the descriptor and any trailing whitespace + * stripped off. Otherwise; it's "descriptor" unchangd. + */ +void +NFRule::parseRuleDescriptor(UnicodeString& description, UErrorCode& status) +{ + // the description consists of a rule descriptor and a rule body, + // separated by a colon. The rule descriptor is optional. If + // it's omitted, just set the base value to 0. + int32_t p = description.indexOf(gColon); + if (p == -1) { + setBaseValue((int32_t)0, status); + } else { + // copy the descriptor out into its own string and strip it, + // along with any trailing whitespace, out of the original + // description + UnicodeString descriptor; + descriptor.setTo(description, 0, p); + + ++p; + while (p < description.length() && PatternProps::isWhiteSpace(description.charAt(p))) { + ++p; + } + description.removeBetween(0, p); + + // check first to see if the rule descriptor matches the token + // for one of the special rules. If it does, set the base + // value to the correct identfier value + if (0 == descriptor.compare(gMinusX, 2)) { + setType(kNegativeNumberRule); + } + else if (0 == descriptor.compare(gXDotX, 3)) { + setType(kImproperFractionRule); + } + else if (0 == descriptor.compare(gZeroDotX, 3)) { + setType(kProperFractionRule); + } + else if (0 == descriptor.compare(gXDotZero, 3)) { + setType(kMasterRule); + } + + // if the rule descriptor begins with a digit, it's a descriptor + // for a normal rule + // since we don't have Long.parseLong, and this isn't much work anyway, + // just build up the value as we encounter the digits. + else if (descriptor.charAt(0) >= gZero && descriptor.charAt(0) <= gNine) { + int64_t val = 0; + p = 0; + UChar c = gSpace; + + // begin parsing the descriptor: copy digits + // into "tempValue", skip periods, commas, and spaces, + // stop on a slash or > sign (or at the end of the string), + // and throw an exception on any other character + int64_t ll_10 = 10; + while (p < descriptor.length()) { + c = descriptor.charAt(p); + if (c >= gZero && c <= gNine) { + val = val * ll_10 + (int32_t)(c - gZero); + } + else if (c == gSlash || c == gGreaterThan) { + break; + } + else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) { + } + else { + // throw new IllegalArgumentException("Illegal character in rule descriptor"); + status = U_PARSE_ERROR; + return; + } + ++p; + } + + // we have the base value, so set it + setBaseValue(val, status); + + // if we stopped the previous loop on a slash, we're + // now parsing the rule's radix. Again, accumulate digits + // in tempValue, skip punctuation, stop on a > mark, and + // throw an exception on anything else + if (c == gSlash) { + val = 0; + ++p; + int64_t ll_10 = 10; + while (p < descriptor.length()) { + c = descriptor.charAt(p); + if (c >= gZero && c <= gNine) { + val = val * ll_10 + (int32_t)(c - gZero); + } + else if (c == gGreaterThan) { + break; + } + else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) { + } + else { + // throw new IllegalArgumentException("Illegal character is rule descriptor"); + status = U_PARSE_ERROR; + return; + } + ++p; + } + + // tempValue now contain's the rule's radix. Set it + // accordingly, and recalculate the rule's exponent + radix = (int32_t)val; + if (radix == 0) { + // throw new IllegalArgumentException("Rule can't have radix of 0"); + status = U_PARSE_ERROR; + } + + exponent = expectedExponent(); + } + + // if we stopped the previous loop on a > sign, then continue + // for as long as we still see > signs. For each one, + // decrement the exponent (unless the exponent is already 0). + // If we see another character before reaching the end of + // the descriptor, that's also a syntax error. + if (c == gGreaterThan) { + while (p < descriptor.length()) { + c = descriptor.charAt(p); + if (c == gGreaterThan && exponent > 0) { + --exponent; + } else { + // throw new IllegalArgumentException("Illegal character in rule descriptor"); + status = U_PARSE_ERROR; + return; + } + ++p; + } + } + } + } + + // finally, if the rule body begins with an apostrophe, strip it off + // (this is generally used to put whitespace at the beginning of + // a rule's rule text) + if (description.length() > 0 && description.charAt(0) == gTick) { + description.removeBetween(0, 1); + } + + // return the description with all the stuff we've just waded through + // stripped off the front. It now contains just the rule body. + // return description; +} + +/** +* Searches the rule's rule text for the substitution tokens, +* creates the substitutions, and removes the substitution tokens +* from the rule's rule text. +* @param owner The rule set containing this rule +* @param predecessor The rule preseding this one in "owners" rule list +* @param ownersOwner The RuleBasedFormat that owns this rule +*/ +void +NFRule::extractSubstitutions(const NFRuleSet* ruleSet, + const NFRule* predecessor, + const RuleBasedNumberFormat* rbnf, + UErrorCode& status) +{ + if (U_SUCCESS(status)) { + sub1 = extractSubstitution(ruleSet, predecessor, rbnf, status); + sub2 = extractSubstitution(ruleSet, predecessor, rbnf, status); + } +} + +/** +* Searches the rule's rule text for the first substitution token, +* creates a substitution based on it, and removes the token from +* the rule's rule text. +* @param owner The rule set containing this rule +* @param predecessor The rule preceding this one in the rule set's +* rule list +* @param ownersOwner The RuleBasedNumberFormat that owns this rule +* @return The newly-created substitution. This is never null; if +* the rule text doesn't contain any substitution tokens, this will +* be a NullSubstitution. +*/ +NFSubstitution * +NFRule::extractSubstitution(const NFRuleSet* ruleSet, + const NFRule* predecessor, + const RuleBasedNumberFormat* rbnf, + UErrorCode& status) +{ + NFSubstitution* result = NULL; + + // search the rule's rule text for the first two characters of + // a substitution token + int32_t subStart = indexOfAny(tokenStrings); + int32_t subEnd = subStart; + + // if we didn't find one, create a null substitution positioned + // at the end of the rule text + if (subStart == -1) { + return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor, + ruleSet, rbnf, UnicodeString(), status); + } + + // special-case the ">>>" token, since searching for the > at the + // end will actually find the > in the middle + if (ruleText.indexOf(gGreaterGreaterGreater, 3, 0) == subStart) { + subEnd = subStart + 2; + + // otherwise the substitution token ends with the same character + // it began with + } else { + UChar c = ruleText.charAt(subStart); + subEnd = ruleText.indexOf(c, subStart + 1); + // special case for '<%foo<<' + if (c == gLessThan && subEnd != -1 && subEnd < ruleText.length() - 1 && ruleText.charAt(subEnd+1) == c) { + // ordinals use "=#,##0==%abbrev=" as their rule. Notice that the '==' in the middle + // occurs because of the juxtaposition of two different rules. The check for '<' is a hack + // to get around this. Having the duplicate at the front would cause problems with + // rules like "<<%" to format, say, percents... + ++subEnd; + } + } + + // if we don't find the end of the token (i.e., if we're on a single, + // unmatched token character), create a null substitution positioned + // at the end of the rule + if (subEnd == -1) { + return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor, + ruleSet, rbnf, UnicodeString(), status); + } + + // if we get here, we have a real substitution token (or at least + // some text bounded by substitution token characters). Use + // makeSubstitution() to create the right kind of substitution + UnicodeString subToken; + subToken.setTo(ruleText, subStart, subEnd + 1 - subStart); + result = NFSubstitution::makeSubstitution(subStart, this, predecessor, ruleSet, + rbnf, subToken, status); + + // remove the substitution from the rule text + ruleText.removeBetween(subStart, subEnd+1); + + return result; +} + +/** + * Sets the rule's base value, and causes the radix and exponent + * to be recalculated. This is used during construction when we + * don't know the rule's base value until after it's been + * constructed. It should be used at any other time. + * @param The new base value for the rule. + */ +void +NFRule::setBaseValue(int64_t newBaseValue, UErrorCode& status) +{ + // set the base value + baseValue = newBaseValue; + + // if this isn't a special rule, recalculate the radix and exponent + // (the radix always defaults to 10; if it's supposed to be something + // else, it's cleaned up by the caller and the exponent is + // recalculated again-- the only function that does this is + // NFRule.parseRuleDescriptor() ) + if (baseValue >= 1) { + radix = 10; + exponent = expectedExponent(); + + // this function gets called on a fully-constructed rule whose + // description didn't specify a base value. This means it + // has substitutions, and some substitutions hold on to copies + // of the rule's divisor. Fix their copies of the divisor. + if (sub1 != NULL) { + sub1->setDivisor(radix, exponent, status); + } + if (sub2 != NULL) { + sub2->setDivisor(radix, exponent, status); + } + + // if this is a special rule, its radix and exponent are basically + // ignored. Set them to "safe" default values + } else { + radix = 10; + exponent = 0; + } +} + +/** +* This calculates the rule's exponent based on its radix and base +* value. This will be the highest power the radix can be raised to +* and still produce a result less than or equal to the base value. +*/ +int16_t +NFRule::expectedExponent() const +{ + // since the log of 0, or the log base 0 of something, causes an + // error, declare the exponent in these cases to be 0 (we also + // deal with the special-rule identifiers here) + if (radix == 0 || baseValue < 1) { + return 0; + } + + // we get rounding error in some cases-- for example, log 1000 / log 10 + // gives us 1.9999999996 instead of 2. The extra logic here is to take + // that into account + int16_t tempResult = (int16_t)(uprv_log((double)baseValue) / uprv_log((double)radix)); + int64_t temp = util64_pow(radix, tempResult + 1); + if (temp <= baseValue) { + tempResult += 1; + } + return tempResult; +} + +/** + * Searches the rule's rule text for any of the specified strings. + * @param strings An array of strings to search the rule's rule + * text for + * @return The index of the first match in the rule's rule text + * (i.e., the first substring in the rule's rule text that matches + * _any_ of the strings in "strings"). If none of the strings in + * "strings" is found in the rule's rule text, returns -1. + */ +int32_t +NFRule::indexOfAny(const UChar* const strings[]) const +{ + int result = -1; + for (int i = 0; strings[i]; i++) { + int32_t pos = ruleText.indexOf(*strings[i]); + if (pos != -1 && (result == -1 || pos < result)) { + result = pos; + } + } + return result; +} + +//----------------------------------------------------------------------- +// boilerplate +//----------------------------------------------------------------------- + +/** +* Tests two rules for equality. +* @param that The rule to compare this one against +* @return True is the two rules are functionally equivalent +*/ +UBool +NFRule::operator==(const NFRule& rhs) const +{ + return baseValue == rhs.baseValue + && radix == rhs.radix + && exponent == rhs.exponent + && ruleText == rhs.ruleText + && *sub1 == *rhs.sub1 + && *sub2 == *rhs.sub2; +} + +/** +* Returns a textual representation of the rule. This won't +* necessarily be the same as the description that this rule +* was created with, but it will produce the same result. +* @return A textual description of the rule +*/ +static void util_append64(UnicodeString& result, int64_t n) +{ + UChar buffer[256]; + int32_t len = util64_tou(n, buffer, sizeof(buffer)); + UnicodeString temp(buffer, len); + result.append(temp); +} + +void +NFRule::_appendRuleText(UnicodeString& result) const +{ + switch (getType()) { + case kNegativeNumberRule: result.append(gMinusX, 2); break; + case kImproperFractionRule: result.append(gXDotX, 3); break; + case kProperFractionRule: result.append(gZeroDotX, 3); break; + case kMasterRule: result.append(gXDotZero, 3); break; + default: + // for a normal rule, write out its base value, and if the radix is + // something other than 10, write out the radix (with the preceding + // slash, of course). Then calculate the expected exponent and if + // if isn't the same as the actual exponent, write an appropriate + // number of > signs. Finally, terminate the whole thing with + // a colon. + util_append64(result, baseValue); + if (radix != 10) { + result.append(gSlash); + util_append64(result, radix); + } + int numCarets = expectedExponent() - exponent; + for (int i = 0; i < numCarets; i++) { + result.append(gGreaterThan); + } + break; + } + result.append(gColon); + result.append(gSpace); + + // if the rule text begins with a space, write an apostrophe + // (whitespace after the rule descriptor is ignored; the + // apostrophe is used to make the whitespace significant) + if (ruleText.charAt(0) == gSpace && sub1->getPos() != 0) { + result.append(gTick); + } + + // now, write the rule's rule text, inserting appropriate + // substitution tokens in the appropriate places + UnicodeString ruleTextCopy; + ruleTextCopy.setTo(ruleText); + + UnicodeString temp; + sub2->toString(temp); + ruleTextCopy.insert(sub2->getPos(), temp); + sub1->toString(temp); + ruleTextCopy.insert(sub1->getPos(), temp); + + result.append(ruleTextCopy); + + // and finally, top the whole thing off with a semicolon and + // return the result + result.append(gSemicolon); +} + +//----------------------------------------------------------------------- +// formatting +//----------------------------------------------------------------------- + +/** +* Formats the number, and inserts the resulting text into +* toInsertInto. +* @param number The number being formatted +* @param toInsertInto The string where the resultant text should +* be inserted +* @param pos The position in toInsertInto where the resultant text +* should be inserted +*/ +void +NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos) const +{ + // first, insert the rule's rule text into toInsertInto at the + // specified position, then insert the results of the substitutions + // into the right places in toInsertInto (notice we do the + // substitutions in reverse order so that the offsets don't get + // messed up) + toInsertInto.insert(pos, ruleText); + sub2->doSubstitution(number, toInsertInto, pos); + sub1->doSubstitution(number, toInsertInto, pos); +} + +/** +* Formats the number, and inserts the resulting text into +* toInsertInto. +* @param number The number being formatted +* @param toInsertInto The string where the resultant text should +* be inserted +* @param pos The position in toInsertInto where the resultant text +* should be inserted +*/ +void +NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos) const +{ + // first, insert the rule's rule text into toInsertInto at the + // specified position, then insert the results of the substitutions + // into the right places in toInsertInto + // [again, we have two copies of this routine that do the same thing + // so that we don't sacrifice precision in a long by casting it + // to a double] + toInsertInto.insert(pos, ruleText); + sub2->doSubstitution(number, toInsertInto, pos); + sub1->doSubstitution(number, toInsertInto, pos); +} + +/** +* Used by the owning rule set to determine whether to invoke the +* rollback rule (i.e., whether this rule or the one that precedes +* it in the rule set's list should be used to format the number) +* @param The number being formatted +* @return True if the rule set should use the rule that precedes +* this one in its list; false if it should use this rule +*/ +UBool +NFRule::shouldRollBack(double number) const +{ + // we roll back if the rule contains a modulus substitution, + // the number being formatted is an even multiple of the rule's + // divisor, and the rule's base value is NOT an even multiple + // of its divisor + // In other words, if the original description had + // 100: << hundred[ >>]; + // that expands into + // 100: << hundred; + // 101: << hundred >>; + // internally. But when we're formatting 200, if we use the rule + // at 101, which would normally apply, we get "two hundred zero". + // To prevent this, we roll back and use the rule at 100 instead. + // This is the logic that makes this happen: the rule at 101 has + // a modulus substitution, its base value isn't an even multiple + // of 100, and the value we're trying to format _is_ an even + // multiple of 100. This is called the "rollback rule." + if ((sub1->isModulusSubstitution()) || (sub2->isModulusSubstitution())) { + int64_t re = util64_pow(radix, exponent); + return uprv_fmod(number, (double)re) == 0 && (baseValue % re) != 0; + } + return FALSE; +} + +//----------------------------------------------------------------------- +// parsing +//----------------------------------------------------------------------- + +/** +* Attempts to parse the string with this rule. +* @param text The string being parsed +* @param parsePosition On entry, the value is ignored and assumed to +* be 0. On exit, this has been updated with the position of the first +* character not consumed by matching the text against this rule +* (if this rule doesn't match the text at all, the parse position +* if left unchanged (presumably at 0) and the function returns +* new Long(0)). +* @param isFractionRule True if this rule is contained within a +* fraction rule set. This is only used if the rule has no +* substitutions. +* @return If this rule matched the text, this is the rule's base value +* combined appropriately with the results of parsing the substitutions. +* If nothing matched, this is new Long(0) and the parse position is +* left unchanged. The result will be an instance of Long if the +* result is an integer and Double otherwise. The result is never null. +*/ +#ifdef RBNF_DEBUG +#include <stdio.h> + +static void dumpUS(FILE* f, const UnicodeString& us) { + int len = us.length(); + char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1]; + if (buf != NULL) { + us.extract(0, len, buf); + buf[len] = 0; + fprintf(f, "%s", buf); + uprv_free(buf); //delete[] buf; + } +} +#endif + +UBool +NFRule::doParse(const UnicodeString& text, + ParsePosition& parsePosition, + UBool isFractionRule, + double upperBound, + Formattable& resVal) const +{ + // internally we operate on a copy of the string being parsed + // (because we're going to change it) and use our own ParsePosition + ParsePosition pp; + UnicodeString workText(text); + + // check to see whether the text before the first substitution + // matches the text at the beginning of the string being + // parsed. If it does, strip that off the front of workText; + // otherwise, dump out with a mismatch + UnicodeString prefix; + prefix.setTo(ruleText, 0, sub1->getPos()); + +#ifdef RBNF_DEBUG + fprintf(stderr, "doParse %x ", this); + { + UnicodeString rt; + _appendRuleText(rt); + dumpUS(stderr, rt); + } + + fprintf(stderr, " text: '", this); + dumpUS(stderr, text); + fprintf(stderr, "' prefix: '"); + dumpUS(stderr, prefix); +#endif + stripPrefix(workText, prefix, pp); + int32_t prefixLength = text.length() - workText.length(); + +#ifdef RBNF_DEBUG + fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1->getPos()); +#endif + + if (pp.getIndex() == 0 && sub1->getPos() != 0) { + // commented out because ParsePosition doesn't have error index in 1.1.x + // restored for ICU4C port + parsePosition.setErrorIndex(pp.getErrorIndex()); + resVal.setLong(0); + return TRUE; + } + + // this is the fun part. The basic guts of the rule-matching + // logic is matchToDelimiter(), which is called twice. The first + // time it searches the input string for the rule text BETWEEN + // the substitutions and tries to match the intervening text + // in the input string with the first substitution. If that + // succeeds, it then calls it again, this time to look for the + // rule text after the second substitution and to match the + // intervening input text against the second substitution. + // + // For example, say we have a rule that looks like this: + // first << middle >> last; + // and input text that looks like this: + // first one middle two last + // First we use stripPrefix() to match "first " in both places and + // strip it off the front, leaving + // one middle two last + // Then we use matchToDelimiter() to match " middle " and try to + // match "one" against a substitution. If it's successful, we now + // have + // two last + // We use matchToDelimiter() a second time to match " last" and + // try to match "two" against a substitution. If "two" matches + // the substitution, we have a successful parse. + // + // Since it's possible in many cases to find multiple instances + // of each of these pieces of rule text in the input string, + // we need to try all the possible combinations of these + // locations. This prevents us from prematurely declaring a mismatch, + // and makes sure we match as much input text as we can. + int highWaterMark = 0; + double result = 0; + int start = 0; + double tempBaseValue = (double)(baseValue <= 0 ? 0 : baseValue); + + UnicodeString temp; + do { + // our partial parse result starts out as this rule's base + // value. If it finds a successful match, matchToDelimiter() + // will compose this in some way with what it gets back from + // the substitution, giving us a new partial parse result + pp.setIndex(0); + + temp.setTo(ruleText, sub1->getPos(), sub2->getPos() - sub1->getPos()); + double partialResult = matchToDelimiter(workText, start, tempBaseValue, + temp, pp, sub1, + upperBound); + + // if we got a successful match (or were trying to match a + // null substitution), pp is now pointing at the first unmatched + // character. Take note of that, and try matchToDelimiter() + // on the input text again + if (pp.getIndex() != 0 || sub1->isNullSubstitution()) { + start = pp.getIndex(); + + UnicodeString workText2; + workText2.setTo(workText, pp.getIndex(), workText.length() - pp.getIndex()); + ParsePosition pp2; + + // the second matchToDelimiter() will compose our previous + // partial result with whatever it gets back from its + // substitution if there's a successful match, giving us + // a real result + temp.setTo(ruleText, sub2->getPos(), ruleText.length() - sub2->getPos()); + partialResult = matchToDelimiter(workText2, 0, partialResult, + temp, pp2, sub2, + upperBound); + + // if we got a successful match on this second + // matchToDelimiter() call, update the high-water mark + // and result (if necessary) + if (pp2.getIndex() != 0 || sub2->isNullSubstitution()) { + if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) { + highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex(); + result = partialResult; + } + } + // commented out because ParsePosition doesn't have error index in 1.1.x + // restored for ICU4C port + else { + int32_t temp = pp2.getErrorIndex() + sub1->getPos() + pp.getIndex(); + if (temp> parsePosition.getErrorIndex()) { + parsePosition.setErrorIndex(temp); + } + } + } + // commented out because ParsePosition doesn't have error index in 1.1.x + // restored for ICU4C port + else { + int32_t temp = sub1->getPos() + pp.getErrorIndex(); + if (temp > parsePosition.getErrorIndex()) { + parsePosition.setErrorIndex(temp); + } + } + // keep trying to match things until the outer matchToDelimiter() + // call fails to make a match (each time, it picks up where it + // left off the previous time) + } while (sub1->getPos() != sub2->getPos() + && pp.getIndex() > 0 + && pp.getIndex() < workText.length() + && pp.getIndex() != start); + + // update the caller's ParsePosition with our high-water mark + // (i.e., it now points at the first character this function + // didn't match-- the ParsePosition is therefore unchanged if + // we didn't match anything) + parsePosition.setIndex(highWaterMark); + // commented out because ParsePosition doesn't have error index in 1.1.x + // restored for ICU4C port + if (highWaterMark > 0) { + parsePosition.setErrorIndex(0); + } + + // this is a hack for one unusual condition: Normally, whether this + // rule belong to a fraction rule set or not is handled by its + // substitutions. But if that rule HAS NO substitutions, then + // we have to account for it here. By definition, if the matching + // rule in a fraction rule set has no substitutions, its numerator + // is 1, and so the result is the reciprocal of its base value. + if (isFractionRule && + highWaterMark > 0 && + sub1->isNullSubstitution()) { + result = 1 / result; + } + + resVal.setDouble(result); + return TRUE; // ??? do we need to worry if it is a long or a double? +} + +/** +* This function is used by parse() to match the text being parsed +* against a possible prefix string. This function +* matches characters from the beginning of the string being parsed +* to characters from the prospective prefix. If they match, pp is +* updated to the first character not matched, and the result is +* the unparsed part of the string. If they don't match, the whole +* string is returned, and pp is left unchanged. +* @param text The string being parsed +* @param prefix The text to match against +* @param pp On entry, ignored and assumed to be 0. On exit, points +* to the first unmatched character (assuming the whole prefix matched), +* or is unchanged (if the whole prefix didn't match). +* @return If things match, this is the unparsed part of "text"; +* if they didn't match, this is "text". +*/ +void +NFRule::stripPrefix(UnicodeString& text, const UnicodeString& prefix, ParsePosition& pp) const +{ + // if the prefix text is empty, dump out without doing anything + if (prefix.length() != 0) { + UErrorCode status = U_ZERO_ERROR; + // use prefixLength() to match the beginning of + // "text" against "prefix". This function returns the + // number of characters from "text" that matched (or 0 if + // we didn't match the whole prefix) + int32_t pfl = prefixLength(text, prefix, status); + if (U_FAILURE(status)) { // Memory allocation error. + return; + } + if (pfl != 0) { + // if we got a successful match, update the parse position + // and strip the prefix off of "text" + pp.setIndex(pp.getIndex() + pfl); + text.remove(0, pfl); + } + } +} + +/** +* Used by parse() to match a substitution and any following text. +* "text" is searched for instances of "delimiter". For each instance +* of delimiter, the intervening text is tested to see whether it +* matches the substitution. The longest match wins. +* @param text The string being parsed +* @param startPos The position in "text" where we should start looking +* for "delimiter". +* @param baseValue A partial parse result (often the rule's base value), +* which is combined with the result from matching the substitution +* @param delimiter The string to search "text" for. +* @param pp Ignored and presumed to be 0 on entry. If there's a match, +* on exit this will point to the first unmatched character. +* @param sub If we find "delimiter" in "text", this substitution is used +* to match the text between the beginning of the string and the +* position of "delimiter." (If "delimiter" is the empty string, then +* this function just matches against this substitution and updates +* everything accordingly.) +* @param upperBound When matching the substitution, it will only +* consider rules with base values lower than this value. +* @return If there's a match, this is the result of composing +* baseValue with the result of matching the substitution. Otherwise, +* this is new Long(0). It's never null. If the result is an integer, +* this will be an instance of Long; otherwise, it's an instance of +* Double. +* +* !!! note {dlf} in point of fact, in the java code the caller always converts +* the result to a double, so we might as well return one. +*/ +double +NFRule::matchToDelimiter(const UnicodeString& text, + int32_t startPos, + double _baseValue, + const UnicodeString& delimiter, + ParsePosition& pp, + const NFSubstitution* sub, + double upperBound) const +{ + UErrorCode status = U_ZERO_ERROR; + // if "delimiter" contains real (i.e., non-ignorable) text, search + // it for "delimiter" beginning at "start". If that succeeds, then + // use "sub"'s doParse() method to match the text before the + // instance of "delimiter" we just found. + if (!allIgnorable(delimiter, status)) { + if (U_FAILURE(status)) { //Memory allocation error. + return 0; + } + ParsePosition tempPP; + Formattable result; + + // use findText() to search for "delimiter". It returns a two- + // element array: element 0 is the position of the match, and + // element 1 is the number of characters that matched + // "delimiter". + int32_t dLen; + int32_t dPos = findText(text, delimiter, startPos, &dLen); + + // if findText() succeeded, isolate the text preceding the + // match, and use "sub" to match that text + while (dPos >= 0) { + UnicodeString subText; + subText.setTo(text, 0, dPos); + if (subText.length() > 0) { + UBool success = sub->doParse(subText, tempPP, _baseValue, upperBound, +#if UCONFIG_NO_COLLATION + FALSE, +#else + formatter->isLenient(), +#endif + result); + + // if the substitution could match all the text up to + // where we found "delimiter", then this function has + // a successful match. Bump the caller's parse position + // to point to the first character after the text + // that matches "delimiter", and return the result + // we got from parsing the substitution. + if (success && tempPP.getIndex() == dPos) { + pp.setIndex(dPos + dLen); + return result.getDouble(); + } + // commented out because ParsePosition doesn't have error index in 1.1.x + // restored for ICU4C port + else { + if (tempPP.getErrorIndex() > 0) { + pp.setErrorIndex(tempPP.getErrorIndex()); + } else { + pp.setErrorIndex(tempPP.getIndex()); + } + } + } + + // if we didn't match the substitution, search for another + // copy of "delimiter" in "text" and repeat the loop if + // we find it + tempPP.setIndex(0); + dPos = findText(text, delimiter, dPos + dLen, &dLen); + } + // if we make it here, this was an unsuccessful match, and we + // leave pp unchanged and return 0 + pp.setIndex(0); + return 0; + + // if "delimiter" is empty, or consists only of ignorable characters + // (i.e., is semantically empty), thwe we obviously can't search + // for "delimiter". Instead, just use "sub" to parse as much of + // "text" as possible. + } else { + ParsePosition tempPP; + Formattable result; + + // try to match the whole string against the substitution + UBool success = sub->doParse(text, tempPP, _baseValue, upperBound, +#if UCONFIG_NO_COLLATION + FALSE, +#else + formatter->isLenient(), +#endif + result); + if (success && (tempPP.getIndex() != 0 || sub->isNullSubstitution())) { + // if there's a successful match (or it's a null + // substitution), update pp to point to the first + // character we didn't match, and pass the result from + // sub.doParse() on through to the caller + pp.setIndex(tempPP.getIndex()); + return result.getDouble(); + } + // commented out because ParsePosition doesn't have error index in 1.1.x + // restored for ICU4C port + else { + pp.setErrorIndex(tempPP.getErrorIndex()); + } + + // and if we get to here, then nothing matched, so we return + // 0 and leave pp alone + return 0; + } +} + +/** +* Used by stripPrefix() to match characters. If lenient parse mode +* is off, this just calls startsWith(). If lenient parse mode is on, +* this function uses CollationElementIterators to match characters in +* the strings (only primary-order differences are significant in +* determining whether there's a match). +* @param str The string being tested +* @param prefix The text we're hoping to see at the beginning +* of "str" +* @return If "prefix" is found at the beginning of "str", this +* is the number of characters in "str" that were matched (this +* isn't necessarily the same as the length of "prefix" when matching +* text with a collator). If there's no match, this is 0. +*/ +int32_t +NFRule::prefixLength(const UnicodeString& str, const UnicodeString& prefix, UErrorCode& status) const +{ + // if we're looking for an empty prefix, it obviously matches + // zero characters. Just go ahead and return 0. + if (prefix.length() == 0) { + return 0; + } + +#if !UCONFIG_NO_COLLATION + // go through all this grief if we're in lenient-parse mode + if (formatter->isLenient()) { + // get the formatter's collator and use it to create two + // collation element iterators, one over the target string + // and another over the prefix (right now, we'll throw an + // exception if the collator we get back from the formatter + // isn't a RuleBasedCollator, because RuleBasedCollator defines + // the CollationElementIterator protocol. Hopefully, this + // will change someday.) + RuleBasedCollator* collator = (RuleBasedCollator*)formatter->getCollator(); + CollationElementIterator* strIter = collator->createCollationElementIterator(str); + CollationElementIterator* prefixIter = collator->createCollationElementIterator(prefix); + // Check for memory allocation error. + if (collator == NULL || strIter == NULL || prefixIter == NULL) { + delete collator; + delete strIter; + delete prefixIter; + status = U_MEMORY_ALLOCATION_ERROR; + return 0; + } + + UErrorCode err = U_ZERO_ERROR; + + // The original code was problematic. Consider this match: + // prefix = "fifty-" + // string = " fifty-7" + // The intent is to match string up to the '7', by matching 'fifty-' at position 1 + // in the string. Unfortunately, we were getting a match, and then computing where + // the match terminated by rematching the string. The rematch code was using as an + // initial guess the substring of string between 0 and prefix.length. Because of + // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving + // the position before the hyphen in the string. Recursing down, we then parsed the + // remaining string '-7' as numeric. The resulting number turned out as 43 (50 - 7). + // This was not pretty, especially since the string "fifty-7" parsed just fine. + // + // We have newer APIs now, so we can use calls on the iterator to determine what we + // matched up to. If we terminate because we hit the last element in the string, + // our match terminates at this length. If we terminate because we hit the last element + // in the target, our match terminates at one before the element iterator position. + + // match collation elements between the strings + int32_t oStr = strIter->next(err); + int32_t oPrefix = prefixIter->next(err); + + while (oPrefix != CollationElementIterator::NULLORDER) { + // skip over ignorable characters in the target string + while (CollationElementIterator::primaryOrder(oStr) == 0 + && oStr != CollationElementIterator::NULLORDER) { + oStr = strIter->next(err); + } + + // skip over ignorable characters in the prefix + while (CollationElementIterator::primaryOrder(oPrefix) == 0 + && oPrefix != CollationElementIterator::NULLORDER) { + oPrefix = prefixIter->next(err); + } + + // dlf: move this above following test, if we consume the + // entire target, aren't we ok even if the source was also + // entirely consumed? + + // if skipping over ignorables brought to the end of + // the prefix, we DID match: drop out of the loop + if (oPrefix == CollationElementIterator::NULLORDER) { + break; + } + + // if skipping over ignorables brought us to the end + // of the target string, we didn't match and return 0 + if (oStr == CollationElementIterator::NULLORDER) { + delete prefixIter; + delete strIter; + return 0; + } + + // match collation elements from the two strings + // (considering only primary differences). If we + // get a mismatch, dump out and return 0 + if (CollationElementIterator::primaryOrder(oStr) + != CollationElementIterator::primaryOrder(oPrefix)) { + delete prefixIter; + delete strIter; + return 0; + + // otherwise, advance to the next character in each string + // and loop (we drop out of the loop when we exhaust + // collation elements in the prefix) + } else { + oStr = strIter->next(err); + oPrefix = prefixIter->next(err); + } + } + + int32_t result = strIter->getOffset(); + if (oStr != CollationElementIterator::NULLORDER) { + --result; // back over character that we don't want to consume; + } + +#ifdef RBNF_DEBUG + fprintf(stderr, "prefix length: %d\n", result); +#endif + delete prefixIter; + delete strIter; + + return result; +#if 0 + //---------------------------------------------------------------- + // JDK 1.2-specific API call + // return strIter.getOffset(); + //---------------------------------------------------------------- + // JDK 1.1 HACK (take out for 1.2-specific code) + + // if we make it to here, we have a successful match. Now we + // have to find out HOW MANY characters from the target string + // matched the prefix (there isn't necessarily a one-to-one + // mapping between collation elements and characters). + // In JDK 1.2, there's a simple getOffset() call we can use. + // In JDK 1.1, on the other hand, we have to go through some + // ugly contortions. First, use the collator to compare the + // same number of characters from the prefix and target string. + // If they're equal, we're done. + collator->setStrength(Collator::PRIMARY); + if (str.length() >= prefix.length()) { + UnicodeString temp; + temp.setTo(str, 0, prefix.length()); + if (collator->equals(temp, prefix)) { +#ifdef RBNF_DEBUG + fprintf(stderr, "returning: %d\n", prefix.length()); +#endif + return prefix.length(); + } + } + + // if they're not equal, then we have to compare successively + // larger and larger substrings of the target string until we + // get to one that matches the prefix. At that point, we know + // how many characters matched the prefix, and we can return. + int32_t p = 1; + while (p <= str.length()) { + UnicodeString temp; + temp.setTo(str, 0, p); + if (collator->equals(temp, prefix)) { + return p; + } else { + ++p; + } + } + + // SHOULD NEVER GET HERE!!! + return 0; + //---------------------------------------------------------------- +#endif + + // If lenient parsing is turned off, forget all that crap above. + // Just use String.startsWith() and be done with it. + } else +#endif + { + if (str.startsWith(prefix)) { + return prefix.length(); + } else { + return 0; + } + } +} + +/** +* Searches a string for another string. If lenient parsing is off, +* this just calls indexOf(). If lenient parsing is on, this function +* uses CollationElementIterator to match characters, and only +* primary-order differences are significant in determining whether +* there's a match. +* @param str The string to search +* @param key The string to search "str" for +* @param startingAt The index into "str" where the search is to +* begin +* @return A two-element array of ints. Element 0 is the position +* of the match, or -1 if there was no match. Element 1 is the +* number of characters in "str" that matched (which isn't necessarily +* the same as the length of "key") +*/ +int32_t +NFRule::findText(const UnicodeString& str, + const UnicodeString& key, + int32_t startingAt, + int32_t* length) const +{ +#if !UCONFIG_NO_COLLATION + // if lenient parsing is turned off, this is easy: just call + // String.indexOf() and we're done + if (!formatter->isLenient()) { + *length = key.length(); + return str.indexOf(key, startingAt); + + // but if lenient parsing is turned ON, we've got some work + // ahead of us + } else +#endif + { + //---------------------------------------------------------------- + // JDK 1.1 HACK (take out of 1.2-specific code) + + // in JDK 1.2, CollationElementIterator provides us with an + // API to map between character offsets and collation elements + // and we can do this by marching through the string comparing + // collation elements. We can't do that in JDK 1.1. Insted, + // we have to go through this horrible slow mess: + int32_t p = startingAt; + int32_t keyLen = 0; + + // basically just isolate smaller and smaller substrings of + // the target string (each running to the end of the string, + // and with the first one running from startingAt to the end) + // and then use prefixLength() to see if the search key is at + // the beginning of each substring. This is excruciatingly + // slow, but it will locate the key and tell use how long the + // matching text was. + UnicodeString temp; + UErrorCode status = U_ZERO_ERROR; + while (p < str.length() && keyLen == 0) { + temp.setTo(str, p, str.length() - p); + keyLen = prefixLength(temp, key, status); + if (U_FAILURE(status)) { + break; + } + if (keyLen != 0) { + *length = keyLen; + return p; + } + ++p; + } + // if we make it to here, we didn't find it. Return -1 for the + // location. The length should be ignored, but set it to 0, + // which should be "safe" + *length = 0; + return -1; + + //---------------------------------------------------------------- + // JDK 1.2 version of this routine + //RuleBasedCollator collator = (RuleBasedCollator)formatter.getCollator(); + // + //CollationElementIterator strIter = collator.getCollationElementIterator(str); + //CollationElementIterator keyIter = collator.getCollationElementIterator(key); + // + //int keyStart = -1; + // + //str.setOffset(startingAt); + // + //int oStr = strIter.next(); + //int oKey = keyIter.next(); + //while (oKey != CollationElementIterator.NULLORDER) { + // while (oStr != CollationElementIterator.NULLORDER && + // CollationElementIterator.primaryOrder(oStr) == 0) + // oStr = strIter.next(); + // + // while (oKey != CollationElementIterator.NULLORDER && + // CollationElementIterator.primaryOrder(oKey) == 0) + // oKey = keyIter.next(); + // + // if (oStr == CollationElementIterator.NULLORDER) { + // return new int[] { -1, 0 }; + // } + // + // if (oKey == CollationElementIterator.NULLORDER) { + // break; + // } + // + // if (CollationElementIterator.primaryOrder(oStr) == + // CollationElementIterator.primaryOrder(oKey)) { + // keyStart = strIter.getOffset(); + // oStr = strIter.next(); + // oKey = keyIter.next(); + // } else { + // if (keyStart != -1) { + // keyStart = -1; + // keyIter.reset(); + // } else { + // oStr = strIter.next(); + // } + // } + //} + // + //if (oKey == CollationElementIterator.NULLORDER) { + // return new int[] { keyStart, strIter.getOffset() - keyStart }; + //} else { + // return new int[] { -1, 0 }; + //} + } +} + +/** +* Checks to see whether a string consists entirely of ignorable +* characters. +* @param str The string to test. +* @return true if the string is empty of consists entirely of +* characters that the number formatter's collator says are +* ignorable at the primary-order level. false otherwise. +*/ +UBool +NFRule::allIgnorable(const UnicodeString& str, UErrorCode& status) const +{ + // if the string is empty, we can just return true + if (str.length() == 0) { + return TRUE; + } + +#if !UCONFIG_NO_COLLATION + // if lenient parsing is turned on, walk through the string with + // a collation element iterator and make sure each collation + // element is 0 (ignorable) at the primary level + if (formatter->isLenient()) { + RuleBasedCollator* collator = (RuleBasedCollator*)(formatter->getCollator()); + CollationElementIterator* iter = collator->createCollationElementIterator(str); + + // Memory allocation error check. + if (collator == NULL || iter == NULL) { + delete collator; + delete iter; + status = U_MEMORY_ALLOCATION_ERROR; + return FALSE; + } + + UErrorCode err = U_ZERO_ERROR; + int32_t o = iter->next(err); + while (o != CollationElementIterator::NULLORDER + && CollationElementIterator::primaryOrder(o) == 0) { + o = iter->next(err); + } + + delete iter; + return o == CollationElementIterator::NULLORDER; + } +#endif + + // if lenient parsing is turned off, there is no such thing as + // an ignorable character: return true only if the string is empty + return FALSE; +} + +U_NAMESPACE_END + +/* U_HAVE_RBNF */ +#endif + + |