summaryrefslogtreecommitdiff
path: root/Build/source/libs/icu/icu-4.6/tools/makeconv/genmbcs.c
diff options
context:
space:
mode:
Diffstat (limited to 'Build/source/libs/icu/icu-4.6/tools/makeconv/genmbcs.c')
-rw-r--r--Build/source/libs/icu/icu-4.6/tools/makeconv/genmbcs.c1555
1 files changed, 1555 insertions, 0 deletions
diff --git a/Build/source/libs/icu/icu-4.6/tools/makeconv/genmbcs.c b/Build/source/libs/icu/icu-4.6/tools/makeconv/genmbcs.c
new file mode 100644
index 00000000000..840438339b8
--- /dev/null
+++ b/Build/source/libs/icu/icu-4.6/tools/makeconv/genmbcs.c
@@ -0,0 +1,1555 @@
+/*
+*******************************************************************************
+*
+* Copyright (C) 2000-2010, International Business Machines
+* Corporation and others. All Rights Reserved.
+*
+*******************************************************************************
+* file name: genmbcs.c
+* encoding: US-ASCII
+* tab size: 8 (not used)
+* indentation:4
+*
+* created on: 2000jul06
+* created by: Markus W. Scherer
+*/
+
+#include <stdio.h>
+#include "unicode/utypes.h"
+#include "cstring.h"
+#include "cmemory.h"
+#include "unewdata.h"
+#include "ucnv_cnv.h"
+#include "ucnvmbcs.h"
+#include "ucm.h"
+#include "makeconv.h"
+#include "genmbcs.h"
+
+/*
+ * TODO: Split this file into toUnicode, SBCSFromUnicode and MBCSFromUnicode files.
+ * Reduce tests for maxCharLength.
+ */
+
+struct MBCSData {
+ NewConverter newConverter;
+
+ UCMFile *ucm;
+
+ /* toUnicode (state table in ucm->states) */
+ _MBCSToUFallback toUFallbacks[MBCS_MAX_FALLBACK_COUNT];
+ int32_t countToUFallbacks;
+ uint16_t *unicodeCodeUnits;
+
+ /* fromUnicode */
+ uint16_t stage1[MBCS_STAGE_1_SIZE];
+ uint16_t stage2Single[MBCS_STAGE_2_SIZE]; /* stage 2 for single-byte codepages */
+ uint32_t stage2[MBCS_STAGE_2_SIZE]; /* stage 2 for MBCS */
+ uint8_t *fromUBytes;
+ uint32_t stage2Top, stage3Top;
+
+ /* fromUTF8 */
+ uint16_t stageUTF8[0x10000>>MBCS_UTF8_STAGE_SHIFT]; /* allow for utf8Max=0xffff */
+
+ /*
+ * Maximum UTF-8-friendly code point.
+ * 0 if !utf8Friendly, otherwise 0x01ff..0xffff in steps of 0x100.
+ * If utf8Friendly, utf8Max is normally either MBCS_UTF8_MAX or 0xffff.
+ */
+ uint16_t utf8Max;
+
+ UBool utf8Friendly;
+ UBool omitFromU;
+};
+
+/* prototypes */
+static void
+MBCSClose(NewConverter *cnvData);
+
+static UBool
+MBCSStartMappings(MBCSData *mbcsData);
+
+static UBool
+MBCSAddToUnicode(MBCSData *mbcsData,
+ const uint8_t *bytes, int32_t length,
+ UChar32 c,
+ int8_t flag);
+
+static UBool
+MBCSIsValid(NewConverter *cnvData,
+ const uint8_t *bytes, int32_t length);
+
+static UBool
+MBCSSingleAddFromUnicode(MBCSData *mbcsData,
+ const uint8_t *bytes, int32_t length,
+ UChar32 c,
+ int8_t flag);
+
+static UBool
+MBCSAddFromUnicode(MBCSData *mbcsData,
+ const uint8_t *bytes, int32_t length,
+ UChar32 c,
+ int8_t flag);
+
+static void
+MBCSPostprocess(MBCSData *mbcsData, const UConverterStaticData *staticData);
+
+static UBool
+MBCSAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData);
+
+static uint32_t
+MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
+ UNewDataMemory *pData, int32_t tableType);
+
+/* helper ------------------------------------------------------------------- */
+
+static U_INLINE char
+hexDigit(uint8_t digit) {
+ return digit<=9 ? (char)('0'+digit) : (char)('a'-10+digit);
+}
+
+static U_INLINE char *
+printBytes(char *buffer, const uint8_t *bytes, int32_t length) {
+ char *s=buffer;
+ while(length>0) {
+ *s++=hexDigit((uint8_t)(*bytes>>4));
+ *s++=hexDigit((uint8_t)(*bytes&0xf));
+ ++bytes;
+ --length;
+ }
+
+ *s=0;
+ return buffer;
+}
+
+/* implementation ----------------------------------------------------------- */
+
+static MBCSData gDummy;
+
+U_CFUNC const MBCSData *
+MBCSGetDummy() {
+ uprv_memset(&gDummy, 0, sizeof(MBCSData));
+
+ /*
+ * Set "pessimistic" values which may sometimes move too many
+ * mappings to the extension table (but never too few).
+ * These values cause MBCSOkForBaseFromUnicode() to return FALSE for the
+ * largest set of mappings.
+ * Assume maxCharLength>1.
+ */
+ gDummy.utf8Friendly=TRUE;
+ if(SMALL) {
+ gDummy.utf8Max=0xffff;
+ gDummy.omitFromU=TRUE;
+ } else {
+ gDummy.utf8Max=MBCS_UTF8_MAX;
+ }
+ return &gDummy;
+}
+
+static void
+MBCSInit(MBCSData *mbcsData, UCMFile *ucm) {
+ uprv_memset(mbcsData, 0, sizeof(MBCSData));
+
+ mbcsData->ucm=ucm; /* aliased, not owned */
+
+ mbcsData->newConverter.close=MBCSClose;
+ mbcsData->newConverter.isValid=MBCSIsValid;
+ mbcsData->newConverter.addTable=MBCSAddTable;
+ mbcsData->newConverter.write=MBCSWrite;
+}
+
+NewConverter *
+MBCSOpen(UCMFile *ucm) {
+ MBCSData *mbcsData=(MBCSData *)uprv_malloc(sizeof(MBCSData));
+ if(mbcsData==NULL) {
+ printf("out of memory\n");
+ exit(U_MEMORY_ALLOCATION_ERROR);
+ }
+
+ MBCSInit(mbcsData, ucm);
+ return &mbcsData->newConverter;
+}
+
+static void
+MBCSDestruct(MBCSData *mbcsData) {
+ uprv_free(mbcsData->unicodeCodeUnits);
+ uprv_free(mbcsData->fromUBytes);
+}
+
+static void
+MBCSClose(NewConverter *cnvData) {
+ MBCSData *mbcsData=(MBCSData *)cnvData;
+ if(mbcsData!=NULL) {
+ MBCSDestruct(mbcsData);
+ uprv_free(mbcsData);
+ }
+}
+
+static UBool
+MBCSStartMappings(MBCSData *mbcsData) {
+ int32_t i, sum, maxCharLength,
+ stage2NullLength, stage2AllocLength,
+ stage3NullLength, stage3AllocLength;
+
+ /* toUnicode */
+
+ /* allocate the code unit array and prefill it with "unassigned" values */
+ sum=mbcsData->ucm->states.countToUCodeUnits;
+ if(VERBOSE) {
+ printf("the total number of offsets is 0x%lx=%ld\n", (long)sum, (long)sum);
+ }
+
+ if(sum>0) {
+ mbcsData->unicodeCodeUnits=(uint16_t *)uprv_malloc(sum*sizeof(uint16_t));
+ if(mbcsData->unicodeCodeUnits==NULL) {
+ fprintf(stderr, "error: out of memory allocating %ld 16-bit code units\n",
+ (long)sum);
+ return FALSE;
+ }
+ for(i=0; i<sum; ++i) {
+ mbcsData->unicodeCodeUnits[i]=0xfffe;
+ }
+ }
+
+ /* fromUnicode */
+ maxCharLength=mbcsData->ucm->states.maxCharLength;
+
+ /* allocate the codepage mappings and preset the first 16 characters to 0 */
+ if(maxCharLength==1) {
+ /* allocate 64k 16-bit results for single-byte codepages */
+ sum=0x20000;
+ } else {
+ /* allocate 1M * maxCharLength bytes for at most 1M mappings */
+ sum=0x100000*maxCharLength;
+ }
+ mbcsData->fromUBytes=(uint8_t *)uprv_malloc(sum);
+ if(mbcsData->fromUBytes==NULL) {
+ fprintf(stderr, "error: out of memory allocating %ld B for target mappings\n", (long)sum);
+ return FALSE;
+ }
+ uprv_memset(mbcsData->fromUBytes, 0, sum);
+
+ /*
+ * UTF-8-friendly fromUnicode tries: allocate multiple blocks at a time.
+ * See ucnvmbcs.h for details.
+ *
+ * There is code, for example in ucnv_MBCSGetUnicodeSetForUnicode(), which
+ * assumes that the initial stage 2/3 blocks are the all-unassigned ones.
+ * Therefore, we refine the data structure while maintaining this placement
+ * even though it would be convenient to allocate the ASCII block at the
+ * beginning of stage 3, for example.
+ *
+ * UTF-8-friendly fromUnicode tries work from sorted tables and are built
+ * pre-compacted, overlapping adjacent stage 2/3 blocks.
+ * This is necessary because the block allocation and compaction changes
+ * at SBCS_UTF8_MAX or MBCS_UTF8_MAX, and for MBCS tables the additional
+ * stage table uses direct indexes into stage 3, without a multiplier and
+ * thus with a smaller reach.
+ *
+ * Non-UTF-8-friendly fromUnicode tries work from unsorted tables
+ * (because implicit precision is used), and are compacted
+ * in post-processing.
+ *
+ * Preallocation for UTF-8-friendly fromUnicode tries:
+ *
+ * Stage 3:
+ * 64-entry all-unassigned first block followed by ASCII (128 entries).
+ *
+ * Stage 2:
+ * 64-entry all-unassigned first block followed by preallocated
+ * 64-block for ASCII.
+ */
+
+ /* Preallocate ASCII as a linear 128-entry stage 3 block. */
+ stage2NullLength=MBCS_STAGE_2_BLOCK_SIZE;
+ stage2AllocLength=MBCS_STAGE_2_BLOCK_SIZE;
+
+ stage3NullLength=MBCS_UTF8_STAGE_3_BLOCK_SIZE;
+ stage3AllocLength=128; /* ASCII U+0000..U+007f */
+
+ /* Initialize stage 1 for the preallocated blocks. */
+ sum=stage2NullLength;
+ for(i=0; i<(stage2AllocLength>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT); ++i) {
+ mbcsData->stage1[i]=sum;
+ sum+=MBCS_STAGE_2_BLOCK_SIZE;
+ }
+ mbcsData->stage2Top=stage2NullLength+stage2AllocLength; /* ==sum */
+
+ /*
+ * Stage 2 indexes count 16-blocks in stage 3 as follows:
+ * SBCS: directly, indexes increment by 16
+ * MBCS: indexes need to be multiplied by 16*maxCharLength, indexes increment by 1
+ * MBCS UTF-8: directly, indexes increment by 16
+ */
+ if(maxCharLength==1) {
+ sum=stage3NullLength;
+ for(i=0; i<(stage3AllocLength/MBCS_STAGE_3_BLOCK_SIZE); ++i) {
+ mbcsData->stage2Single[mbcsData->stage1[0]+i]=sum;
+ sum+=MBCS_STAGE_3_BLOCK_SIZE;
+ }
+ } else {
+ sum=stage3NullLength/MBCS_STAGE_3_GRANULARITY;
+ for(i=0; i<(stage3AllocLength/MBCS_STAGE_3_BLOCK_SIZE); ++i) {
+ mbcsData->stage2[mbcsData->stage1[0]+i]=sum;
+ sum+=MBCS_STAGE_3_BLOCK_SIZE/MBCS_STAGE_3_GRANULARITY;
+ }
+ }
+
+ sum=stage3NullLength;
+ for(i=0; i<(stage3AllocLength/MBCS_UTF8_STAGE_3_BLOCK_SIZE); ++i) {
+ mbcsData->stageUTF8[i]=sum;
+ sum+=MBCS_UTF8_STAGE_3_BLOCK_SIZE;
+ }
+
+ /*
+ * Allocate a 64-entry all-unassigned first stage 3 block,
+ * for UTF-8-friendly lookup with a trail byte,
+ * plus 128 entries for ASCII.
+ */
+ mbcsData->stage3Top=(stage3NullLength+stage3AllocLength)*maxCharLength; /* ==sum*maxCharLength */
+
+ return TRUE;
+}
+
+/* return TRUE for success */
+static UBool
+setFallback(MBCSData *mbcsData, uint32_t offset, UChar32 c) {
+ int32_t i=ucm_findFallback(mbcsData->toUFallbacks, mbcsData->countToUFallbacks, offset);
+ if(i>=0) {
+ /* if there is already a fallback for this offset, then overwrite it */
+ mbcsData->toUFallbacks[i].codePoint=c;
+ return TRUE;
+ } else {
+ /* if there is no fallback for this offset, then add one */
+ i=mbcsData->countToUFallbacks;
+ if(i>=MBCS_MAX_FALLBACK_COUNT) {
+ fprintf(stderr, "error: too many toUnicode fallbacks, currently at: U+%x\n", (int)c);
+ return FALSE;
+ } else {
+ mbcsData->toUFallbacks[i].offset=offset;
+ mbcsData->toUFallbacks[i].codePoint=c;
+ mbcsData->countToUFallbacks=i+1;
+ return TRUE;
+ }
+ }
+}
+
+/* remove fallback if there is one with this offset; return the code point if there was such a fallback, otherwise -1 */
+static int32_t
+removeFallback(MBCSData *mbcsData, uint32_t offset) {
+ int32_t i=ucm_findFallback(mbcsData->toUFallbacks, mbcsData->countToUFallbacks, offset);
+ if(i>=0) {
+ _MBCSToUFallback *toUFallbacks;
+ int32_t limit, old;
+
+ toUFallbacks=mbcsData->toUFallbacks;
+ limit=mbcsData->countToUFallbacks;
+ old=(int32_t)toUFallbacks[i].codePoint;
+
+ /* copy the last fallback entry here to keep the list contiguous */
+ toUFallbacks[i].offset=toUFallbacks[limit-1].offset;
+ toUFallbacks[i].codePoint=toUFallbacks[limit-1].codePoint;
+ mbcsData->countToUFallbacks=limit-1;
+ return old;
+ } else {
+ return -1;
+ }
+}
+
+/*
+ * isFallback is almost a boolean:
+ * 1 (TRUE) this is a fallback mapping
+ * 0 (FALSE) this is a precise mapping
+ * -1 the precision of this mapping is not specified
+ */
+static UBool
+MBCSAddToUnicode(MBCSData *mbcsData,
+ const uint8_t *bytes, int32_t length,
+ UChar32 c,
+ int8_t flag) {
+ char buffer[10];
+ uint32_t offset=0;
+ int32_t i=0, entry, old;
+ uint8_t state=0;
+
+ if(mbcsData->ucm->states.countStates==0) {
+ fprintf(stderr, "error: there is no state information!\n");
+ return FALSE;
+ }
+
+ /* for SI/SO (like EBCDIC-stateful), double-byte sequences start in state 1 */
+ if(length==2 && mbcsData->ucm->states.outputType==MBCS_OUTPUT_2_SISO) {
+ state=1;
+ }
+
+ /*
+ * Walk down the state table like in conversion,
+ * much like getNextUChar().
+ * We assume that c<=0x10ffff.
+ */
+ for(i=0;;) {
+ entry=mbcsData->ucm->states.stateTable[state][bytes[i++]];
+ if(MBCS_ENTRY_IS_TRANSITION(entry)) {
+ if(i==length) {
+ fprintf(stderr, "error: byte sequence too short, ends in non-final state %hu: 0x%s (U+%x)\n",
+ (short)state, printBytes(buffer, bytes, length), (int)c);
+ return FALSE;
+ }
+ state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
+ offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
+ } else {
+ if(i<length) {
+ fprintf(stderr, "error: byte sequence too long by %d bytes, final state %hu: 0x%s (U+%x)\n",
+ (int)(length-i), state, printBytes(buffer, bytes, length), (int)c);
+ return FALSE;
+ }
+ switch(MBCS_ENTRY_FINAL_ACTION(entry)) {
+ case MBCS_STATE_ILLEGAL:
+ fprintf(stderr, "error: byte sequence ends in illegal state at U+%04x<->0x%s\n",
+ (int)c, printBytes(buffer, bytes, length));
+ return FALSE;
+ case MBCS_STATE_CHANGE_ONLY:
+ fprintf(stderr, "error: byte sequence ends in state-change-only at U+%04x<->0x%s\n",
+ (int)c, printBytes(buffer, bytes, length));
+ return FALSE;
+ case MBCS_STATE_UNASSIGNED:
+ fprintf(stderr, "error: byte sequence ends in unassigned state at U+%04x<->0x%s\n",
+ (int)c, printBytes(buffer, bytes, length));
+ return FALSE;
+ case MBCS_STATE_FALLBACK_DIRECT_16:
+ case MBCS_STATE_VALID_DIRECT_16:
+ case MBCS_STATE_FALLBACK_DIRECT_20:
+ case MBCS_STATE_VALID_DIRECT_20:
+ if(MBCS_ENTRY_SET_STATE(entry, 0)!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, 0xfffe)) {
+ /* the "direct" action's value is not "valid-direct-16-unassigned" any more */
+ if(MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_DIRECT_16 || MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_FALLBACK_DIRECT_16) {
+ old=MBCS_ENTRY_FINAL_VALUE(entry);
+ } else {
+ old=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
+ }
+ if(flag>=0) {
+ fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
+ (int)c, printBytes(buffer, bytes, length), (int)old);
+ return FALSE;
+ } else if(VERBOSE) {
+ fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
+ (int)c, printBytes(buffer, bytes, length), (int)old);
+ }
+ /*
+ * Continue after the above warning
+ * if the precision of the mapping is unspecified.
+ */
+ }
+ /* reassign the correct action code */
+ entry=MBCS_ENTRY_FINAL_SET_ACTION(entry, (MBCS_STATE_VALID_DIRECT_16+(flag==3 ? 2 : 0)+(c>=0x10000 ? 1 : 0)));
+
+ /* put the code point into bits 22..7 for BMP, c-0x10000 into 26..7 for others */
+ if(c<=0xffff) {
+ entry=MBCS_ENTRY_FINAL_SET_VALUE(entry, c);
+ } else {
+ entry=MBCS_ENTRY_FINAL_SET_VALUE(entry, c-0x10000);
+ }
+ mbcsData->ucm->states.stateTable[state][bytes[i-1]]=entry;
+ break;
+ case MBCS_STATE_VALID_16:
+ /* bits 26..16 are not used, 0 */
+ /* bits 15..7 contain the final offset delta to one 16-bit code unit */
+ offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
+ /* check that this byte sequence is still unassigned */
+ if((old=mbcsData->unicodeCodeUnits[offset])!=0xfffe || (old=removeFallback(mbcsData, offset))!=-1) {
+ if(flag>=0) {
+ fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
+ (int)c, printBytes(buffer, bytes, length), (int)old);
+ return FALSE;
+ } else if(VERBOSE) {
+ fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
+ (int)c, printBytes(buffer, bytes, length), (int)old);
+ }
+ }
+ if(c>=0x10000) {
+ fprintf(stderr, "error: code point does not fit into valid-16-bit state at U+%04x<->0x%s\n",
+ (int)c, printBytes(buffer, bytes, length));
+ return FALSE;
+ }
+ if(flag>0) {
+ /* assign only if there is no precise mapping */
+ if(mbcsData->unicodeCodeUnits[offset]==0xfffe) {
+ return setFallback(mbcsData, offset, c);
+ }
+ } else {
+ mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
+ }
+ break;
+ case MBCS_STATE_VALID_16_PAIR:
+ /* bits 26..16 are not used, 0 */
+ /* bits 15..7 contain the final offset delta to two 16-bit code units */
+ offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
+ /* check that this byte sequence is still unassigned */
+ old=mbcsData->unicodeCodeUnits[offset];
+ if(old<0xfffe) {
+ int32_t real;
+ if(old<0xd800) {
+ real=old;
+ } else if(old<=0xdfff) {
+ real=0x10000+((old&0x3ff)<<10)+((mbcsData->unicodeCodeUnits[offset+1])&0x3ff);
+ } else /* old<=0xe001 */ {
+ real=mbcsData->unicodeCodeUnits[offset+1];
+ }
+ if(flag>=0) {
+ fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
+ (int)c, printBytes(buffer, bytes, length), (int)real);
+ return FALSE;
+ } else if(VERBOSE) {
+ fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
+ (int)c, printBytes(buffer, bytes, length), (int)real);
+ }
+ }
+ if(flag>0) {
+ /* assign only if there is no precise mapping */
+ if(old<=0xdbff || old==0xe000) {
+ /* do nothing */
+ } else if(c<=0xffff) {
+ /* set a BMP fallback code point as a pair with 0xe001 */
+ mbcsData->unicodeCodeUnits[offset++]=0xe001;
+ mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
+ } else {
+ /* set a fallback surrogate pair with two second surrogates */
+ mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xdbc0+(c>>10));
+ mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&0x3ff));
+ }
+ } else {
+ if(c<0xd800) {
+ /* set a BMP code point */
+ mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
+ } else if(c<=0xffff) {
+ /* set a BMP code point above 0xd800 as a pair with 0xe000 */
+ mbcsData->unicodeCodeUnits[offset++]=0xe000;
+ mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
+ } else {
+ /* set a surrogate pair */
+ mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xd7c0+(c>>10));
+ mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&0x3ff));
+ }
+ }
+ break;
+ default:
+ /* reserved, must never occur */
+ fprintf(stderr, "internal error: byte sequence reached reserved action code, entry 0x%02x: 0x%s (U+%x)\n",
+ (int)entry, printBytes(buffer, bytes, length), (int)c);
+ return FALSE;
+ }
+
+ return TRUE;
+ }
+ }
+}
+
+/* is this byte sequence valid? (this is almost the same as MBCSAddToUnicode()) */
+static UBool
+MBCSIsValid(NewConverter *cnvData,
+ const uint8_t *bytes, int32_t length) {
+ MBCSData *mbcsData=(MBCSData *)cnvData;
+
+ return (UBool)(1==ucm_countChars(&mbcsData->ucm->states, bytes, length));
+}
+
+static UBool
+MBCSSingleAddFromUnicode(MBCSData *mbcsData,
+ const uint8_t *bytes, int32_t length,
+ UChar32 c,
+ int8_t flag) {
+ uint16_t *stage3, *p;
+ uint32_t idx;
+ uint16_t old;
+ uint8_t b;
+
+ uint32_t blockSize, newTop, i, nextOffset, newBlock, min;
+
+ /* ignore |2 SUB mappings */
+ if(flag==2) {
+ return TRUE;
+ }
+
+ /*
+ * Walk down the triple-stage compact array ("trie") and
+ * allocate parts as necessary.
+ * Note that the first stage 2 and 3 blocks are reserved for all-unassigned mappings.
+ * We assume that length<=maxCharLength and that c<=0x10ffff.
+ */
+ stage3=(uint16_t *)mbcsData->fromUBytes;
+ b=*bytes;
+
+ /* inspect stage 1 */
+ idx=c>>MBCS_STAGE_1_SHIFT;
+ if(mbcsData->utf8Friendly && c<=SBCS_UTF8_MAX) {
+ nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK&~(MBCS_UTF8_STAGE_3_BLOCKS-1);
+ } else {
+ nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK;
+ }
+ if(mbcsData->stage1[idx]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) {
+ /* allocate another block in stage 2 */
+ newBlock=mbcsData->stage2Top;
+ if(mbcsData->utf8Friendly) {
+ min=newBlock-nextOffset; /* minimum block start with overlap */
+ while(min<newBlock && mbcsData->stage2Single[newBlock-1]==0) {
+ --newBlock;
+ }
+ }
+ newTop=newBlock+MBCS_STAGE_2_BLOCK_SIZE;
+
+ if(newTop>MBCS_MAX_STAGE_2_TOP) {
+ fprintf(stderr, "error: too many stage 2 entries at U+%04x<->0x%02x\n", (int)c, b);
+ return FALSE;
+ }
+
+ /*
+ * each stage 2 block contains 64 16-bit words:
+ * 6 code point bits 9..4 with 1 stage 3 index
+ */
+ mbcsData->stage1[idx]=(uint16_t)newBlock;
+ mbcsData->stage2Top=newTop;
+ }
+
+ /* inspect stage 2 */
+ idx=mbcsData->stage1[idx]+nextOffset;
+ if(mbcsData->utf8Friendly && c<=SBCS_UTF8_MAX) {
+ /* allocate 64-entry blocks for UTF-8-friendly lookup */
+ blockSize=MBCS_UTF8_STAGE_3_BLOCK_SIZE;
+ nextOffset=c&MBCS_UTF8_STAGE_3_BLOCK_MASK;
+ } else {
+ blockSize=MBCS_STAGE_3_BLOCK_SIZE;
+ nextOffset=c&MBCS_STAGE_3_BLOCK_MASK;
+ }
+ if(mbcsData->stage2Single[idx]==0) {
+ /* allocate another block in stage 3 */
+ newBlock=mbcsData->stage3Top;
+ if(mbcsData->utf8Friendly) {
+ min=newBlock-nextOffset; /* minimum block start with overlap */
+ while(min<newBlock && stage3[newBlock-1]==0) {
+ --newBlock;
+ }
+ }
+ newTop=newBlock+blockSize;
+
+ if(newTop>MBCS_STAGE_3_SBCS_SIZE) {
+ fprintf(stderr, "error: too many code points at U+%04x<->0x%02x\n", (int)c, b);
+ return FALSE;
+ }
+ /* each block has 16 uint16_t entries */
+ i=idx;
+ while(newBlock<newTop) {
+ mbcsData->stage2Single[i++]=(uint16_t)newBlock;
+ newBlock+=MBCS_STAGE_3_BLOCK_SIZE;
+ }
+ mbcsData->stage3Top=newTop; /* ==newBlock */
+ }
+
+ /* write the codepage entry into stage 3 and get the previous entry */
+ p=stage3+mbcsData->stage2Single[idx]+nextOffset;
+ old=*p;
+ if(flag<=0) {
+ *p=(uint16_t)(0xf00|b);
+ } else if(IS_PRIVATE_USE(c)) {
+ *p=(uint16_t)(0xc00|b);
+ } else {
+ *p=(uint16_t)(0x800|b);
+ }
+
+ /* check that this Unicode code point was still unassigned */
+ if(old>=0x100) {
+ if(flag>=0) {
+ fprintf(stderr, "error: duplicate Unicode code point at U+%04x<->0x%02x see 0x%02x\n",
+ (int)c, b, old&0xff);
+ return FALSE;
+ } else if(VERBOSE) {
+ fprintf(stderr, "duplicate Unicode code point at U+%04x<->0x%02x see 0x%02x\n",
+ (int)c, b, old&0xff);
+ }
+ /* continue after the above warning if the precision of the mapping is unspecified */
+ }
+
+ return TRUE;
+}
+
+static UBool
+MBCSAddFromUnicode(MBCSData *mbcsData,
+ const uint8_t *bytes, int32_t length,
+ UChar32 c,
+ int8_t flag) {
+ char buffer[10];
+ const uint8_t *pb;
+ uint8_t *stage3, *p;
+ uint32_t idx, b, old, stage3Index;
+ int32_t maxCharLength;
+
+ uint32_t blockSize, newTop, i, nextOffset, newBlock, min, overlap, maxOverlap;
+
+ maxCharLength=mbcsData->ucm->states.maxCharLength;
+
+ if( mbcsData->ucm->states.outputType==MBCS_OUTPUT_2_SISO &&
+ (!IGNORE_SISO_CHECK && (*bytes==0xe || *bytes==0xf))
+ ) {
+ fprintf(stderr, "error: illegal mapping to SI or SO for SI/SO codepage: U+%04x<->0x%s\n",
+ (int)c, printBytes(buffer, bytes, length));
+ return FALSE;
+ }
+
+ if(flag==1 && length==1 && *bytes==0) {
+ fprintf(stderr, "error: unable to encode a |1 fallback from U+%04x to 0x%02x\n",
+ (int)c, *bytes);
+ return FALSE;
+ }
+
+ /*
+ * Walk down the triple-stage compact array ("trie") and
+ * allocate parts as necessary.
+ * Note that the first stage 2 and 3 blocks are reserved for
+ * all-unassigned mappings.
+ * We assume that length<=maxCharLength and that c<=0x10ffff.
+ */
+ stage3=mbcsData->fromUBytes;
+
+ /* inspect stage 1 */
+ idx=c>>MBCS_STAGE_1_SHIFT;
+ if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) {
+ nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK&~(MBCS_UTF8_STAGE_3_BLOCKS-1);
+ } else {
+ nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK;
+ }
+ if(mbcsData->stage1[idx]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) {
+ /* allocate another block in stage 2 */
+ newBlock=mbcsData->stage2Top;
+ if(mbcsData->utf8Friendly) {
+ min=newBlock-nextOffset; /* minimum block start with overlap */
+ while(min<newBlock && mbcsData->stage2[newBlock-1]==0) {
+ --newBlock;
+ }
+ }
+ newTop=newBlock+MBCS_STAGE_2_BLOCK_SIZE;
+
+ if(newTop>MBCS_MAX_STAGE_2_TOP) {
+ fprintf(stderr, "error: too many stage 2 entries at U+%04x<->0x%s\n",
+ (int)c, printBytes(buffer, bytes, length));
+ return FALSE;
+ }
+
+ /*
+ * each stage 2 block contains 64 32-bit words:
+ * 6 code point bits 9..4 with value with bits 31..16 "assigned" flags and bits 15..0 stage 3 index
+ */
+ i=idx;
+ while(newBlock<newTop) {
+ mbcsData->stage1[i++]=(uint16_t)newBlock;
+ newBlock+=MBCS_STAGE_2_BLOCK_SIZE;
+ }
+ mbcsData->stage2Top=newTop; /* ==newBlock */
+ }
+
+ /* inspect stage 2 */
+ idx=mbcsData->stage1[idx]+nextOffset;
+ if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) {
+ /* allocate 64-entry blocks for UTF-8-friendly lookup */
+ blockSize=MBCS_UTF8_STAGE_3_BLOCK_SIZE*maxCharLength;
+ nextOffset=c&MBCS_UTF8_STAGE_3_BLOCK_MASK;
+ } else {
+ blockSize=MBCS_STAGE_3_BLOCK_SIZE*maxCharLength;
+ nextOffset=c&MBCS_STAGE_3_BLOCK_MASK;
+ }
+ if(mbcsData->stage2[idx]==0) {
+ /* allocate another block in stage 3 */
+ newBlock=mbcsData->stage3Top;
+ if(mbcsData->utf8Friendly && nextOffset>=MBCS_STAGE_3_GRANULARITY) {
+ /*
+ * Overlap stage 3 blocks only in multiples of 16-entry blocks
+ * because of the indexing granularity in stage 2.
+ */
+ maxOverlap=(nextOffset&~(MBCS_STAGE_3_GRANULARITY-1))*maxCharLength;
+ for(overlap=0;
+ overlap<maxOverlap && stage3[newBlock-overlap-1]==0;
+ ++overlap) {}
+
+ overlap=(overlap/MBCS_STAGE_3_GRANULARITY)/maxCharLength;
+ overlap=(overlap*MBCS_STAGE_3_GRANULARITY)*maxCharLength;
+
+ newBlock-=overlap;
+ }
+ newTop=newBlock+blockSize;
+
+ if(newTop>MBCS_STAGE_3_MBCS_SIZE*(uint32_t)maxCharLength) {
+ fprintf(stderr, "error: too many code points at U+%04x<->0x%s\n",
+ (int)c, printBytes(buffer, bytes, length));
+ return FALSE;
+ }
+ /* each block has 16*maxCharLength bytes */
+ i=idx;
+ while(newBlock<newTop) {
+ mbcsData->stage2[i++]=(newBlock/MBCS_STAGE_3_GRANULARITY)/maxCharLength;
+ newBlock+=MBCS_STAGE_3_BLOCK_SIZE*maxCharLength;
+ }
+ mbcsData->stage3Top=newTop; /* ==newBlock */
+ }
+
+ stage3Index=MBCS_STAGE_3_GRANULARITY*(uint32_t)(uint16_t)mbcsData->stage2[idx];
+
+ /* Build an alternate, UTF-8-friendly stage table as well. */
+ if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) {
+ /* Overflow for uint16_t entries in stageUTF8? */
+ if(stage3Index>0xffff) {
+ /*
+ * This can occur only if the mapping table is nearly perfectly filled and if
+ * utf8Max==0xffff.
+ * (There is no known charset like this. GB 18030 does not map
+ * surrogate code points and LMBCS does not map 256 PUA code points.)
+ *
+ * Otherwise, stage3Index<=MBCS_UTF8_LIMIT<0xffff
+ * (stage3Index can at most reach exactly MBCS_UTF8_LIMIT)
+ * because we have a sorted table and there are at most MBCS_UTF8_LIMIT
+ * mappings with 0<=c<MBCS_UTF8_LIMIT, and there is only also
+ * the initial all-unassigned block in stage3.
+ *
+ * Solution for the overflow: Reduce utf8Max to the next lower value, 0xfeff.
+ *
+ * (See svn revision 20866 of the markus/ucnvutf8 feature branch for
+ * code that causes MBCSAddTable() to rebuild the table not utf8Friendly
+ * in case of overflow. That code was not tested.)
+ */
+ mbcsData->utf8Max=0xfeff;
+ } else {
+ /*
+ * The stage 3 block has been assigned for the regular trie.
+ * Just copy its index into stageUTF8[], without the granularity.
+ */
+ mbcsData->stageUTF8[c>>MBCS_UTF8_STAGE_SHIFT]=(uint16_t)stage3Index;
+ }
+ }
+
+ /* write the codepage bytes into stage 3 and get the previous bytes */
+
+ /* assemble the bytes into a single integer */
+ pb=bytes;
+ b=0;
+ switch(length) {
+ case 4:
+ b=*pb++;
+ case 3:
+ b=(b<<8)|*pb++;
+ case 2:
+ b=(b<<8)|*pb++;
+ case 1:
+ default:
+ b=(b<<8)|*pb++;
+ break;
+ }
+
+ old=0;
+ p=stage3+(stage3Index+nextOffset)*maxCharLength;
+ switch(maxCharLength) {
+ case 2:
+ old=*(uint16_t *)p;
+ *(uint16_t *)p=(uint16_t)b;
+ break;
+ case 3:
+ old=(uint32_t)*p<<16;
+ *p++=(uint8_t)(b>>16);
+ old|=(uint32_t)*p<<8;
+ *p++=(uint8_t)(b>>8);
+ old|=*p;
+ *p=(uint8_t)b;
+ break;
+ case 4:
+ old=*(uint32_t *)p;
+ *(uint32_t *)p=b;
+ break;
+ default:
+ /* will never occur */
+ break;
+ }
+
+ /* check that this Unicode code point was still unassigned */
+ if((mbcsData->stage2[idx+(nextOffset>>MBCS_STAGE_2_SHIFT)]&(1UL<<(16+(c&0xf))))!=0 || old!=0) {
+ if(flag>=0) {
+ fprintf(stderr, "error: duplicate Unicode code point at U+%04x<->0x%s see 0x%02x\n",
+ (int)c, printBytes(buffer, bytes, length), (int)old);
+ return FALSE;
+ } else if(VERBOSE) {
+ fprintf(stderr, "duplicate Unicode code point at U+%04x<->0x%s see 0x%02x\n",
+ (int)c, printBytes(buffer, bytes, length), (int)old);
+ }
+ /* continue after the above warning if the precision of the mapping is
+ unspecified */
+ }
+ if(flag<=0) {
+ /* set the roundtrip flag */
+ mbcsData->stage2[idx+(nextOffset>>4)]|=(1UL<<(16+(c&0xf)));
+ }
+
+ return TRUE;
+}
+
+U_CFUNC UBool
+MBCSOkForBaseFromUnicode(const MBCSData *mbcsData,
+ const uint8_t *bytes, int32_t length,
+ UChar32 c, int8_t flag) {
+ /*
+ * A 1:1 mapping does not fit into the MBCS base table's fromUnicode table under
+ * the following conditions:
+ *
+ * - a |2 SUB mapping for <subchar1> (no base table data structure for them)
+ * - a |1 fallback to 0x00 (result value 0, indistinguishable from unmappable entry)
+ * - a multi-byte mapping with leading 0x00 bytes (no explicit length field)
+ *
+ * Some of these tests are redundant with ucm_mappingType().
+ */
+ if( (flag==2 && length==1) ||
+ (flag==1 && bytes[0]==0) || /* testing length==1 would be redundant with the next test */
+ (flag<=1 && length>1 && bytes[0]==0)
+ ) {
+ return FALSE;
+ }
+
+ /*
+ * Additional restrictions for UTF-8-friendly fromUnicode tables,
+ * for code points up to the maximum optimized one:
+ *
+ * - any mapping to 0x00 (result value 0, indistinguishable from unmappable entry)
+ * - any |1 fallback (no roundtrip flags in the optimized table)
+ */
+ if(mbcsData->utf8Friendly && flag<=1 && c<=mbcsData->utf8Max && (bytes[0]==0 || flag==1)) {
+ return FALSE;
+ }
+
+ /*
+ * If we omit the fromUnicode data, we can only store roundtrips there
+ * because only they are recoverable from the toUnicode data.
+ * Fallbacks must go into the extension table.
+ */
+ if(mbcsData->omitFromU && flag!=0) {
+ return FALSE;
+ }
+
+ /* All other mappings do fit into the base table. */
+ return TRUE;
+}
+
+/* we can assume that the table only contains 1:1 mappings with <=4 bytes each */
+static UBool
+MBCSAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData) {
+ MBCSData *mbcsData;
+ UCMapping *m;
+ UChar32 c;
+ int32_t i, maxCharLength;
+ int8_t f;
+ UBool isOK, utf8Friendly;
+
+ staticData->unicodeMask=table->unicodeMask;
+ if(staticData->unicodeMask==3) {
+ fprintf(stderr, "error: contains mappings for both supplementary and surrogate code points\n");
+ return FALSE;
+ }
+
+ staticData->conversionType=UCNV_MBCS;
+
+ mbcsData=(MBCSData *)cnvData;
+ maxCharLength=mbcsData->ucm->states.maxCharLength;
+
+ /*
+ * Generation of UTF-8-friendly data requires
+ * a sorted table, which makeconv generates when explicit precision
+ * indicators are used.
+ */
+ mbcsData->utf8Friendly=utf8Friendly=(UBool)((table->flagsType&UCM_FLAGS_EXPLICIT)!=0);
+ if(utf8Friendly) {
+ mbcsData->utf8Max=MBCS_UTF8_MAX;
+ if(SMALL && maxCharLength>1) {
+ mbcsData->omitFromU=TRUE;
+ }
+ } else {
+ mbcsData->utf8Max=0;
+ if(SMALL && maxCharLength>1) {
+ fprintf(stderr,
+ "makeconv warning: --small not available for .ucm files without |0 etc.\n");
+ }
+ }
+
+ if(!MBCSStartMappings(mbcsData)) {
+ return FALSE;
+ }
+
+ staticData->hasFromUnicodeFallback=FALSE;
+ staticData->hasToUnicodeFallback=FALSE;
+
+ isOK=TRUE;
+
+ m=table->mappings;
+ for(i=0; i<table->mappingsLength; ++m, ++i) {
+ c=m->u;
+ f=m->f;
+
+ /*
+ * Small optimization for --small .cnv files:
+ *
+ * If there are fromUnicode mappings above MBCS_UTF8_MAX,
+ * then the file size will be smaller if we make utf8Max larger
+ * because the size increase in stageUTF8 will be more than balanced by
+ * how much less of stage2 needs to be stored.
+ *
+ * There is no point in doing this incrementally because stageUTF8
+ * uses so much less space per block than stage2,
+ * so we immediately increase utf8Max to 0xffff.
+ *
+ * Do not increase utf8Max if it is already at 0xfeff because MBCSAddFromUnicode()
+ * sets it to that value when stageUTF8 overflows.
+ */
+ if( mbcsData->omitFromU && f<=1 &&
+ mbcsData->utf8Max<c && c<=0xffff &&
+ mbcsData->utf8Max<0xfeff
+ ) {
+ mbcsData->utf8Max=0xffff;
+ }
+
+ switch(f) {
+ case -1:
+ /* there was no precision/fallback indicator */
+ /* fall through to set the mappings */
+ case 0:
+ /* set roundtrip mappings */
+ isOK&=MBCSAddToUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
+
+ if(maxCharLength==1) {
+ isOK&=MBCSSingleAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
+ } else if(MBCSOkForBaseFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f)) {
+ isOK&=MBCSAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
+ } else {
+ m->f|=MBCS_FROM_U_EXT_FLAG;
+ m->moveFlag=UCM_MOVE_TO_EXT;
+ }
+ break;
+ case 1:
+ /* set only a fallback mapping from Unicode to codepage */
+ if(maxCharLength==1) {
+ staticData->hasFromUnicodeFallback=TRUE;
+ isOK&=MBCSSingleAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
+ } else if(MBCSOkForBaseFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f)) {
+ staticData->hasFromUnicodeFallback=TRUE;
+ isOK&=MBCSAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
+ } else {
+ m->f|=MBCS_FROM_U_EXT_FLAG;
+ m->moveFlag=UCM_MOVE_TO_EXT;
+ }
+ break;
+ case 2:
+ /* ignore |2 SUB mappings, except to move <subchar1> mappings to the extension table */
+ if(maxCharLength>1 && m->bLen==1) {
+ m->f|=MBCS_FROM_U_EXT_FLAG;
+ m->moveFlag=UCM_MOVE_TO_EXT;
+ }
+ break;
+ case 3:
+ /* set only a fallback mapping from codepage to Unicode */
+ staticData->hasToUnicodeFallback=TRUE;
+ isOK&=MBCSAddToUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
+ break;
+ default:
+ /* will not occur because the parser checked it already */
+ fprintf(stderr, "error: illegal fallback indicator %d\n", f);
+ return FALSE;
+ }
+ }
+
+ MBCSPostprocess(mbcsData, staticData);
+
+ return isOK;
+}
+
+static UBool
+transformEUC(MBCSData *mbcsData) {
+ uint8_t *p8;
+ uint32_t i, value, oldLength, old3Top, new3Top;
+ uint8_t b;
+
+ oldLength=mbcsData->ucm->states.maxCharLength;
+ if(oldLength<3) {
+ return FALSE;
+ }
+
+ old3Top=mbcsData->stage3Top;
+
+ /* careful: 2-byte and 4-byte codes are stored in platform endianness! */
+
+ /* test if all first bytes are in {0, 0x8e, 0x8f} */
+ p8=mbcsData->fromUBytes;
+
+#if !U_IS_BIG_ENDIAN
+ if(oldLength==4) {
+ p8+=3;
+ }
+#endif
+
+ for(i=0; i<old3Top; i+=oldLength) {
+ b=p8[i];
+ if(b!=0 && b!=0x8e && b!=0x8f) {
+ /* some first byte does not fit the EUC pattern, nothing to be done */
+ return FALSE;
+ }
+ }
+ /* restore p if it was modified above */
+ p8=mbcsData->fromUBytes;
+
+ /* modify outputType and adjust stage3Top */
+ mbcsData->ucm->states.outputType=(int8_t)(MBCS_OUTPUT_3_EUC+oldLength-3);
+ mbcsData->stage3Top=new3Top=(old3Top*(oldLength-1))/oldLength;
+
+ /*
+ * EUC-encode all byte sequences;
+ * see "CJKV Information Processing" (1st ed. 1999) from Ken Lunde, O'Reilly,
+ * p. 161 in chapter 4 "Encoding Methods"
+ *
+ * This also must reverse the byte order if the platform is little-endian!
+ */
+ if(oldLength==3) {
+ uint16_t *q=(uint16_t *)p8;
+ for(i=0; i<old3Top; i+=oldLength) {
+ b=*p8;
+ if(b==0) {
+ /* short sequences are stored directly */
+ /* code set 0 or 1 */
+ (*q++)=(uint16_t)((p8[1]<<8)|p8[2]);
+ } else if(b==0x8e) {
+ /* code set 2 */
+ (*q++)=(uint16_t)(((p8[1]&0x7f)<<8)|p8[2]);
+ } else /* b==0x8f */ {
+ /* code set 3 */
+ (*q++)=(uint16_t)((p8[1]<<8)|(p8[2]&0x7f));
+ }
+ p8+=3;
+ }
+ } else /* oldLength==4 */ {
+ uint8_t *q=p8;
+ uint32_t *p32=(uint32_t *)p8;
+ for(i=0; i<old3Top; i+=4) {
+ value=(*p32++);
+ if(value<=0xffffff) {
+ /* short sequences are stored directly */
+ /* code set 0 or 1 */
+ (*q++)=(uint8_t)(value>>16);
+ (*q++)=(uint8_t)(value>>8);
+ (*q++)=(uint8_t)value;
+ } else if(value<=0x8effffff) {
+ /* code set 2 */
+ (*q++)=(uint8_t)((value>>16)&0x7f);
+ (*q++)=(uint8_t)(value>>8);
+ (*q++)=(uint8_t)value;
+ } else /* first byte is 0x8f */ {
+ /* code set 3 */
+ (*q++)=(uint8_t)(value>>16);
+ (*q++)=(uint8_t)((value>>8)&0x7f);
+ (*q++)=(uint8_t)value;
+ }
+ }
+ }
+
+ return TRUE;
+}
+
+/*
+ * Compact stage 2 for SBCS by overlapping adjacent stage 2 blocks as far
+ * as possible. Overlapping is done on unassigned head and tail
+ * parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER.
+ * Stage 1 indexes need to be adjusted accordingly.
+ * This function is very similar to genprops/store.c/compactStage().
+ */
+static void
+singleCompactStage2(MBCSData *mbcsData) {
+ /* this array maps the ordinal number of a stage 2 block to its new stage 1 index */
+ uint16_t map[MBCS_STAGE_2_MAX_BLOCKS];
+ uint16_t i, start, prevEnd, newStart;
+
+ /* enter the all-unassigned first stage 2 block into the map */
+ map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX;
+
+ /* begin with the first block after the all-unassigned one */
+ start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED;
+ while(start<mbcsData->stage2Top) {
+ prevEnd=(uint16_t)(newStart-1);
+
+ /* find the size of the overlap */
+ for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->stage2Single[start+i]==0 && mbcsData->stage2Single[prevEnd-i]==0; ++i) {}
+
+ if(i>0) {
+ map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i);
+
+ /* move the non-overlapping indexes to their new positions */
+ start+=i;
+ for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) {
+ mbcsData->stage2Single[newStart++]=mbcsData->stage2Single[start++];
+ }
+ } else if(newStart<start) {
+ /* move the indexes to their new positions */
+ map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart;
+ for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) {
+ mbcsData->stage2Single[newStart++]=mbcsData->stage2Single[start++];
+ }
+ } else /* no overlap && newStart==start */ {
+ map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start;
+ start=newStart+=MBCS_STAGE_2_BLOCK_SIZE;
+ }
+ }
+
+ /* adjust stage2Top */
+ if(VERBOSE && newStart<mbcsData->stage2Top) {
+ printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld bytes\n",
+ (unsigned long)mbcsData->stage2Top, (unsigned long)newStart,
+ (long)(mbcsData->stage2Top-newStart)*2);
+ }
+ mbcsData->stage2Top=newStart;
+
+ /* now adjust stage 1 */
+ for(i=0; i<MBCS_STAGE_1_SIZE; ++i) {
+ mbcsData->stage1[i]=map[mbcsData->stage1[i]>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT];
+ }
+}
+
+/* Compact stage 3 for SBCS - same algorithm as above. */
+static void
+singleCompactStage3(MBCSData *mbcsData) {
+ uint16_t *stage3=(uint16_t *)mbcsData->fromUBytes;
+
+ /* this array maps the ordinal number of a stage 3 block to its new stage 2 index */
+ uint16_t map[0x1000];
+ uint16_t i, start, prevEnd, newStart;
+
+ /* enter the all-unassigned first stage 3 block into the map */
+ map[0]=0;
+
+ /* begin with the first block after the all-unassigned one */
+ start=newStart=16;
+ while(start<mbcsData->stage3Top) {
+ prevEnd=(uint16_t)(newStart-1);
+
+ /* find the size of the overlap */
+ for(i=0; i<16 && stage3[start+i]==0 && stage3[prevEnd-i]==0; ++i) {}
+
+ if(i>0) {
+ map[start>>4]=(uint16_t)(newStart-i);
+
+ /* move the non-overlapping indexes to their new positions */
+ start+=i;
+ for(i=(uint16_t)(16-i); i>0; --i) {
+ stage3[newStart++]=stage3[start++];
+ }
+ } else if(newStart<start) {
+ /* move the indexes to their new positions */
+ map[start>>4]=newStart;
+ for(i=16; i>0; --i) {
+ stage3[newStart++]=stage3[start++];
+ }
+ } else /* no overlap && newStart==start */ {
+ map[start>>4]=start;
+ start=newStart+=16;
+ }
+ }
+
+ /* adjust stage3Top */
+ if(VERBOSE && newStart<mbcsData->stage3Top) {
+ printf("compacting stage 3 from stage3Top=0x%lx to 0x%lx, saving %ld bytes\n",
+ (unsigned long)mbcsData->stage3Top, (unsigned long)newStart,
+ (long)(mbcsData->stage3Top-newStart)*2);
+ }
+ mbcsData->stage3Top=newStart;
+
+ /* now adjust stage 2 */
+ for(i=0; i<mbcsData->stage2Top; ++i) {
+ mbcsData->stage2Single[i]=map[mbcsData->stage2Single[i]>>4];
+ }
+}
+
+/*
+ * Compact stage 2 by overlapping adjacent stage 2 blocks as far
+ * as possible. Overlapping is done on unassigned head and tail
+ * parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER.
+ * Stage 1 indexes need to be adjusted accordingly.
+ * This function is very similar to genprops/store.c/compactStage().
+ */
+static void
+compactStage2(MBCSData *mbcsData) {
+ /* this array maps the ordinal number of a stage 2 block to its new stage 1 index */
+ uint16_t map[MBCS_STAGE_2_MAX_BLOCKS];
+ uint16_t i, start, prevEnd, newStart;
+
+ /* enter the all-unassigned first stage 2 block into the map */
+ map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX;
+
+ /* begin with the first block after the all-unassigned one */
+ start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED;
+ while(start<mbcsData->stage2Top) {
+ prevEnd=(uint16_t)(newStart-1);
+
+ /* find the size of the overlap */
+ for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->stage2[start+i]==0 && mbcsData->stage2[prevEnd-i]==0; ++i) {}
+
+ if(i>0) {
+ map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i);
+
+ /* move the non-overlapping indexes to their new positions */
+ start+=i;
+ for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) {
+ mbcsData->stage2[newStart++]=mbcsData->stage2[start++];
+ }
+ } else if(newStart<start) {
+ /* move the indexes to their new positions */
+ map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart;
+ for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) {
+ mbcsData->stage2[newStart++]=mbcsData->stage2[start++];
+ }
+ } else /* no overlap && newStart==start */ {
+ map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start;
+ start=newStart+=MBCS_STAGE_2_BLOCK_SIZE;
+ }
+ }
+
+ /* adjust stage2Top */
+ if(VERBOSE && newStart<mbcsData->stage2Top) {
+ printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld bytes\n",
+ (unsigned long)mbcsData->stage2Top, (unsigned long)newStart,
+ (long)(mbcsData->stage2Top-newStart)*4);
+ }
+ mbcsData->stage2Top=newStart;
+
+ /* now adjust stage 1 */
+ for(i=0; i<MBCS_STAGE_1_SIZE; ++i) {
+ mbcsData->stage1[i]=map[mbcsData->stage1[i]>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT];
+ }
+}
+
+static void
+MBCSPostprocess(MBCSData *mbcsData, const UConverterStaticData *staticData) {
+ UCMStates *states;
+ int32_t maxCharLength, stage3Width;
+
+ states=&mbcsData->ucm->states;
+ stage3Width=maxCharLength=states->maxCharLength;
+
+ ucm_optimizeStates(states,
+ &mbcsData->unicodeCodeUnits,
+ mbcsData->toUFallbacks, mbcsData->countToUFallbacks,
+ VERBOSE);
+
+ /* try to compact the fromUnicode tables */
+ if(transformEUC(mbcsData)) {
+ --stage3Width;
+ }
+
+ /*
+ * UTF-8-friendly tries are built precompacted, to cope with variable
+ * stage 3 allocation block sizes.
+ *
+ * Tables without precision indicators cannot be built that way,
+ * because if a block was overlapped with a previous one, then a smaller
+ * code point for the same block would not fit.
+ * Therefore, such tables are not marked UTF-8-friendly and must be
+ * compacted after all mappings are entered.
+ */
+ if(!mbcsData->utf8Friendly) {
+ if(maxCharLength==1) {
+ singleCompactStage3(mbcsData);
+ singleCompactStage2(mbcsData);
+ } else {
+ compactStage2(mbcsData);
+ }
+ }
+
+ if(VERBOSE) {
+ /*uint32_t c, i1, i2, i2Limit, i3;*/
+
+ printf("fromUnicode number of uint%s_t in stage 2: 0x%lx=%lu\n",
+ maxCharLength==1 ? "16" : "32",
+ (unsigned long)mbcsData->stage2Top,
+ (unsigned long)mbcsData->stage2Top);
+ printf("fromUnicode number of %d-byte stage 3 mapping entries: 0x%lx=%lu\n",
+ (int)stage3Width,
+ (unsigned long)mbcsData->stage3Top/stage3Width,
+ (unsigned long)mbcsData->stage3Top/stage3Width);
+#if 0
+ c=0;
+ for(i1=0; i1<MBCS_STAGE_1_SIZE; ++i1) {
+ i2=mbcsData->stage1[i1];
+ if(i2==0) {
+ c+=MBCS_STAGE_2_BLOCK_SIZE*MBCS_STAGE_3_BLOCK_SIZE;
+ continue;
+ }
+ for(i2Limit=i2+MBCS_STAGE_2_BLOCK_SIZE; i2<i2Limit; ++i2) {
+ if(maxCharLength==1) {
+ i3=mbcsData->stage2Single[i2];
+ } else {
+ i3=(uint16_t)mbcsData->stage2[i2];
+ }
+ if(i3==0) {
+ c+=MBCS_STAGE_3_BLOCK_SIZE;
+ continue;
+ }
+ printf("U+%04lx i1=0x%02lx i2=0x%04lx i3=0x%04lx\n",
+ (unsigned long)c,
+ (unsigned long)i1,
+ (unsigned long)i2,
+ (unsigned long)i3);
+ c+=MBCS_STAGE_3_BLOCK_SIZE;
+ }
+ }
+#endif
+ }
+}
+
+static uint32_t
+MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
+ UNewDataMemory *pData, int32_t tableType) {
+ MBCSData *mbcsData=(MBCSData *)cnvData;
+ uint32_t stage2Start, stage2Length;
+ uint32_t top, stageUTF8Length=0;
+ int32_t i, stage1Top;
+ uint32_t headerLength;
+
+ _MBCSHeader header={ { 0, 0, 0, 0 }, 0, 0, 0, 0, 0, 0, 0 };
+
+ stage2Length=mbcsData->stage2Top;
+ if(mbcsData->omitFromU) {
+ /* find how much of stage2 can be omitted */
+ int32_t utf8Limit=(int32_t)mbcsData->utf8Max+1;
+ uint32_t st2=0; /*initialized it to avoid compiler warnings */
+
+ i=utf8Limit>>MBCS_STAGE_1_SHIFT;
+ if((utf8Limit&((1<<MBCS_STAGE_1_SHIFT)-1))!=0 && (st2=mbcsData->stage1[i])!=0) {
+ /* utf8Limit is in the middle of an existing stage 2 block */
+ stage2Start=st2+((utf8Limit>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK);
+ } else {
+ /* find the last stage2 block with mappings before utf8Limit */
+ while(i>0 && (st2=mbcsData->stage1[--i])==0) {}
+ /* stage2 up to the end of this block corresponds to stageUTF8 */
+ stage2Start=st2+MBCS_STAGE_2_BLOCK_SIZE;
+ }
+ header.options|=MBCS_OPT_NO_FROM_U;
+ header.fullStage2Length=stage2Length;
+ stage2Length-=stage2Start;
+ if(VERBOSE) {
+ printf("+ omitting %lu out of %lu stage2 entries and %lu fromUBytes\n",
+ (unsigned long)stage2Start,
+ (unsigned long)mbcsData->stage2Top,
+ (unsigned long)mbcsData->stage3Top);
+ printf("+ total size savings: %lu bytes\n", (unsigned long)stage2Start*4+mbcsData->stage3Top);
+ }
+ } else {
+ stage2Start=0;
+ }
+
+ if(staticData->unicodeMask&UCNV_HAS_SUPPLEMENTARY) {
+ stage1Top=MBCS_STAGE_1_SIZE; /* 0x440==1088 */
+ } else {
+ stage1Top=0x40; /* 0x40==64 */
+ }
+
+ /* adjust stage 1 entries to include the size of stage 1 in the offsets to stage 2 */
+ if(mbcsData->ucm->states.maxCharLength==1) {
+ for(i=0; i<stage1Top; ++i) {
+ mbcsData->stage1[i]+=(uint16_t)stage1Top;
+ }
+
+ /* stage2Top/Length have counted 16-bit results, now we need to count bytes */
+ /* also round up to a multiple of 4 bytes */
+ stage2Length=(stage2Length*2+1)&~1;
+
+ /* stage3Top has counted 16-bit results, now we need to count bytes */
+ mbcsData->stage3Top*=2;
+
+ if(mbcsData->utf8Friendly) {
+ header.version[2]=(uint8_t)(SBCS_UTF8_MAX>>8); /* store 0x1f for max==0x1fff */
+ }
+ } else {
+ for(i=0; i<stage1Top; ++i) {
+ mbcsData->stage1[i]+=(uint16_t)stage1Top/2; /* stage 2 contains 32-bit entries, stage 1 16-bit entries */
+ }
+
+ /* stage2Top/Length have counted 32-bit results, now we need to count bytes */
+ stage2Length*=4;
+ /* leave stage2Start counting 32-bit units */
+
+ if(mbcsData->utf8Friendly) {
+ stageUTF8Length=(mbcsData->utf8Max+1)>>MBCS_UTF8_STAGE_SHIFT;
+ header.version[2]=(uint8_t)(mbcsData->utf8Max>>8); /* store 0xd7 for max==0xd7ff */
+ }
+
+ /* stage3Top has already counted bytes */
+ }
+
+ /* round up stage3Top so that the sizes of all data blocks are multiples of 4 */
+ mbcsData->stage3Top=(mbcsData->stage3Top+3)&~3;
+
+ /* fill the header */
+ if(header.options&MBCS_OPT_INCOMPATIBLE_MASK) {
+ header.version[0]=5;
+ if(header.options&MBCS_OPT_NO_FROM_U) {
+ headerLength=10; /* include fullStage2Length */
+ } else {
+ headerLength=MBCS_HEADER_V5_MIN_LENGTH; /* 9 */
+ }
+ } else {
+ header.version[0]=4;
+ headerLength=MBCS_HEADER_V4_LENGTH; /* 8 */
+ }
+ header.version[1]=3;
+ /* header.version[2] set above for utf8Friendly data */
+
+ header.options|=(uint32_t)headerLength;
+
+ header.countStates=mbcsData->ucm->states.countStates;
+ header.countToUFallbacks=mbcsData->countToUFallbacks;
+
+ header.offsetToUCodeUnits=
+ headerLength*4+
+ mbcsData->ucm->states.countStates*1024+
+ mbcsData->countToUFallbacks*sizeof(_MBCSToUFallback);
+ header.offsetFromUTable=
+ header.offsetToUCodeUnits+
+ mbcsData->ucm->states.countToUCodeUnits*2;
+ header.offsetFromUBytes=
+ header.offsetFromUTable+
+ stage1Top*2+
+ stage2Length;
+ header.fromUBytesLength=mbcsData->stage3Top;
+
+ top=header.offsetFromUBytes+stageUTF8Length*2;
+ if(!(header.options&MBCS_OPT_NO_FROM_U)) {
+ top+=header.fromUBytesLength;
+ }
+
+ header.flags=(uint8_t)(mbcsData->ucm->states.outputType);
+
+ if(tableType&TABLE_EXT) {
+ if(top>0xffffff) {
+ fprintf(stderr, "error: offset 0x%lx to extension table exceeds 0xffffff\n", (long)top);
+ return 0;
+ }
+
+ header.flags|=top<<8;
+ }
+
+ /* write the MBCS data */
+ udata_writeBlock(pData, &header, headerLength*4);
+ udata_writeBlock(pData, mbcsData->ucm->states.stateTable, header.countStates*1024);
+ udata_writeBlock(pData, mbcsData->toUFallbacks, mbcsData->countToUFallbacks*sizeof(_MBCSToUFallback));
+ udata_writeBlock(pData, mbcsData->unicodeCodeUnits, mbcsData->ucm->states.countToUCodeUnits*2);
+ udata_writeBlock(pData, mbcsData->stage1, stage1Top*2);
+ if(mbcsData->ucm->states.maxCharLength==1) {
+ udata_writeBlock(pData, mbcsData->stage2Single+stage2Start, stage2Length);
+ } else {
+ udata_writeBlock(pData, mbcsData->stage2+stage2Start, stage2Length);
+ }
+ if(!(header.options&MBCS_OPT_NO_FROM_U)) {
+ udata_writeBlock(pData, mbcsData->fromUBytes, mbcsData->stage3Top);
+ }
+
+ if(stageUTF8Length>0) {
+ udata_writeBlock(pData, mbcsData->stageUTF8, stageUTF8Length*2);
+ }
+
+ /* return the number of bytes that should have been written */
+ return top;
+}