summaryrefslogtreecommitdiff
path: root/Build/source/libs/icu/icu-4.6/common/ucnv2022.c
diff options
context:
space:
mode:
Diffstat (limited to 'Build/source/libs/icu/icu-4.6/common/ucnv2022.c')
-rw-r--r--Build/source/libs/icu/icu-4.6/common/ucnv2022.c3917
1 files changed, 3917 insertions, 0 deletions
diff --git a/Build/source/libs/icu/icu-4.6/common/ucnv2022.c b/Build/source/libs/icu/icu-4.6/common/ucnv2022.c
new file mode 100644
index 00000000000..22ebe244c83
--- /dev/null
+++ b/Build/source/libs/icu/icu-4.6/common/ucnv2022.c
@@ -0,0 +1,3917 @@
+/*
+**********************************************************************
+* Copyright (C) 2000-2010, International Business Machines
+* Corporation and others. All Rights Reserved.
+**********************************************************************
+* file name: ucnv2022.c
+* encoding: US-ASCII
+* tab size: 8 (not used)
+* indentation:4
+*
+* created on: 2000feb03
+* created by: Markus W. Scherer
+*
+* Change history:
+*
+* 06/29/2000 helena Major rewrite of the callback APIs.
+* 08/08/2000 Ram Included support for ISO-2022-JP-2
+* Changed implementation of toUnicode
+* function
+* 08/21/2000 Ram Added support for ISO-2022-KR
+* 08/29/2000 Ram Seperated implementation of EBCDIC to
+* ucnvebdc.c
+* 09/20/2000 Ram Added support for ISO-2022-CN
+* Added implementations for getNextUChar()
+* for specific 2022 country variants.
+* 10/31/2000 Ram Implemented offsets logic functions
+*/
+
+#include "unicode/utypes.h"
+
+#if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION
+
+#include "unicode/ucnv.h"
+#include "unicode/uset.h"
+#include "unicode/ucnv_err.h"
+#include "unicode/ucnv_cb.h"
+#include "ucnv_imp.h"
+#include "ucnv_bld.h"
+#include "ucnv_cnv.h"
+#include "ucnvmbcs.h"
+#include "cstring.h"
+#include "cmemory.h"
+
+#define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0]))
+
+#ifdef U_ENABLE_GENERIC_ISO_2022
+/*
+ * I am disabling the generic ISO-2022 converter after proposing to do so on
+ * the icu mailing list two days ago.
+ *
+ * Reasons:
+ * 1. It does not fully support the ISO-2022/ECMA-35 specification with all of
+ * its designation sequences, single shifts with return to the previous state,
+ * switch-with-no-return to UTF-16BE or similar, etc.
+ * This is unlike the language-specific variants like ISO-2022-JP which
+ * require a much smaller repertoire of ISO-2022 features.
+ * These variants continue to be supported.
+ * 2. I believe that no one is really using the generic ISO-2022 converter
+ * but rather always one of the language-specific variants.
+ * Note that ICU's generic ISO-2022 converter has always output one escape
+ * sequence followed by UTF-8 for the whole stream.
+ * 3. Switching between subcharsets is extremely slow, because each time
+ * the previous converter is closed and a new one opened,
+ * without any kind of caching, least-recently-used list, etc.
+ * 4. The code is currently buggy, and given the above it does not seem
+ * reasonable to spend the time on maintenance.
+ * 5. ISO-2022 subcharsets should normally be used with 7-bit byte encodings.
+ * This means, for example, that when ISO-8859-7 is designated, the following
+ * ISO-2022 bytes 00..7f should be interpreted as ISO-8859-7 bytes 80..ff.
+ * The ICU ISO-2022 converter does not handle this - and has no information
+ * about which subconverter would have to be shifted vs. which is designed
+ * for 7-bit ISO-2022.
+ *
+ * Markus Scherer 2003-dec-03
+ */
+#endif
+
+static const char SHIFT_IN_STR[] = "\x0F";
+static const char SHIFT_OUT_STR[] = "\x0E";
+
+#define CR 0x0D
+#define LF 0x0A
+#define H_TAB 0x09
+#define V_TAB 0x0B
+#define SPACE 0x20
+
+enum {
+ HWKANA_START=0xff61,
+ HWKANA_END=0xff9f
+};
+
+/*
+ * 94-character sets with native byte values A1..FE are encoded in ISO 2022
+ * as bytes 21..7E. (Subtract 0x80.)
+ * 96-character sets with native byte values A0..FF are encoded in ISO 2022
+ * as bytes 20..7F. (Subtract 0x80.)
+ * Do not encode C1 control codes with native bytes 80..9F
+ * as bytes 00..1F (C0 control codes).
+ */
+enum {
+ GR94_START=0xa1,
+ GR94_END=0xfe,
+ GR96_START=0xa0,
+ GR96_END=0xff
+};
+
+/*
+ * ISO 2022 control codes must not be converted from Unicode
+ * because they would mess up the byte stream.
+ * The bit mask 0x0800c000 has bits set at bit positions 0xe, 0xf, 0x1b
+ * corresponding to SO, SI, and ESC.
+ */
+#define IS_2022_CONTROL(c) (((c)<0x20) && (((uint32_t)1<<(c))&0x0800c000)!=0)
+
+/* for ISO-2022-JP and -CN implementations */
+typedef enum {
+ /* shared values */
+ INVALID_STATE=-1,
+ ASCII = 0,
+
+ SS2_STATE=0x10,
+ SS3_STATE,
+
+ /* JP */
+ ISO8859_1 = 1 ,
+ ISO8859_7 = 2 ,
+ JISX201 = 3,
+ JISX208 = 4,
+ JISX212 = 5,
+ GB2312 =6,
+ KSC5601 =7,
+ HWKANA_7BIT=8, /* Halfwidth Katakana 7 bit */
+
+ /* CN */
+ /* the first few enum constants must keep their values because they correspond to myConverterArray[] */
+ GB2312_1=1,
+ ISO_IR_165=2,
+ CNS_11643=3,
+
+ /*
+ * these are used in StateEnum and ISO2022State variables,
+ * but CNS_11643 must be used to index into myConverterArray[]
+ */
+ CNS_11643_0=0x20,
+ CNS_11643_1,
+ CNS_11643_2,
+ CNS_11643_3,
+ CNS_11643_4,
+ CNS_11643_5,
+ CNS_11643_6,
+ CNS_11643_7
+} StateEnum;
+
+/* is the StateEnum charset value for a DBCS charset? */
+#define IS_JP_DBCS(cs) (JISX208<=(cs) && (cs)<=KSC5601)
+
+#define CSM(cs) ((uint16_t)1<<(cs))
+
+/*
+ * Each of these charset masks (with index x) contains a bit for a charset in exact correspondence
+ * to whether that charset is used in the corresponding version x of ISO_2022,locale=ja,version=x
+ *
+ * Note: The converter uses some leniency:
+ * - The escape sequence ESC ( I for half-width 7-bit Katakana is recognized in
+ * all versions, not just JIS7 and JIS8.
+ * - ICU does not distinguish between different versions of JIS X 0208.
+ */
+enum { MAX_JA_VERSION=4 };
+static const uint16_t jpCharsetMasks[MAX_JA_VERSION+1]={
+ CSM(ASCII)|CSM(JISX201)|CSM(JISX208)|CSM(HWKANA_7BIT),
+ CSM(ASCII)|CSM(JISX201)|CSM(JISX208)|CSM(HWKANA_7BIT)|CSM(JISX212),
+ CSM(ASCII)|CSM(JISX201)|CSM(JISX208)|CSM(HWKANA_7BIT)|CSM(JISX212)|CSM(GB2312)|CSM(KSC5601)|CSM(ISO8859_1)|CSM(ISO8859_7),
+ CSM(ASCII)|CSM(JISX201)|CSM(JISX208)|CSM(HWKANA_7BIT)|CSM(JISX212)|CSM(GB2312)|CSM(KSC5601)|CSM(ISO8859_1)|CSM(ISO8859_7),
+ CSM(ASCII)|CSM(JISX201)|CSM(JISX208)|CSM(HWKANA_7BIT)|CSM(JISX212)|CSM(GB2312)|CSM(KSC5601)|CSM(ISO8859_1)|CSM(ISO8859_7)
+};
+
+typedef enum {
+ ASCII1=0,
+ LATIN1,
+ SBCS,
+ DBCS,
+ MBCS,
+ HWKANA
+}Cnv2022Type;
+
+typedef struct ISO2022State {
+ int8_t cs[4]; /* charset number for SI (G0)/SO (G1)/SS2 (G2)/SS3 (G3) */
+ int8_t g; /* 0..3 for G0..G3 (SI/SO/SS2/SS3) */
+ int8_t prevG; /* g before single shift (SS2 or SS3) */
+} ISO2022State;
+
+#define UCNV_OPTIONS_VERSION_MASK 0xf
+#define UCNV_2022_MAX_CONVERTERS 10
+
+typedef struct{
+ UConverterSharedData *myConverterArray[UCNV_2022_MAX_CONVERTERS];
+ UConverter *currentConverter;
+ Cnv2022Type currentType;
+ ISO2022State toU2022State, fromU2022State;
+ uint32_t key;
+ uint32_t version;
+#ifdef U_ENABLE_GENERIC_ISO_2022
+ UBool isFirstBuffer;
+#endif
+ UBool isEmptySegment;
+ char name[30];
+ char locale[3];
+}UConverterDataISO2022;
+
+/* Protos */
+/* ISO-2022 ----------------------------------------------------------------- */
+
+/*Forward declaration */
+U_CFUNC void
+ucnv_fromUnicode_UTF8(UConverterFromUnicodeArgs * args,
+ UErrorCode * err);
+U_CFUNC void
+ucnv_fromUnicode_UTF8_OFFSETS_LOGIC(UConverterFromUnicodeArgs * args,
+ UErrorCode * err);
+
+#define ESC_2022 0x1B /*ESC*/
+
+typedef enum
+{
+ INVALID_2022 = -1, /*Doesn't correspond to a valid iso 2022 escape sequence*/
+ VALID_NON_TERMINAL_2022 = 0, /*so far corresponds to a valid iso 2022 escape sequence*/
+ VALID_TERMINAL_2022 = 1, /*corresponds to a valid iso 2022 escape sequence*/
+ VALID_MAYBE_TERMINAL_2022 = 2 /*so far matches one iso 2022 escape sequence, but by adding more characters might match another escape sequence*/
+} UCNV_TableStates_2022;
+
+/*
+* The way these state transition arrays work is:
+* ex : ESC$B is the sequence for JISX208
+* a) First Iteration: char is ESC
+* i) Get the value of ESC from normalize_esq_chars_2022[] with int value of ESC as index
+* int x = normalize_esq_chars_2022[27] which is equal to 1
+* ii) Search for this value in escSeqStateTable_Key_2022[]
+* value of x is stored at escSeqStateTable_Key_2022[0]
+* iii) Save this index as offset
+* iv) Get state of this sequence from escSeqStateTable_Value_2022[]
+* escSeqStateTable_Value_2022[offset], which is VALID_NON_TERMINAL_2022
+* b) Switch on this state and continue to next char
+* i) Get the value of $ from normalize_esq_chars_2022[] with int value of $ as index
+* which is normalize_esq_chars_2022[36] == 4
+* ii) x is currently 1(from above)
+* x<<=5 -- x is now 32
+* x+=normalize_esq_chars_2022[36]
+* now x is 36
+* iii) Search for this value in escSeqStateTable_Key_2022[]
+* value of x is stored at escSeqStateTable_Key_2022[2], so offset is 2
+* iv) Get state of this sequence from escSeqStateTable_Value_2022[]
+* escSeqStateTable_Value_2022[offset], which is VALID_NON_TERMINAL_2022
+* c) Switch on this state and continue to next char
+* i) Get the value of B from normalize_esq_chars_2022[] with int value of B as index
+* ii) x is currently 36 (from above)
+* x<<=5 -- x is now 1152
+* x+=normalize_esq_chars_2022[66]
+* now x is 1161
+* iii) Search for this value in escSeqStateTable_Key_2022[]
+* value of x is stored at escSeqStateTable_Key_2022[21], so offset is 21
+* iv) Get state of this sequence from escSeqStateTable_Value_2022[21]
+* escSeqStateTable_Value_2022[offset], which is VALID_TERMINAL_2022
+* v) Get the converter name form escSeqStateTable_Result_2022[21] which is JISX208
+*/
+
+
+/*Below are the 3 arrays depicting a state transition table*/
+static const int8_t normalize_esq_chars_2022[256] = {
+/* 0 1 2 3 4 5 6 7 8 9 */
+
+ 0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
+ ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
+ ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0
+ ,0 ,0 ,0 ,0 ,0 ,0 ,4 ,7 ,29 ,0
+ ,2 ,24 ,26 ,27 ,0 ,3 ,23 ,6 ,0 ,0
+ ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
+ ,0 ,0 ,0 ,0 ,5 ,8 ,9 ,10 ,11 ,12
+ ,13 ,14 ,15 ,16 ,17 ,18 ,19 ,20 ,25 ,28
+ ,0 ,0 ,21 ,0 ,0 ,0 ,0 ,0 ,0 ,0
+ ,22 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
+ ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
+ ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
+ ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
+ ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
+ ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
+ ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
+ ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
+ ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
+ ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
+ ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
+ ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
+ ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
+ ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
+ ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
+ ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
+ ,0 ,0 ,0 ,0 ,0 ,0
+};
+
+#ifdef U_ENABLE_GENERIC_ISO_2022
+/*
+ * When the generic ISO-2022 converter is completely removed, not just disabled
+ * per #ifdef, then the following state table and the associated tables that are
+ * dimensioned with MAX_STATES_2022 should be trimmed.
+ *
+ * Especially, VALID_MAYBE_TERMINAL_2022 will not be used any more, and all of
+ * the associated escape sequences starting with ESC ( B should be removed.
+ * This includes the ones with key values 1097 and all of the ones above 1000000.
+ *
+ * For the latter, the tables can simply be truncated.
+ * For the former, since the tables must be kept parallel, it is probably best
+ * to simply duplicate an adjacent table cell, parallel in all tables.
+ *
+ * It may make sense to restructure the tables, especially by using small search
+ * tables for the variants instead of indexing them parallel to the table here.
+ */
+#endif
+
+#define MAX_STATES_2022 74
+static const int32_t escSeqStateTable_Key_2022[MAX_STATES_2022] = {
+/* 0 1 2 3 4 5 6 7 8 9 */
+
+ 1 ,34 ,36 ,39 ,55 ,57 ,60 ,61 ,1093 ,1096
+ ,1097 ,1098 ,1099 ,1100 ,1101 ,1102 ,1103 ,1104 ,1105 ,1106
+ ,1109 ,1154 ,1157 ,1160 ,1161 ,1176 ,1178 ,1179 ,1254 ,1257
+ ,1768 ,1773 ,1957 ,35105 ,36933 ,36936 ,36937 ,36938 ,36939 ,36940
+ ,36942 ,36943 ,36944 ,36945 ,36946 ,36947 ,36948 ,37640 ,37642 ,37644
+ ,37646 ,37711 ,37744 ,37745 ,37746 ,37747 ,37748 ,40133 ,40136 ,40138
+ ,40139 ,40140 ,40141 ,1123363 ,35947624 ,35947625 ,35947626 ,35947627 ,35947629 ,35947630
+ ,35947631 ,35947635 ,35947636 ,35947638
+};
+
+#ifdef U_ENABLE_GENERIC_ISO_2022
+
+static const char* const escSeqStateTable_Result_2022[MAX_STATES_2022] = {
+ /* 0 1 2 3 4 5 6 7 8 9 */
+
+ NULL ,NULL ,NULL ,NULL ,NULL ,NULL ,NULL ,NULL ,"latin1" ,"latin1"
+ ,"latin1" ,"ibm-865" ,"ibm-865" ,"ibm-865" ,"ibm-865" ,"ibm-865" ,"ibm-865" ,"JISX0201" ,"JISX0201" ,"latin1"
+ ,"latin1" ,NULL ,"JISX-208" ,"ibm-5478" ,"JISX-208" ,NULL ,NULL ,NULL ,NULL ,"UTF8"
+ ,"ISO-8859-1" ,"ISO-8859-7" ,"JIS-X-208" ,NULL ,"ibm-955" ,"ibm-367" ,"ibm-952" ,"ibm-949" ,"JISX-212" ,"ibm-1383"
+ ,"ibm-952" ,"ibm-964" ,"ibm-964" ,"ibm-964" ,"ibm-964" ,"ibm-964" ,"ibm-964" ,"ibm-5478" ,"ibm-949" ,"ISO-IR-165"
+ ,"CNS-11643-1992,1" ,"CNS-11643-1992,2" ,"CNS-11643-1992,3" ,"CNS-11643-1992,4" ,"CNS-11643-1992,5" ,"CNS-11643-1992,6" ,"CNS-11643-1992,7" ,"UTF16_PlatformEndian" ,"UTF16_PlatformEndian" ,"UTF16_PlatformEndian"
+ ,"UTF16_PlatformEndian" ,"UTF16_PlatformEndian" ,"UTF16_PlatformEndian" ,NULL ,"latin1" ,"ibm-912" ,"ibm-913" ,"ibm-914" ,"ibm-813" ,"ibm-1089"
+ ,"ibm-920" ,"ibm-915" ,"ibm-915" ,"latin1"
+};
+
+#endif
+
+static const int8_t escSeqStateTable_Value_2022[MAX_STATES_2022] = {
+/* 0 1 2 3 4 5 6 7 8 9 */
+ VALID_NON_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022
+ ,VALID_MAYBE_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022
+ ,VALID_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_TERMINAL_2022
+ ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022
+ ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022
+ ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022
+ ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_NON_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022
+ ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022 ,VALID_TERMINAL_2022
+};
+
+
+/* Type def for refactoring changeState_2022 code*/
+typedef enum{
+#ifdef U_ENABLE_GENERIC_ISO_2022
+ ISO_2022=0,
+#endif
+ ISO_2022_JP=1,
+ ISO_2022_KR=2,
+ ISO_2022_CN=3
+} Variant2022;
+
+/*********** ISO 2022 Converter Protos ***********/
+static void
+_ISO2022Open(UConverter *cnv, UConverterLoadArgs *pArgs, UErrorCode *errorCode);
+
+static void
+ _ISO2022Close(UConverter *converter);
+
+static void
+_ISO2022Reset(UConverter *converter, UConverterResetChoice choice);
+
+static const char*
+_ISO2022getName(const UConverter* cnv);
+
+static void
+_ISO_2022_WriteSub(UConverterFromUnicodeArgs *args, int32_t offsetIndex, UErrorCode *err);
+
+static UConverter *
+_ISO_2022_SafeClone(const UConverter *cnv, void *stackBuffer, int32_t *pBufferSize, UErrorCode *status);
+
+#ifdef U_ENABLE_GENERIC_ISO_2022
+static void
+T_UConverter_toUnicode_ISO_2022_OFFSETS_LOGIC(UConverterToUnicodeArgs* args, UErrorCode* err);
+#endif
+
+/*const UConverterSharedData _ISO2022Data;*/
+static const UConverterSharedData _ISO2022JPData;
+static const UConverterSharedData _ISO2022KRData;
+static const UConverterSharedData _ISO2022CNData;
+
+/*************** Converter implementations ******************/
+
+/* The purpose of this function is to get around gcc compiler warnings. */
+static U_INLINE void
+fromUWriteUInt8(UConverter *cnv,
+ const char *bytes, int32_t length,
+ uint8_t **target, const char *targetLimit,
+ int32_t **offsets,
+ int32_t sourceIndex,
+ UErrorCode *pErrorCode)
+{
+ char *targetChars = (char *)*target;
+ ucnv_fromUWriteBytes(cnv, bytes, length, &targetChars, targetLimit,
+ offsets, sourceIndex, pErrorCode);
+ *target = (uint8_t*)targetChars;
+
+}
+
+static U_INLINE void
+setInitialStateToUnicodeKR(UConverter* converter, UConverterDataISO2022 *myConverterData){
+ if(myConverterData->version == 1) {
+ UConverter *cnv = myConverterData->currentConverter;
+
+ cnv->toUnicodeStatus=0; /* offset */
+ cnv->mode=0; /* state */
+ cnv->toULength=0; /* byteIndex */
+ }
+}
+
+static U_INLINE void
+setInitialStateFromUnicodeKR(UConverter* converter,UConverterDataISO2022 *myConverterData){
+ /* in ISO-2022-KR the designator sequence appears only once
+ * in a file so we append it only once
+ */
+ if( converter->charErrorBufferLength==0){
+
+ converter->charErrorBufferLength = 4;
+ converter->charErrorBuffer[0] = 0x1b;
+ converter->charErrorBuffer[1] = 0x24;
+ converter->charErrorBuffer[2] = 0x29;
+ converter->charErrorBuffer[3] = 0x43;
+ }
+ if(myConverterData->version == 1) {
+ UConverter *cnv = myConverterData->currentConverter;
+
+ cnv->fromUChar32=0;
+ cnv->fromUnicodeStatus=1; /* prevLength */
+ }
+}
+
+static void
+_ISO2022Open(UConverter *cnv, UConverterLoadArgs *pArgs, UErrorCode *errorCode){
+
+ char myLocale[6]={' ',' ',' ',' ',' ',' '};
+
+ cnv->extraInfo = uprv_malloc (sizeof (UConverterDataISO2022));
+ if(cnv->extraInfo != NULL) {
+ UConverterNamePieces stackPieces;
+ UConverterLoadArgs stackArgs={ (int32_t)sizeof(UConverterLoadArgs) };
+ UConverterDataISO2022 *myConverterData=(UConverterDataISO2022 *) cnv->extraInfo;
+ uint32_t version;
+
+ stackArgs.onlyTestIsLoadable = pArgs->onlyTestIsLoadable;
+
+ uprv_memset(myConverterData, 0, sizeof(UConverterDataISO2022));
+ myConverterData->currentType = ASCII1;
+ cnv->fromUnicodeStatus =FALSE;
+ if(pArgs->locale){
+ uprv_strncpy(myLocale, pArgs->locale, sizeof(myLocale));
+ }
+ version = pArgs->options & UCNV_OPTIONS_VERSION_MASK;
+ myConverterData->version = version;
+ if(myLocale[0]=='j' && (myLocale[1]=='a'|| myLocale[1]=='p') &&
+ (myLocale[2]=='_' || myLocale[2]=='\0'))
+ {
+ size_t len=0;
+ /* open the required converters and cache them */
+ if(version>MAX_JA_VERSION) {
+ /* prevent indexing beyond jpCharsetMasks[] */
+ myConverterData->version = version = 0;
+ }
+ if(jpCharsetMasks[version]&CSM(ISO8859_7)) {
+ myConverterData->myConverterArray[ISO8859_7] =
+ ucnv_loadSharedData("ISO8859_7", &stackPieces, &stackArgs, errorCode);
+ }
+ myConverterData->myConverterArray[JISX208] =
+ ucnv_loadSharedData("Shift-JIS", &stackPieces, &stackArgs, errorCode);
+ if(jpCharsetMasks[version]&CSM(JISX212)) {
+ myConverterData->myConverterArray[JISX212] =
+ ucnv_loadSharedData("jisx-212", &stackPieces, &stackArgs, errorCode);
+ }
+ if(jpCharsetMasks[version]&CSM(GB2312)) {
+ myConverterData->myConverterArray[GB2312] =
+ ucnv_loadSharedData("ibm-5478", &stackPieces, &stackArgs, errorCode); /* gb_2312_80-1 */
+ }
+ if(jpCharsetMasks[version]&CSM(KSC5601)) {
+ myConverterData->myConverterArray[KSC5601] =
+ ucnv_loadSharedData("ksc_5601", &stackPieces, &stackArgs, errorCode);
+ }
+
+ /* set the function pointers to appropriate funtions */
+ cnv->sharedData=(UConverterSharedData*)(&_ISO2022JPData);
+ uprv_strcpy(myConverterData->locale,"ja");
+
+ (void)uprv_strcpy(myConverterData->name,"ISO_2022,locale=ja,version=");
+ len = uprv_strlen(myConverterData->name);
+ myConverterData->name[len]=(char)(myConverterData->version+(int)'0');
+ myConverterData->name[len+1]='\0';
+ }
+ else if(myLocale[0]=='k' && (myLocale[1]=='o'|| myLocale[1]=='r') &&
+ (myLocale[2]=='_' || myLocale[2]=='\0'))
+ {
+ const char *cnvName;
+ if(version==1) {
+ cnvName="icu-internal-25546";
+ } else {
+ cnvName="ibm-949";
+ myConverterData->version=version=0;
+ }
+ if(pArgs->onlyTestIsLoadable) {
+ ucnv_canCreateConverter(cnvName, errorCode); /* errorCode carries result */
+ uprv_free(cnv->extraInfo);
+ cnv->extraInfo=NULL;
+ return;
+ } else {
+ myConverterData->currentConverter=ucnv_open(cnvName, errorCode);
+ if (U_FAILURE(*errorCode)) {
+ _ISO2022Close(cnv);
+ return;
+ }
+
+ if(version==1) {
+ (void)uprv_strcpy(myConverterData->name,"ISO_2022,locale=ko,version=1");
+ uprv_memcpy(cnv->subChars, myConverterData->currentConverter->subChars, 4);
+ cnv->subCharLen = myConverterData->currentConverter->subCharLen;
+ }else{
+ (void)uprv_strcpy(myConverterData->name,"ISO_2022,locale=ko,version=0");
+ }
+
+ /* initialize the state variables */
+ setInitialStateToUnicodeKR(cnv, myConverterData);
+ setInitialStateFromUnicodeKR(cnv, myConverterData);
+
+ /* set the function pointers to appropriate funtions */
+ cnv->sharedData=(UConverterSharedData*)&_ISO2022KRData;
+ uprv_strcpy(myConverterData->locale,"ko");
+ }
+ }
+ else if(((myLocale[0]=='z' && myLocale[1]=='h') || (myLocale[0]=='c'&& myLocale[1]=='n'))&&
+ (myLocale[2]=='_' || myLocale[2]=='\0'))
+ {
+
+ /* open the required converters and cache them */
+ myConverterData->myConverterArray[GB2312_1] =
+ ucnv_loadSharedData("ibm-5478", &stackPieces, &stackArgs, errorCode);
+ if(version==1) {
+ myConverterData->myConverterArray[ISO_IR_165] =
+ ucnv_loadSharedData("iso-ir-165", &stackPieces, &stackArgs, errorCode);
+ }
+ myConverterData->myConverterArray[CNS_11643] =
+ ucnv_loadSharedData("cns-11643-1992", &stackPieces, &stackArgs, errorCode);
+
+
+ /* set the function pointers to appropriate funtions */
+ cnv->sharedData=(UConverterSharedData*)&_ISO2022CNData;
+ uprv_strcpy(myConverterData->locale,"cn");
+
+ if (version==0){
+ myConverterData->version = 0;
+ (void)uprv_strcpy(myConverterData->name,"ISO_2022,locale=zh,version=0");
+ }else if (version==1){
+ myConverterData->version = 1;
+ (void)uprv_strcpy(myConverterData->name,"ISO_2022,locale=zh,version=1");
+ }else {
+ myConverterData->version = 2;
+ (void)uprv_strcpy(myConverterData->name,"ISO_2022,locale=zh,version=2");
+ }
+ }
+ else{
+#ifdef U_ENABLE_GENERIC_ISO_2022
+ myConverterData->isFirstBuffer = TRUE;
+
+ /* append the UTF-8 escape sequence */
+ cnv->charErrorBufferLength = 3;
+ cnv->charErrorBuffer[0] = 0x1b;
+ cnv->charErrorBuffer[1] = 0x25;
+ cnv->charErrorBuffer[2] = 0x42;
+
+ cnv->sharedData=(UConverterSharedData*)&_ISO2022Data;
+ /* initialize the state variables */
+ uprv_strcpy(myConverterData->name,"ISO_2022");
+#else
+ *errorCode = U_UNSUPPORTED_ERROR;
+ return;
+#endif
+ }
+
+ cnv->maxBytesPerUChar=cnv->sharedData->staticData->maxBytesPerChar;
+
+ if(U_FAILURE(*errorCode) || pArgs->onlyTestIsLoadable) {
+ _ISO2022Close(cnv);
+ }
+ } else {
+ *errorCode = U_MEMORY_ALLOCATION_ERROR;
+ }
+}
+
+
+static void
+_ISO2022Close(UConverter *converter) {
+ UConverterDataISO2022* myData =(UConverterDataISO2022 *) (converter->extraInfo);
+ UConverterSharedData **array = myData->myConverterArray;
+ int32_t i;
+
+ if (converter->extraInfo != NULL) {
+ /*close the array of converter pointers and free the memory*/
+ for (i=0; i<UCNV_2022_MAX_CONVERTERS; i++) {
+ if(array[i]!=NULL) {
+ ucnv_unloadSharedDataIfReady(array[i]);
+ }
+ }
+
+ ucnv_close(myData->currentConverter);
+
+ if(!converter->isExtraLocal){
+ uprv_free (converter->extraInfo);
+ converter->extraInfo = NULL;
+ }
+ }
+}
+
+static void
+_ISO2022Reset(UConverter *converter, UConverterResetChoice choice) {
+ UConverterDataISO2022 *myConverterData=(UConverterDataISO2022 *) (converter->extraInfo);
+ if(choice<=UCNV_RESET_TO_UNICODE) {
+ uprv_memset(&myConverterData->toU2022State, 0, sizeof(ISO2022State));
+ myConverterData->key = 0;
+ myConverterData->isEmptySegment = FALSE;
+ }
+ if(choice!=UCNV_RESET_TO_UNICODE) {
+ uprv_memset(&myConverterData->fromU2022State, 0, sizeof(ISO2022State));
+ }
+#ifdef U_ENABLE_GENERIC_ISO_2022
+ if(myConverterData->locale[0] == 0){
+ if(choice<=UCNV_RESET_TO_UNICODE) {
+ myConverterData->isFirstBuffer = TRUE;
+ myConverterData->key = 0;
+ if (converter->mode == UCNV_SO){
+ ucnv_close (myConverterData->currentConverter);
+ myConverterData->currentConverter=NULL;
+ }
+ converter->mode = UCNV_SI;
+ }
+ if(choice!=UCNV_RESET_TO_UNICODE) {
+ /* re-append UTF-8 escape sequence */
+ converter->charErrorBufferLength = 3;
+ converter->charErrorBuffer[0] = 0x1b;
+ converter->charErrorBuffer[1] = 0x28;
+ converter->charErrorBuffer[2] = 0x42;
+ }
+ }
+ else
+#endif
+ {
+ /* reset the state variables */
+ if(myConverterData->locale[0] == 'k'){
+ if(choice<=UCNV_RESET_TO_UNICODE) {
+ setInitialStateToUnicodeKR(converter, myConverterData);
+ }
+ if(choice!=UCNV_RESET_TO_UNICODE) {
+ setInitialStateFromUnicodeKR(converter, myConverterData);
+ }
+ }
+ }
+}
+
+static const char*
+_ISO2022getName(const UConverter* cnv){
+ if(cnv->extraInfo){
+ UConverterDataISO2022* myData= (UConverterDataISO2022*)cnv->extraInfo;
+ return myData->name;
+ }
+ return NULL;
+}
+
+
+/*************** to unicode *******************/
+/****************************************************************************
+ * Recognized escape sequences are
+ * <ESC>(B ASCII
+ * <ESC>.A ISO-8859-1
+ * <ESC>.F ISO-8859-7
+ * <ESC>(J JISX-201
+ * <ESC>(I JISX-201
+ * <ESC>$B JISX-208
+ * <ESC>$@ JISX-208
+ * <ESC>$(D JISX-212
+ * <ESC>$A GB2312
+ * <ESC>$(C KSC5601
+ */
+static const int8_t nextStateToUnicodeJP[MAX_STATES_2022]= {
+/* 0 1 2 3 4 5 6 7 8 9 */
+ INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,SS2_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
+ ,ASCII ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,JISX201 ,HWKANA_7BIT ,JISX201 ,INVALID_STATE
+ ,INVALID_STATE ,INVALID_STATE ,JISX208 ,GB2312 ,JISX208 ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
+ ,ISO8859_1 ,ISO8859_7 ,JISX208 ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,KSC5601 ,JISX212 ,INVALID_STATE
+ ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
+ ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
+ ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
+ ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
+};
+
+/*************** to unicode *******************/
+static const int8_t nextStateToUnicodeCN[MAX_STATES_2022]= {
+/* 0 1 2 3 4 5 6 7 8 9 */
+ INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,SS2_STATE ,SS3_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
+ ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
+ ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
+ ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
+ ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,GB2312_1 ,INVALID_STATE ,ISO_IR_165
+ ,CNS_11643_1 ,CNS_11643_2 ,CNS_11643_3 ,CNS_11643_4 ,CNS_11643_5 ,CNS_11643_6 ,CNS_11643_7 ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
+ ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
+ ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE ,INVALID_STATE
+};
+
+
+static UCNV_TableStates_2022
+getKey_2022(char c,int32_t* key,int32_t* offset){
+ int32_t togo;
+ int32_t low = 0;
+ int32_t hi = MAX_STATES_2022;
+ int32_t oldmid=0;
+
+ togo = normalize_esq_chars_2022[(uint8_t)c];
+ if(togo == 0) {
+ /* not a valid character anywhere in an escape sequence */
+ *key = 0;
+ *offset = 0;
+ return INVALID_2022;
+ }
+ togo = (*key << 5) + togo;
+
+ while (hi != low) /*binary search*/{
+
+ register int32_t mid = (hi+low) >> 1; /*Finds median*/
+
+ if (mid == oldmid)
+ break;
+
+ if (escSeqStateTable_Key_2022[mid] > togo){
+ hi = mid;
+ }
+ else if (escSeqStateTable_Key_2022[mid] < togo){
+ low = mid;
+ }
+ else /*we found it*/{
+ *key = togo;
+ *offset = mid;
+ return (UCNV_TableStates_2022)escSeqStateTable_Value_2022[mid];
+ }
+ oldmid = mid;
+
+ }
+
+ *key = 0;
+ *offset = 0;
+ return INVALID_2022;
+}
+
+/*runs through a state machine to determine the escape sequence - codepage correspondance
+ */
+static void
+changeState_2022(UConverter* _this,
+ const char** source,
+ const char* sourceLimit,
+ Variant2022 var,
+ UErrorCode* err){
+ UCNV_TableStates_2022 value;
+ UConverterDataISO2022* myData2022 = ((UConverterDataISO2022*)_this->extraInfo);
+ uint32_t key = myData2022->key;
+ int32_t offset = 0;
+ int8_t initialToULength = _this->toULength;
+ char c;
+
+ value = VALID_NON_TERMINAL_2022;
+ while (*source < sourceLimit) {
+ c = *(*source)++;
+ _this->toUBytes[_this->toULength++]=(uint8_t)c;
+ value = getKey_2022(c,(int32_t *) &key, &offset);
+
+ switch (value){
+
+ case VALID_NON_TERMINAL_2022 :
+ /* continue with the loop */
+ break;
+
+ case VALID_TERMINAL_2022:
+ key = 0;
+ goto DONE;
+
+ case INVALID_2022:
+ goto DONE;
+
+ case VALID_MAYBE_TERMINAL_2022:
+#ifdef U_ENABLE_GENERIC_ISO_2022
+ /* ESC ( B is ambiguous only for ISO_2022 itself */
+ if(var == ISO_2022) {
+ /* discard toUBytes[] for ESC ( B because this sequence is correct and complete */
+ _this->toULength = 0;
+
+ /* TODO need to indicate that ESC ( B was seen; if failure, then need to replay from source or from MBCS-style replay */
+
+ /* continue with the loop */
+ value = VALID_NON_TERMINAL_2022;
+ break;
+ } else
+#endif
+ {
+ /* not ISO_2022 itself, finish here */
+ value = VALID_TERMINAL_2022;
+ key = 0;
+ goto DONE;
+ }
+ }
+ }
+
+DONE:
+ myData2022->key = key;
+
+ if (value == VALID_NON_TERMINAL_2022) {
+ /* indicate that the escape sequence is incomplete: key!=0 */
+ return;
+ } else if (value == INVALID_2022 ) {
+ *err = U_ILLEGAL_ESCAPE_SEQUENCE;
+ } else /* value == VALID_TERMINAL_2022 */ {
+ switch(var){
+#ifdef U_ENABLE_GENERIC_ISO_2022
+ case ISO_2022:
+ {
+ const char *chosenConverterName = escSeqStateTable_Result_2022[offset];
+ if(chosenConverterName == NULL) {
+ /* SS2 or SS3 */
+ *err = U_UNSUPPORTED_ESCAPE_SEQUENCE;
+ _this->toUCallbackReason = UCNV_UNASSIGNED;
+ return;
+ }
+
+ _this->mode = UCNV_SI;
+ ucnv_close(myData2022->currentConverter);
+ myData2022->currentConverter = myUConverter = ucnv_open(chosenConverterName, err);
+ if(U_SUCCESS(*err)) {
+ myUConverter->fromCharErrorBehaviour = UCNV_TO_U_CALLBACK_STOP;
+ _this->mode = UCNV_SO;
+ }
+ break;
+ }
+#endif
+ case ISO_2022_JP:
+ {
+ StateEnum tempState=(StateEnum)nextStateToUnicodeJP[offset];
+ switch(tempState) {
+ case INVALID_STATE:
+ *err = U_UNSUPPORTED_ESCAPE_SEQUENCE;
+ break;
+ case SS2_STATE:
+ if(myData2022->toU2022State.cs[2]!=0) {
+ if(myData2022->toU2022State.g<2) {
+ myData2022->toU2022State.prevG=myData2022->toU2022State.g;
+ }
+ myData2022->toU2022State.g=2;
+ } else {
+ /* illegal to have SS2 before a matching designator */
+ *err = U_ILLEGAL_ESCAPE_SEQUENCE;
+ }
+ break;
+ /* case SS3_STATE: not used in ISO-2022-JP-x */
+ case ISO8859_1:
+ case ISO8859_7:
+ if((jpCharsetMasks[myData2022->version] & CSM(tempState)) == 0) {
+ *err = U_UNSUPPORTED_ESCAPE_SEQUENCE;
+ } else {
+ /* G2 charset for SS2 */
+ myData2022->toU2022State.cs[2]=(int8_t)tempState;
+ }
+ break;
+ default:
+ if((jpCharsetMasks[myData2022->version] & CSM(tempState)) == 0) {
+ *err = U_UNSUPPORTED_ESCAPE_SEQUENCE;
+ } else {
+ /* G0 charset */
+ myData2022->toU2022State.cs[0]=(int8_t)tempState;
+ }
+ break;
+ }
+ }
+ break;
+ case ISO_2022_CN:
+ {
+ StateEnum tempState=(StateEnum)nextStateToUnicodeCN[offset];
+ switch(tempState) {
+ case INVALID_STATE:
+ *err = U_UNSUPPORTED_ESCAPE_SEQUENCE;
+ break;
+ case SS2_STATE:
+ if(myData2022->toU2022State.cs[2]!=0) {
+ if(myData2022->toU2022State.g<2) {
+ myData2022->toU2022State.prevG=myData2022->toU2022State.g;
+ }
+ myData2022->toU2022State.g=2;
+ } else {
+ /* illegal to have SS2 before a matching designator */
+ *err = U_ILLEGAL_ESCAPE_SEQUENCE;
+ }
+ break;
+ case SS3_STATE:
+ if(myData2022->toU2022State.cs[3]!=0) {
+ if(myData2022->toU2022State.g<2) {
+ myData2022->toU2022State.prevG=myData2022->toU2022State.g;
+ }
+ myData2022->toU2022State.g=3;
+ } else {
+ /* illegal to have SS3 before a matching designator */
+ *err = U_ILLEGAL_ESCAPE_SEQUENCE;
+ }
+ break;
+ case ISO_IR_165:
+ if(myData2022->version==0) {
+ *err = U_UNSUPPORTED_ESCAPE_SEQUENCE;
+ break;
+ }
+ /*fall through*/
+ case GB2312_1:
+ /*fall through*/
+ case CNS_11643_1:
+ myData2022->toU2022State.cs[1]=(int8_t)tempState;
+ break;
+ case CNS_11643_2:
+ myData2022->toU2022State.cs[2]=(int8_t)tempState;
+ break;
+ default:
+ /* other CNS 11643 planes */
+ if(myData2022->version==0) {
+ *err = U_UNSUPPORTED_ESCAPE_SEQUENCE;
+ } else {
+ myData2022->toU2022State.cs[3]=(int8_t)tempState;
+ }
+ break;
+ }
+ }
+ break;
+ case ISO_2022_KR:
+ if(offset==0x30){
+ /* nothing to be done, just accept this one escape sequence */
+ } else {
+ *err = U_UNSUPPORTED_ESCAPE_SEQUENCE;
+ }
+ break;
+
+ default:
+ *err = U_ILLEGAL_ESCAPE_SEQUENCE;
+ break;
+ }
+ }
+ if(U_SUCCESS(*err)) {
+ _this->toULength = 0;
+ } else if(*err==U_ILLEGAL_ESCAPE_SEQUENCE) {
+ if(_this->toULength>1) {
+ /*
+ * Ticket 5691: consistent illegal sequences:
+ * - We include at least the first byte (ESC) in the illegal sequence.
+ * - If any of the non-initial bytes could be the start of a character,
+ * we stop the illegal sequence before the first one of those.
+ * In escape sequences, all following bytes are "printable", that is,
+ * unless they are completely illegal (>7f in SBCS, outside 21..7e in DBCS),
+ * they are valid single/lead bytes.
+ * For simplicity, we always only report the initial ESC byte as the
+ * illegal sequence and back out all other bytes we looked at.
+ */
+ /* Back out some bytes. */
+ int8_t backOutDistance=_this->toULength-1;
+ int8_t bytesFromThisBuffer=_this->toULength-initialToULength;
+ if(backOutDistance<=bytesFromThisBuffer) {
+ /* same as initialToULength<=1 */
+ *source-=backOutDistance;
+ } else {
+ /* Back out bytes from the previous buffer: Need to replay them. */
+ _this->preToULength=(int8_t)(bytesFromThisBuffer-backOutDistance);
+ /* same as -(initialToULength-1) */
+ /* preToULength is negative! */
+ uprv_memcpy(_this->preToU, _this->toUBytes+1, -_this->preToULength);
+ *source-=bytesFromThisBuffer;
+ }
+ _this->toULength=1;
+ }
+ } else if(*err==U_UNSUPPORTED_ESCAPE_SEQUENCE) {
+ _this->toUCallbackReason = UCNV_UNASSIGNED;
+ }
+}
+
+/*Checks the characters of the buffer against valid 2022 escape sequences
+*if the match we return a pointer to the initial start of the sequence otherwise
+*we return sourceLimit
+*/
+/*for 2022 looks ahead in the stream
+ *to determine the longest possible convertible
+ *data stream
+ */
+static U_INLINE const char*
+getEndOfBuffer_2022(const char** source,
+ const char* sourceLimit,
+ UBool flush){
+
+ const char* mySource = *source;
+
+#ifdef U_ENABLE_GENERIC_ISO_2022
+ if (*source >= sourceLimit)
+ return sourceLimit;
+
+ do{
+
+ if (*mySource == ESC_2022){
+ int8_t i;
+ int32_t key = 0;
+ int32_t offset;
+ UCNV_TableStates_2022 value = VALID_NON_TERMINAL_2022;
+
+ /* Kludge: I could not
+ * figure out the reason for validating an escape sequence
+ * twice - once here and once in changeState_2022().
+ * is it possible to have an ESC character in a ISO2022
+ * byte stream which is valid in a code page? Is it legal?
+ */
+ for (i=0;
+ (mySource+i < sourceLimit)&&(value == VALID_NON_TERMINAL_2022);
+ i++) {
+ value = getKey_2022(*(mySource+i), &key, &offset);
+ }
+ if (value > 0 || *mySource==ESC_2022)
+ return mySource;
+
+ if ((value == VALID_NON_TERMINAL_2022)&&(!flush) )
+ return sourceLimit;
+ }
+ }while (++mySource < sourceLimit);
+
+ return sourceLimit;
+#else
+ while(mySource < sourceLimit && *mySource != ESC_2022) {
+ ++mySource;
+ }
+ return mySource;
+#endif
+}
+
+
+/* This inline function replicates code in _MBCSFromUChar32() function in ucnvmbcs.c
+ * any future change in _MBCSFromUChar32() function should be reflected here.
+ * @return number of bytes in *value; negative number if fallback; 0 if no mapping
+ */
+static U_INLINE int32_t
+MBCS_FROM_UCHAR32_ISO2022(UConverterSharedData* sharedData,
+ UChar32 c,
+ uint32_t* value,
+ UBool useFallback,
+ int outputType)
+{
+ const int32_t *cx;
+ const uint16_t *table;
+ uint32_t stage2Entry;
+ uint32_t myValue;
+ int32_t length;
+ const uint8_t *p;
+ /*
+ * TODO(markus): Use and require new, faster MBCS conversion table structures.
+ * Use internal version of ucnv_open() that verifies that the new structures are available,
+ * else U_INTERNAL_PROGRAM_ERROR.
+ */
+ /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
+ if(c<0x10000 || (sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
+ table=sharedData->mbcs.fromUnicodeTable;
+ stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
+ /* get the bytes and the length for the output */
+ if(outputType==MBCS_OUTPUT_2){
+ myValue=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
+ if(myValue<=0xff) {
+ length=1;
+ } else {
+ length=2;
+ }
+ } else /* outputType==MBCS_OUTPUT_3 */ {
+ p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
+ myValue=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
+ if(myValue<=0xff) {
+ length=1;
+ } else if(myValue<=0xffff) {
+ length=2;
+ } else {
+ length=3;
+ }
+ }
+ /* is this code point assigned, or do we use fallbacks? */
+ if((stage2Entry&(1<<(16+(c&0xf))))!=0) {
+ /* assigned */
+ *value=myValue;
+ return length;
+ } else if(FROM_U_USE_FALLBACK(useFallback, c) && myValue!=0) {
+ /*
+ * We allow a 0 byte output if the "assigned" bit is set for this entry.
+ * There is no way with this data structure for fallback output
+ * to be a zero byte.
+ */
+ *value=myValue;
+ return -length;
+ }
+ }
+
+ cx=sharedData->mbcs.extIndexes;
+ if(cx!=NULL) {
+ return ucnv_extSimpleMatchFromU(cx, c, value, useFallback);
+ }
+
+ /* unassigned */
+ return 0;
+}
+
+/* This inline function replicates code in _MBCSSingleFromUChar32() function in ucnvmbcs.c
+ * any future change in _MBCSSingleFromUChar32() function should be reflected here.
+ * @param retval pointer to output byte
+ * @return 1 roundtrip byte 0 no mapping -1 fallback byte
+ */
+static U_INLINE int32_t
+MBCS_SINGLE_FROM_UCHAR32(UConverterSharedData* sharedData,
+ UChar32 c,
+ uint32_t* retval,
+ UBool useFallback)
+{
+ const uint16_t *table;
+ int32_t value;
+ /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
+ if(c>=0x10000 && !(sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
+ return 0;
+ }
+ /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */
+ table=sharedData->mbcs.fromUnicodeTable;
+ /* get the byte for the output */
+ value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c);
+ /* is this code point assigned, or do we use fallbacks? */
+ *retval=(uint32_t)(value&0xff);
+ if(value>=0xf00) {
+ return 1; /* roundtrip */
+ } else if(useFallback ? value>=0x800 : value>=0xc00) {
+ return -1; /* fallback taken */
+ } else {
+ return 0; /* no mapping */
+ }
+}
+
+/*
+ * Check that the result is a 2-byte value with each byte in the range A1..FE
+ * (strict EUC DBCS) before accepting it and subtracting 0x80 from each byte
+ * to move it to the ISO 2022 range 21..7E.
+ * Return 0 if out of range.
+ */
+static U_INLINE uint32_t
+_2022FromGR94DBCS(uint32_t value) {
+ if( (uint16_t)(value - 0xa1a1) <= (0xfefe - 0xa1a1) &&
+ (uint8_t)(value - 0xa1) <= (0xfe - 0xa1)
+ ) {
+ return value - 0x8080; /* shift down to 21..7e byte range */
+ } else {
+ return 0; /* not valid for ISO 2022 */
+ }
+}
+
+#if 0 /* 5691: Call sites now check for validity. They can just += 0x8080 after that. */
+/*
+ * This method does the reverse of _2022FromGR94DBCS(). Given the 2022 code point, it returns the
+ * 2 byte value that is in the range A1..FE for each byte. Otherwise it returns the 2022 code point
+ * unchanged.
+ */
+static U_INLINE uint32_t
+_2022ToGR94DBCS(uint32_t value) {
+ uint32_t returnValue = value + 0x8080;
+ if( (uint16_t)(returnValue - 0xa1a1) <= (0xfefe - 0xa1a1) &&
+ (uint8_t)(returnValue - 0xa1) <= (0xfe - 0xa1)) {
+ return returnValue;
+ } else {
+ return value;
+ }
+}
+#endif
+
+#ifdef U_ENABLE_GENERIC_ISO_2022
+
+/**********************************************************************************
+* ISO-2022 Converter
+*
+*
+*/
+
+static void
+T_UConverter_toUnicode_ISO_2022_OFFSETS_LOGIC(UConverterToUnicodeArgs* args,
+ UErrorCode* err){
+ const char* mySourceLimit, *realSourceLimit;
+ const char* sourceStart;
+ const UChar* myTargetStart;
+ UConverter* saveThis;
+ UConverterDataISO2022* myData;
+ int8_t length;
+
+ saveThis = args->converter;
+ myData=((UConverterDataISO2022*)(saveThis->extraInfo));
+
+ realSourceLimit = args->sourceLimit;
+ while (args->source < realSourceLimit) {
+ if(myData->key == 0) { /* are we in the middle of an escape sequence? */
+ /*Find the end of the buffer e.g : Next Escape Seq | end of Buffer*/
+ mySourceLimit = getEndOfBuffer_2022(&(args->source), realSourceLimit, args->flush);
+
+ if(args->source < mySourceLimit) {
+ if(myData->currentConverter==NULL) {
+ myData->currentConverter = ucnv_open("ASCII",err);
+ if(U_FAILURE(*err)){
+ return;
+ }
+
+ myData->currentConverter->fromCharErrorBehaviour = UCNV_TO_U_CALLBACK_STOP;
+ saveThis->mode = UCNV_SO;
+ }
+
+ /* convert to before the ESC or until the end of the buffer */
+ myData->isFirstBuffer=FALSE;
+ sourceStart = args->source;
+ myTargetStart = args->target;
+ args->converter = myData->currentConverter;
+ ucnv_toUnicode(args->converter,
+ &args->target,
+ args->targetLimit,
+ &args->source,
+ mySourceLimit,
+ args->offsets,
+ (UBool)(args->flush && mySourceLimit == realSourceLimit),
+ err);
+ args->converter = saveThis;
+
+ if (*err == U_BUFFER_OVERFLOW_ERROR) {
+ /* move the overflow buffer */
+ length = saveThis->UCharErrorBufferLength = myData->currentConverter->UCharErrorBufferLength;
+ myData->currentConverter->UCharErrorBufferLength = 0;
+ if(length > 0) {
+ uprv_memcpy(saveThis->UCharErrorBuffer,
+ myData->currentConverter->UCharErrorBuffer,
+ length*U_SIZEOF_UCHAR);
+ }
+ return;
+ }
+
+ /*
+ * At least one of:
+ * -Error while converting
+ * -Done with entire buffer
+ * -Need to write offsets or update the current offset
+ * (leave that up to the code in ucnv.c)
+ *
+ * or else we just stopped at an ESC byte and continue with changeState_2022()
+ */
+ if (U_FAILURE(*err) ||
+ (args->source == realSourceLimit) ||
+ (args->offsets != NULL && (args->target != myTargetStart || args->source != sourceStart) ||
+ (mySourceLimit < realSourceLimit && myData->currentConverter->toULength > 0))
+ ) {
+ /* copy partial or error input for truncated detection and error handling */
+ if(U_FAILURE(*err)) {
+ length = saveThis->invalidCharLength = myData->currentConverter->invalidCharLength;
+ if(length > 0) {
+ uprv_memcpy(saveThis->invalidCharBuffer, myData->currentConverter->invalidCharBuffer, length);
+ }
+ } else {
+ length = saveThis->toULength = myData->currentConverter->toULength;
+ if(length > 0) {
+ uprv_memcpy(saveThis->toUBytes, myData->currentConverter->toUBytes, length);
+ if(args->source < mySourceLimit) {
+ *err = U_TRUNCATED_CHAR_FOUND; /* truncated input before ESC */
+ }
+ }
+ }
+ return;
+ }
+ }
+ }
+
+ sourceStart = args->source;
+ changeState_2022(args->converter,
+ &(args->source),
+ realSourceLimit,
+ ISO_2022,
+ err);
+ if (U_FAILURE(*err) || (args->source != sourceStart && args->offsets != NULL)) {
+ /* let the ucnv.c code update its current offset */
+ return;
+ }
+ }
+}
+
+#endif
+
+/*
+ * To Unicode Callback helper function
+ */
+static void
+toUnicodeCallback(UConverter *cnv,
+ const uint32_t sourceChar, const uint32_t targetUniChar,
+ UErrorCode* err){
+ if(sourceChar>0xff){
+ cnv->toUBytes[0] = (uint8_t)(sourceChar>>8);
+ cnv->toUBytes[1] = (uint8_t)sourceChar;
+ cnv->toULength = 2;
+ }
+ else{
+ cnv->toUBytes[0] =(char) sourceChar;
+ cnv->toULength = 1;
+ }
+
+ if(targetUniChar == (missingCharMarker-1/*0xfffe*/)){
+ *err = U_INVALID_CHAR_FOUND;
+ }
+ else{
+ *err = U_ILLEGAL_CHAR_FOUND;
+ }
+}
+
+/**************************************ISO-2022-JP*************************************************/
+
+/************************************** IMPORTANT **************************************************
+* The UConverter_fromUnicode_ISO2022_JP converter does not use ucnv_fromUnicode() functions for SBCS,DBCS and
+* MBCS; instead, the values are obtained directly by calling _MBCSFromUChar32().
+* The converter iterates over each Unicode codepoint
+* to obtain the equivalent codepoints from the codepages supported. Since the source buffer is
+* processed one char at a time it would make sense to reduce the extra processing a canned converter
+* would do as far as possible.
+*
+* If the implementation of these macros or structure of sharedData struct change in the future, make
+* sure that ISO-2022 is also changed.
+***************************************************************************************************
+*/
+
+/***************************************************************************************************
+* Rules for ISO-2022-jp encoding
+* (i) Escape sequences must be fully contained within a line they should not
+* span new lines or CRs
+* (ii) If the last character on a line is represented by two bytes then an ASCII or
+* JIS-Roman character escape sequence should follow before the line terminates
+* (iii) If the first character on the line is represented by two bytes then a two
+* byte character escape sequence should precede it
+* (iv) If no escape sequence is encountered then the characters are ASCII
+* (v) Latin(ISO-8859-1) and Greek(ISO-8859-7) characters must be designated to G2,
+* and invoked with SS2 (ESC N).
+* (vi) If there is any G0 designation in text, there must be a switch to
+* ASCII or to JIS X 0201-Roman before a space character (but not
+* necessarily before "ESC 4/14 2/0" or "ESC N ' '") or control
+* characters such as tab or CRLF.
+* (vi) Supported encodings:
+* ASCII, JISX201, JISX208, JISX212, GB2312, KSC5601, ISO-8859-1,ISO-8859-7
+*
+* source : RFC-1554
+*
+* JISX201, JISX208,JISX212 : new .cnv data files created
+* KSC5601 : alias to ibm-949 mapping table
+* GB2312 : alias to ibm-1386 mapping table
+* ISO-8859-1 : Algorithmic implemented as LATIN1 case
+* ISO-8859-7 : alisas to ibm-9409 mapping table
+*/
+
+/* preference order of JP charsets */
+static const StateEnum jpCharsetPref[]={
+ ASCII,
+ JISX201,
+ ISO8859_1,
+ ISO8859_7,
+ JISX208,
+ JISX212,
+ GB2312,
+ KSC5601,
+ HWKANA_7BIT
+};
+
+/*
+ * The escape sequences must be in order of the enum constants like JISX201 = 3,
+ * not in order of jpCharsetPref[]!
+ */
+static const char escSeqChars[][6] ={
+ "\x1B\x28\x42", /* <ESC>(B ASCII */
+ "\x1B\x2E\x41", /* <ESC>.A ISO-8859-1 */
+ "\x1B\x2E\x46", /* <ESC>.F ISO-8859-7 */
+ "\x1B\x28\x4A", /* <ESC>(J JISX-201 */
+ "\x1B\x24\x42", /* <ESC>$B JISX-208 */
+ "\x1B\x24\x28\x44", /* <ESC>$(D JISX-212 */
+ "\x1B\x24\x41", /* <ESC>$A GB2312 */
+ "\x1B\x24\x28\x43", /* <ESC>$(C KSC5601 */
+ "\x1B\x28\x49" /* <ESC>(I HWKANA_7BIT */
+
+};
+static const int8_t escSeqCharsLen[] ={
+ 3, /* length of <ESC>(B ASCII */
+ 3, /* length of <ESC>.A ISO-8859-1 */
+ 3, /* length of <ESC>.F ISO-8859-7 */
+ 3, /* length of <ESC>(J JISX-201 */
+ 3, /* length of <ESC>$B JISX-208 */
+ 4, /* length of <ESC>$(D JISX-212 */
+ 3, /* length of <ESC>$A GB2312 */
+ 4, /* length of <ESC>$(C KSC5601 */
+ 3 /* length of <ESC>(I HWKANA_7BIT */
+};
+
+/*
+* The iteration over various code pages works this way:
+* i) Get the currentState from myConverterData->currentState
+* ii) Check if the character is mapped to a valid character in the currentState
+* Yes -> a) set the initIterState to currentState
+* b) remain in this state until an invalid character is found
+* No -> a) go to the next code page and find the character
+* iii) Before changing the state increment the current state check if the current state
+* is equal to the intitIteration state
+* Yes -> A character that cannot be represented in any of the supported encodings
+* break and return a U_INVALID_CHARACTER error
+* No -> Continue and find the character in next code page
+*
+*
+* TODO: Implement a priority technique where the users are allowed to set the priority of code pages
+*/
+
+/* Map 00..7F to Unicode according to JIS X 0201. */
+static U_INLINE uint32_t
+jisx201ToU(uint32_t value) {
+ if(value < 0x5c) {
+ return value;
+ } else if(value == 0x5c) {
+ return 0xa5;
+ } else if(value == 0x7e) {
+ return 0x203e;
+ } else /* value <= 0x7f */ {
+ return value;
+ }
+}
+
+/* Map Unicode to 00..7F according to JIS X 0201. Return U+FFFE if unmappable. */
+static U_INLINE uint32_t
+jisx201FromU(uint32_t value) {
+ if(value<=0x7f) {
+ if(value!=0x5c && value!=0x7e) {
+ return value;
+ }
+ } else if(value==0xa5) {
+ return 0x5c;
+ } else if(value==0x203e) {
+ return 0x7e;
+ }
+ return 0xfffe;
+}
+
+/*
+ * Take a valid Shift-JIS byte pair, check that it is in the range corresponding
+ * to JIS X 0208, and convert it to a pair of 21..7E bytes.
+ * Return 0 if the byte pair is out of range.
+ */
+static U_INLINE uint32_t
+_2022FromSJIS(uint32_t value) {
+ uint8_t trail;
+
+ if(value > 0xEFFC) {
+ return 0; /* beyond JIS X 0208 */
+ }
+
+ trail = (uint8_t)value;
+
+ value &= 0xff00; /* lead byte */
+ if(value <= 0x9f00) {
+ value -= 0x7000;
+ } else /* 0xe000 <= value <= 0xef00 */ {
+ value -= 0xb000;
+ }
+ value <<= 1;
+
+ if(trail <= 0x9e) {
+ value -= 0x100;
+ if(trail <= 0x7e) {
+ value |= trail - 0x1f;
+ } else {
+ value |= trail - 0x20;
+ }
+ } else /* trail <= 0xfc */ {
+ value |= trail - 0x7e;
+ }
+ return value;
+}
+
+/*
+ * Convert a pair of JIS X 0208 21..7E bytes to Shift-JIS.
+ * If either byte is outside 21..7E make sure that the result is not valid
+ * for Shift-JIS so that the converter catches it.
+ * Some invalid byte values already turn into equally invalid Shift-JIS
+ * byte values and need not be tested explicitly.
+ */
+static U_INLINE void
+_2022ToSJIS(uint8_t c1, uint8_t c2, char bytes[2]) {
+ if(c1&1) {
+ ++c1;
+ if(c2 <= 0x5f) {
+ c2 += 0x1f;
+ } else if(c2 <= 0x7e) {
+ c2 += 0x20;
+ } else {
+ c2 = 0; /* invalid */
+ }
+ } else {
+ if((uint8_t)(c2-0x21) <= ((0x7e)-0x21)) {
+ c2 += 0x7e;
+ } else {
+ c2 = 0; /* invalid */
+ }
+ }
+ c1 >>= 1;
+ if(c1 <= 0x2f) {
+ c1 += 0x70;
+ } else if(c1 <= 0x3f) {
+ c1 += 0xb0;
+ } else {
+ c1 = 0; /* invalid */
+ }
+ bytes[0] = (char)c1;
+ bytes[1] = (char)c2;
+}
+
+/*
+ * JIS X 0208 has fallbacks from Unicode half-width Katakana to full-width (DBCS)
+ * Katakana.
+ * Now that we use a Shift-JIS table for JIS X 0208 we need to hardcode these fallbacks
+ * because Shift-JIS roundtrips half-width Katakana to single bytes.
+ * These were the only fallbacks in ICU's jisx-208.ucm file.
+ */
+static const uint16_t hwkana_fb[HWKANA_END - HWKANA_START + 1] = {
+ 0x2123, /* U+FF61 */
+ 0x2156,
+ 0x2157,
+ 0x2122,
+ 0x2126,
+ 0x2572,
+ 0x2521,
+ 0x2523,
+ 0x2525,
+ 0x2527,
+ 0x2529,
+ 0x2563,
+ 0x2565,
+ 0x2567,
+ 0x2543,
+ 0x213C, /* U+FF70 */
+ 0x2522,
+ 0x2524,
+ 0x2526,
+ 0x2528,
+ 0x252A,
+ 0x252B,
+ 0x252D,
+ 0x252F,
+ 0x2531,
+ 0x2533,
+ 0x2535,
+ 0x2537,
+ 0x2539,
+ 0x253B,
+ 0x253D,
+ 0x253F, /* U+FF80 */
+ 0x2541,
+ 0x2544,
+ 0x2546,
+ 0x2548,
+ 0x254A,
+ 0x254B,
+ 0x254C,
+ 0x254D,
+ 0x254E,
+ 0x254F,
+ 0x2552,
+ 0x2555,
+ 0x2558,
+ 0x255B,
+ 0x255E,
+ 0x255F, /* U+FF90 */
+ 0x2560,
+ 0x2561,
+ 0x2562,
+ 0x2564,
+ 0x2566,
+ 0x2568,
+ 0x2569,
+ 0x256A,
+ 0x256B,
+ 0x256C,
+ 0x256D,
+ 0x256F,
+ 0x2573,
+ 0x212B,
+ 0x212C /* U+FF9F */
+};
+
+static void
+UConverter_fromUnicode_ISO_2022_JP_OFFSETS_LOGIC(UConverterFromUnicodeArgs* args, UErrorCode* err) {
+ UConverter *cnv = args->converter;
+ UConverterDataISO2022 *converterData;
+ ISO2022State *pFromU2022State;
+ uint8_t *target = (uint8_t *) args->target;
+ const uint8_t *targetLimit = (const uint8_t *) args->targetLimit;
+ const UChar* source = args->source;
+ const UChar* sourceLimit = args->sourceLimit;
+ int32_t* offsets = args->offsets;
+ UChar32 sourceChar;
+ char buffer[8];
+ int32_t len, outLen;
+ int8_t choices[10];
+ int32_t choiceCount;
+ uint32_t targetValue = 0;
+ UBool useFallback;
+
+ int32_t i;
+ int8_t cs, g;
+
+ /* set up the state */
+ converterData = (UConverterDataISO2022*)cnv->extraInfo;
+ pFromU2022State = &converterData->fromU2022State;
+
+ choiceCount = 0;
+
+ /* check if the last codepoint of previous buffer was a lead surrogate*/
+ if((sourceChar = cnv->fromUChar32)!=0 && target< targetLimit) {
+ goto getTrail;
+ }
+
+ while(source < sourceLimit) {
+ if(target < targetLimit) {
+
+ sourceChar = *(source++);
+ /*check if the char is a First surrogate*/
+ if(UTF_IS_SURROGATE(sourceChar)) {
+ if(UTF_IS_SURROGATE_FIRST(sourceChar)) {
+getTrail:
+ /*look ahead to find the trail surrogate*/
+ if(source < sourceLimit) {
+ /* test the following code unit */
+ UChar trail=(UChar) *source;
+ if(UTF_IS_SECOND_SURROGATE(trail)) {
+ source++;
+ sourceChar=UTF16_GET_PAIR_VALUE(sourceChar, trail);
+ cnv->fromUChar32=0x00;
+ /* convert this supplementary code point */
+ /* exit this condition tree */
+ } else {
+ /* this is an unmatched lead code unit (1st surrogate) */
+ /* callback(illegal) */
+ *err=U_ILLEGAL_CHAR_FOUND;
+ cnv->fromUChar32=sourceChar;
+ break;
+ }
+ } else {
+ /* no more input */
+ cnv->fromUChar32=sourceChar;
+ break;
+ }
+ } else {
+ /* this is an unmatched trail code unit (2nd surrogate) */
+ /* callback(illegal) */
+ *err=U_ILLEGAL_CHAR_FOUND;
+ cnv->fromUChar32=sourceChar;
+ break;
+ }
+ }
+
+ /* do not convert SO/SI/ESC */
+ if(IS_2022_CONTROL(sourceChar)) {
+ /* callback(illegal) */
+ *err=U_ILLEGAL_CHAR_FOUND;
+ cnv->fromUChar32=sourceChar;
+ break;
+ }
+
+ /* do the conversion */
+
+ if(choiceCount == 0) {
+ uint16_t csm;
+
+ /*
+ * The csm variable keeps track of which charsets are allowed
+ * and not used yet while building the choices[].
+ */
+ csm = jpCharsetMasks[converterData->version];
+ choiceCount = 0;
+
+ /* JIS7/8: try single-byte half-width Katakana before JISX208 */
+ if(converterData->version == 3 || converterData->version == 4) {
+ choices[choiceCount++] = (int8_t)HWKANA_7BIT;
+ }
+ /* Do not try single-byte half-width Katakana for other versions. */
+ csm &= ~CSM(HWKANA_7BIT);
+
+ /* try the current G0 charset */
+ choices[choiceCount++] = cs = pFromU2022State->cs[0];
+ csm &= ~CSM(cs);
+
+ /* try the current G2 charset */
+ if((cs = pFromU2022State->cs[2]) != 0) {
+ choices[choiceCount++] = cs;
+ csm &= ~CSM(cs);
+ }
+
+ /* try all the other possible charsets */
+ for(i = 0; i < LENGTHOF(jpCharsetPref); ++i) {
+ cs = (int8_t)jpCharsetPref[i];
+ if(CSM(cs) & csm) {
+ choices[choiceCount++] = cs;
+ csm &= ~CSM(cs);
+ }
+ }
+ }
+
+ cs = g = 0;
+ /*
+ * len==0: no mapping found yet
+ * len<0: found a fallback result: continue looking for a roundtrip but no further fallbacks
+ * len>0: found a roundtrip result, done
+ */
+ len = 0;
+ /*
+ * We will turn off useFallback after finding a fallback,
+ * but we still get fallbacks from PUA code points as usual.
+ * Therefore, we will also need to check that we don't overwrite
+ * an early fallback with a later one.
+ */
+ useFallback = cnv->useFallback;
+
+ for(i = 0; i < choiceCount && len <= 0; ++i) {
+ uint32_t value;
+ int32_t len2;
+ int8_t cs0 = choices[i];
+ switch(cs0) {
+ case ASCII:
+ if(sourceChar <= 0x7f) {
+ targetValue = (uint32_t)sourceChar;
+ len = 1;
+ cs = cs0;
+ g = 0;
+ }
+ break;
+ case ISO8859_1:
+ if(GR96_START <= sourceChar && sourceChar <= GR96_END) {
+ targetValue = (uint32_t)sourceChar - 0x80;
+ len = 1;
+ cs = cs0;
+ g = 2;
+ }
+ break;
+ case HWKANA_7BIT:
+ if((uint32_t)(sourceChar - HWKANA_START) <= (HWKANA_END - HWKANA_START)) {
+ if(converterData->version==3) {
+ /* JIS7: use G1 (SO) */
+ /* Shift U+FF61..U+FF9F to bytes 21..5F. */
+ targetValue = (uint32_t)(sourceChar - (HWKANA_START - 0x21));
+ len = 1;
+ pFromU2022State->cs[1] = cs = cs0; /* do not output an escape sequence */
+ g = 1;
+ } else if(converterData->version==4) {
+ /* JIS8: use 8-bit bytes with any single-byte charset, see escape sequence output below */
+ /* Shift U+FF61..U+FF9F to bytes A1..DF. */
+ targetValue = (uint32_t)(sourceChar - (HWKANA_START - 0xa1));
+ len = 1;
+
+ cs = pFromU2022State->cs[0];
+ if(IS_JP_DBCS(cs)) {
+ /* switch from a DBCS charset to JISX201 */
+ cs = (int8_t)JISX201;
+ }
+ /* else stay in the current G0 charset */
+ g = 0;
+ }
+ /* else do not use HWKANA_7BIT with other versions */
+ }
+ break;
+ case JISX201:
+ /* G0 SBCS */
+ value = jisx201FromU(sourceChar);
+ if(value <= 0x7f) {
+ targetValue = value;
+ len = 1;
+ cs = cs0;
+ g = 0;
+ useFallback = FALSE;
+ }
+ break;
+ case JISX208:
+ /* G0 DBCS from Shift-JIS table */
+ len2 = MBCS_FROM_UCHAR32_ISO2022(
+ converterData->myConverterArray[cs0],
+ sourceChar, &value,
+ useFallback, MBCS_OUTPUT_2);
+ if(len2 == 2 || (len2 == -2 && len == 0)) { /* only accept DBCS: abs(len)==2 */
+ value = _2022FromSJIS(value);
+ if(value != 0) {
+ targetValue = value;
+ len = len2;
+ cs = cs0;
+ g = 0;
+ useFallback = FALSE;
+ }
+ } else if(len == 0 && useFallback &&
+ (uint32_t)(sourceChar - HWKANA_START) <= (HWKANA_END - HWKANA_START)) {
+ targetValue = hwkana_fb[sourceChar - HWKANA_START];
+ len = -2;
+ cs = cs0;
+ g = 0;
+ useFallback = FALSE;
+ }
+ break;
+ case ISO8859_7:
+ /* G0 SBCS forced to 7-bit output */
+ len2 = MBCS_SINGLE_FROM_UCHAR32(
+ converterData->myConverterArray[cs0],
+ sourceChar, &value,
+ useFallback);
+ if(len2 != 0 && !(len2 < 0 && len != 0) && GR96_START <= value && value <= GR96_END) {
+ targetValue = value - 0x80;
+ len = len2;
+ cs = cs0;
+ g = 2;
+ useFallback = FALSE;
+ }
+ break;
+ default:
+ /* G0 DBCS */
+ len2 = MBCS_FROM_UCHAR32_ISO2022(
+ converterData->myConverterArray[cs0],
+ sourceChar, &value,
+ useFallback, MBCS_OUTPUT_2);
+ if(len2 == 2 || (len2 == -2 && len == 0)) { /* only accept DBCS: abs(len)==2 */
+ if(cs0 == KSC5601) {
+ /*
+ * Check for valid bytes for the encoding scheme.
+ * This is necessary because the sub-converter (windows-949)
+ * has a broader encoding scheme than is valid for 2022.
+ */
+ value = _2022FromGR94DBCS(value);
+ if(value == 0) {
+ break;
+ }
+ }
+ targetValue = value;
+ len = len2;
+ cs = cs0;
+ g = 0;
+ useFallback = FALSE;
+ }
+ break;
+ }
+ }
+
+ if(len != 0) {
+ if(len < 0) {
+ len = -len; /* fallback */
+ }
+ outLen = 0; /* count output bytes */
+
+ /* write SI if necessary (only for JIS7) */
+ if(pFromU2022State->g == 1 && g == 0) {
+ buffer[outLen++] = UCNV_SI;
+ pFromU2022State->g = 0;
+ }
+
+ /* write the designation sequence if necessary */
+ if(cs != pFromU2022State->cs[g]) {
+ int32_t escLen = escSeqCharsLen[cs];
+ uprv_memcpy(buffer + outLen, escSeqChars[cs], escLen);
+ outLen += escLen;
+ pFromU2022State->cs[g] = cs;
+
+ /* invalidate the choices[] */
+ choiceCount = 0;
+ }
+
+ /* write the shift sequence if necessary */
+ if(g != pFromU2022State->g) {
+ switch(g) {
+ /* case 0 handled before writing escapes */
+ case 1:
+ buffer[outLen++] = UCNV_SO;
+ pFromU2022State->g = 1;
+ break;
+ default: /* case 2 */
+ buffer[outLen++] = 0x1b;
+ buffer[outLen++] = 0x4e;
+ break;
+ /* no case 3: no SS3 in ISO-2022-JP-x */
+ }
+ }
+
+ /* write the output bytes */
+ if(len == 1) {
+ buffer[outLen++] = (char)targetValue;
+ } else /* len == 2 */ {
+ buffer[outLen++] = (char)(targetValue >> 8);
+ buffer[outLen++] = (char)targetValue;
+ }
+ } else {
+ /*
+ * if we cannot find the character after checking all codepages
+ * then this is an error
+ */
+ *err = U_INVALID_CHAR_FOUND;
+ cnv->fromUChar32=sourceChar;
+ break;
+ }
+
+ if(sourceChar == CR || sourceChar == LF) {
+ /* reset the G2 state at the end of a line (conversion got us into ASCII or JISX201 already) */
+ pFromU2022State->cs[2] = 0;
+ choiceCount = 0;
+ }
+
+ /* output outLen>0 bytes in buffer[] */
+ if(outLen == 1) {
+ *target++ = buffer[0];
+ if(offsets) {
+ *offsets++ = (int32_t)(source - args->source - 1); /* -1: known to be ASCII */
+ }
+ } else if(outLen == 2 && (target + 2) <= targetLimit) {
+ *target++ = buffer[0];
+ *target++ = buffer[1];
+ if(offsets) {
+ int32_t sourceIndex = (int32_t)(source - args->source - U16_LENGTH(sourceChar));
+ *offsets++ = sourceIndex;
+ *offsets++ = sourceIndex;
+ }
+ } else {
+ fromUWriteUInt8(
+ cnv,
+ buffer, outLen,
+ &target, (const char *)targetLimit,
+ &offsets, (int32_t)(source - args->source - U16_LENGTH(sourceChar)),
+ err);
+ if(U_FAILURE(*err)) {
+ break;
+ }
+ }
+ } /* end if(myTargetIndex<myTargetLength) */
+ else{
+ *err =U_BUFFER_OVERFLOW_ERROR;
+ break;
+ }
+
+ }/* end while(mySourceIndex<mySourceLength) */
+
+ /*
+ * the end of the input stream and detection of truncated input
+ * are handled by the framework, but for ISO-2022-JP conversion
+ * we need to be in ASCII mode at the very end
+ *
+ * conditions:
+ * successful
+ * in SO mode or not in ASCII mode
+ * end of input and no truncated input
+ */
+ if( U_SUCCESS(*err) &&
+ (pFromU2022State->g!=0 || pFromU2022State->cs[0]!=ASCII) &&
+ args->flush && source>=sourceLimit && cnv->fromUChar32==0
+ ) {
+ int32_t sourceIndex;
+
+ outLen = 0;
+
+ if(pFromU2022State->g != 0) {
+ buffer[outLen++] = UCNV_SI;
+ pFromU2022State->g = 0;
+ }
+
+ if(pFromU2022State->cs[0] != ASCII) {
+ int32_t escLen = escSeqCharsLen[ASCII];
+ uprv_memcpy(buffer + outLen, escSeqChars[ASCII], escLen);
+ outLen += escLen;
+ pFromU2022State->cs[0] = (int8_t)ASCII;
+ }
+
+ /* get the source index of the last input character */
+ /*
+ * TODO this would be simpler and more reliable if we used a pair
+ * of sourceIndex/prevSourceIndex like in ucnvmbcs.c
+ * so that we could simply use the prevSourceIndex here;
+ * this code gives an incorrect result for the rare case of an unmatched
+ * trail surrogate that is alone in the last buffer of the text stream
+ */
+ sourceIndex=(int32_t)(source-args->source);
+ if(sourceIndex>0) {
+ --sourceIndex;
+ if( U16_IS_TRAIL(args->source[sourceIndex]) &&
+ (sourceIndex==0 || U16_IS_LEAD(args->source[sourceIndex-1]))
+ ) {
+ --sourceIndex;
+ }
+ } else {
+ sourceIndex=-1;
+ }
+
+ fromUWriteUInt8(
+ cnv,
+ buffer, outLen,
+ &target, (const char *)targetLimit,
+ &offsets, sourceIndex,
+ err);
+ }
+
+ /*save the state and return */
+ args->source = source;
+ args->target = (char*)target;
+}
+
+/*************** to unicode *******************/
+
+static void
+UConverter_toUnicode_ISO_2022_JP_OFFSETS_LOGIC(UConverterToUnicodeArgs *args,
+ UErrorCode* err){
+ char tempBuf[2];
+ const char *mySource = (char *) args->source;
+ UChar *myTarget = args->target;
+ const char *mySourceLimit = args->sourceLimit;
+ uint32_t targetUniChar = 0x0000;
+ uint32_t mySourceChar = 0x0000;
+ uint32_t tmpSourceChar = 0x0000;
+ UConverterDataISO2022* myData;
+ ISO2022State *pToU2022State;
+ StateEnum cs;
+
+ myData=(UConverterDataISO2022*)(args->converter->extraInfo);
+ pToU2022State = &myData->toU2022State;
+
+ if(myData->key != 0) {
+ /* continue with a partial escape sequence */
+ goto escape;
+ } else if(args->converter->toULength == 1 && mySource < mySourceLimit && myTarget < args->targetLimit) {
+ /* continue with a partial double-byte character */
+ mySourceChar = args->converter->toUBytes[0];
+ args->converter->toULength = 0;
+ cs = (StateEnum)pToU2022State->cs[pToU2022State->g];
+ targetUniChar = missingCharMarker;
+ goto getTrailByte;
+ }
+
+ while(mySource < mySourceLimit){
+
+ targetUniChar =missingCharMarker;
+
+ if(myTarget < args->targetLimit){
+
+ mySourceChar= (unsigned char) *mySource++;
+
+ switch(mySourceChar) {
+ case UCNV_SI:
+ if(myData->version==3) {
+ pToU2022State->g=0;
+ continue;
+ } else {
+ /* only JIS7 uses SI/SO, not ISO-2022-JP-x */
+ myData->isEmptySegment = FALSE; /* reset this, we have a different error */
+ break;
+ }
+
+ case UCNV_SO:
+ if(myData->version==3) {
+ /* JIS7: switch to G1 half-width Katakana */
+ pToU2022State->cs[1] = (int8_t)HWKANA_7BIT;
+ pToU2022State->g=1;
+ continue;
+ } else {
+ /* only JIS7 uses SI/SO, not ISO-2022-JP-x */
+ myData->isEmptySegment = FALSE; /* reset this, we have a different error */
+ break;
+ }
+
+ case ESC_2022:
+ mySource--;
+escape:
+ {
+ const char * mySourceBefore = mySource;
+ int8_t toULengthBefore = args->converter->toULength;
+
+ changeState_2022(args->converter,&(mySource),
+ mySourceLimit, ISO_2022_JP,err);
+
+ /* If in ISO-2022-JP only and we successully completed an escape sequence, but previous segment was empty, create an error */
+ if(myData->version==0 && myData->key==0 && U_SUCCESS(*err) && myData->isEmptySegment) {
+ *err = U_ILLEGAL_ESCAPE_SEQUENCE;
+ args->converter->toUCallbackReason = UCNV_IRREGULAR;
+ args->converter->toULength = (int8_t)(toULengthBefore + (mySource - mySourceBefore));
+ }
+ }
+
+ /* invalid or illegal escape sequence */
+ if(U_FAILURE(*err)){
+ args->target = myTarget;
+ args->source = mySource;
+ myData->isEmptySegment = FALSE; /* Reset to avoid future spurious errors */
+ return;
+ }
+ /* If we successfully completed an escape sequence, we begin a new segment, empty so far */
+ if(myData->key==0) {
+ myData->isEmptySegment = TRUE;
+ }
+ continue;
+
+ /* ISO-2022-JP does not use single-byte (C1) SS2 and SS3 */
+
+ case CR:
+ /*falls through*/
+ case LF:
+ /* automatically reset to single-byte mode */
+ if((StateEnum)pToU2022State->cs[0] != ASCII && (StateEnum)pToU2022State->cs[0] != JISX201) {
+ pToU2022State->cs[0] = (int8_t)ASCII;
+ }
+ pToU2022State->cs[2] = 0;
+ pToU2022State->g = 0;
+ /* falls through */
+ default:
+ /* convert one or two bytes */
+ myData->isEmptySegment = FALSE;
+ cs = (StateEnum)pToU2022State->cs[pToU2022State->g];
+ if( (uint8_t)(mySourceChar - 0xa1) <= (0xdf - 0xa1) && myData->version==4 &&
+ !IS_JP_DBCS(cs)
+ ) {
+ /* 8-bit halfwidth katakana in any single-byte mode for JIS8 */
+ targetUniChar = mySourceChar + (HWKANA_START - 0xa1);
+
+ /* return from a single-shift state to the previous one */
+ if(pToU2022State->g >= 2) {
+ pToU2022State->g=pToU2022State->prevG;
+ }
+ } else switch(cs) {
+ case ASCII:
+ if(mySourceChar <= 0x7f) {
+ targetUniChar = mySourceChar;
+ }
+ break;
+ case ISO8859_1:
+ if(mySourceChar <= 0x7f) {
+ targetUniChar = mySourceChar + 0x80;
+ }
+ /* return from a single-shift state to the previous one */
+ pToU2022State->g=pToU2022State->prevG;
+ break;
+ case ISO8859_7:
+ if(mySourceChar <= 0x7f) {
+ /* convert mySourceChar+0x80 to use a normal 8-bit table */
+ targetUniChar =
+ _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(
+ myData->myConverterArray[cs],
+ mySourceChar + 0x80);
+ }
+ /* return from a single-shift state to the previous one */
+ pToU2022State->g=pToU2022State->prevG;
+ break;
+ case JISX201:
+ if(mySourceChar <= 0x7f) {
+ targetUniChar = jisx201ToU(mySourceChar);
+ }
+ break;
+ case HWKANA_7BIT:
+ if((uint8_t)(mySourceChar - 0x21) <= (0x5f - 0x21)) {
+ /* 7-bit halfwidth Katakana */
+ targetUniChar = mySourceChar + (HWKANA_START - 0x21);
+ }
+ break;
+ default:
+ /* G0 DBCS */
+ if(mySource < mySourceLimit) {
+ int leadIsOk, trailIsOk;
+ uint8_t trailByte;
+getTrailByte:
+ trailByte = (uint8_t)*mySource;
+ /*
+ * Ticket 5691: consistent illegal sequences:
+ * - We include at least the first byte in the illegal sequence.
+ * - If any of the non-initial bytes could be the start of a character,
+ * we stop the illegal sequence before the first one of those.
+ *
+ * In ISO-2022 DBCS, if the second byte is in the 21..7e range or is
+ * an ESC/SO/SI, we report only the first byte as the illegal sequence.
+ * Otherwise we convert or report the pair of bytes.
+ */
+ leadIsOk = (uint8_t)(mySourceChar - 0x21) <= (0x7e - 0x21);
+ trailIsOk = (uint8_t)(trailByte - 0x21) <= (0x7e - 0x21);
+ if (leadIsOk && trailIsOk) {
+ ++mySource;
+ tmpSourceChar = (mySourceChar << 8) | trailByte;
+ if(cs == JISX208) {
+ _2022ToSJIS((uint8_t)mySourceChar, trailByte, tempBuf);
+ mySourceChar = tmpSourceChar;
+ } else {
+ /* Copy before we modify tmpSourceChar so toUnicodeCallback() sees the correct bytes. */
+ mySourceChar = tmpSourceChar;
+ if (cs == KSC5601) {
+ tmpSourceChar += 0x8080; /* = _2022ToGR94DBCS(tmpSourceChar) */
+ }
+ tempBuf[0] = (char)(tmpSourceChar >> 8);
+ tempBuf[1] = (char)(tmpSourceChar);
+ }
+ targetUniChar = ucnv_MBCSSimpleGetNextUChar(myData->myConverterArray[cs], tempBuf, 2, FALSE);
+ } else if (!(trailIsOk || IS_2022_CONTROL(trailByte))) {
+ /* report a pair of illegal bytes if the second byte is not a DBCS starter */
+ ++mySource;
+ /* add another bit so that the code below writes 2 bytes in case of error */
+ mySourceChar = 0x10000 | (mySourceChar << 8) | trailByte;
+ }
+ } else {
+ args->converter->toUBytes[0] = (uint8_t)mySourceChar;
+ args->converter->toULength = 1;
+ goto endloop;
+ }
+ } /* End of inner switch */
+ break;
+ } /* End of outer switch */
+ if(targetUniChar < (missingCharMarker-1/*0xfffe*/)){
+ if(args->offsets){
+ args->offsets[myTarget - args->target] = (int32_t)(mySource - args->source - (mySourceChar <= 0xff ? 1 : 2));
+ }
+ *(myTarget++)=(UChar)targetUniChar;
+ }
+ else if(targetUniChar > missingCharMarker){
+ /* disassemble the surrogate pair and write to output*/
+ targetUniChar-=0x0010000;
+ *myTarget = (UChar)(0xd800+(UChar)(targetUniChar>>10));
+ if(args->offsets){
+ args->offsets[myTarget - args->target] = (int32_t)(mySource - args->source - (mySourceChar <= 0xff ? 1 : 2));
+ }
+ ++myTarget;
+ if(myTarget< args->targetLimit){
+ *myTarget = (UChar)(0xdc00+(UChar)(targetUniChar&0x3ff));
+ if(args->offsets){
+ args->offsets[myTarget - args->target] = (int32_t)(mySource - args->source - (mySourceChar <= 0xff ? 1 : 2));
+ }
+ ++myTarget;
+ }else{
+ args->converter->UCharErrorBuffer[args->converter->UCharErrorBufferLength++]=
+ (UChar)(0xdc00+(UChar)(targetUniChar&0x3ff));
+ }
+
+ }
+ else{
+ /* Call the callback function*/
+ toUnicodeCallback(args->converter,mySourceChar,targetUniChar,err);
+ break;
+ }
+ }
+ else{ /* goes with "if(myTarget < args->targetLimit)" way up near top of function */
+ *err =U_BUFFER_OVERFLOW_ERROR;
+ break;
+ }
+ }
+endloop:
+ args->target = myTarget;
+ args->source = mySource;
+}
+
+
+/***************************************************************
+* Rules for ISO-2022-KR encoding
+* i) The KSC5601 designator sequence should appear only once in a file,
+* at the begining of a line before any KSC5601 characters. This usually
+* means that it appears by itself on the first line of the file
+* ii) There are only 2 shifting sequences SO to shift into double byte mode
+* and SI to shift into single byte mode
+*/
+static void
+UConverter_fromUnicode_ISO_2022_KR_OFFSETS_LOGIC_IBM(UConverterFromUnicodeArgs* args, UErrorCode* err){
+
+ UConverter* saveConv = args->converter;
+ UConverterDataISO2022 *myConverterData=(UConverterDataISO2022*)saveConv->extraInfo;
+ args->converter=myConverterData->currentConverter;
+
+ myConverterData->currentConverter->fromUChar32 = saveConv->fromUChar32;
+ ucnv_MBCSFromUnicodeWithOffsets(args,err);
+ saveConv->fromUChar32 = myConverterData->currentConverter->fromUChar32;
+
+ if(*err == U_BUFFER_OVERFLOW_ERROR) {
+ if(myConverterData->currentConverter->charErrorBufferLength > 0) {
+ uprv_memcpy(
+ saveConv->charErrorBuffer,
+ myConverterData->currentConverter->charErrorBuffer,
+ myConverterData->currentConverter->charErrorBufferLength);
+ }
+ saveConv->charErrorBufferLength = myConverterData->currentConverter->charErrorBufferLength;
+ myConverterData->currentConverter->charErrorBufferLength = 0;
+ }
+ args->converter=saveConv;
+}
+
+static void
+UConverter_fromUnicode_ISO_2022_KR_OFFSETS_LOGIC(UConverterFromUnicodeArgs* args, UErrorCode* err){
+
+ const UChar *source = args->source;
+ const UChar *sourceLimit = args->sourceLimit;
+ unsigned char *target = (unsigned char *) args->target;
+ unsigned char *targetLimit = (unsigned char *) args->targetLimit;
+ int32_t* offsets = args->offsets;
+ uint32_t targetByteUnit = 0x0000;
+ UChar32 sourceChar = 0x0000;
+ UBool isTargetByteDBCS;
+ UBool oldIsTargetByteDBCS;
+ UConverterDataISO2022 *converterData;
+ UConverterSharedData* sharedData;
+ UBool useFallback;
+ int32_t length =0;
+
+ converterData=(UConverterDataISO2022*)args->converter->extraInfo;
+ /* if the version is 1 then the user is requesting
+ * conversion with ibm-25546 pass the arguments to
+ * MBCS converter and return
+ */
+ if(converterData->version==1){
+ UConverter_fromUnicode_ISO_2022_KR_OFFSETS_LOGIC_IBM(args,err);
+ return;
+ }
+
+ /* initialize data */
+ sharedData = converterData->currentConverter->sharedData;
+ useFallback = args->converter->useFallback;
+ isTargetByteDBCS=(UBool)args->converter->fromUnicodeStatus;
+ oldIsTargetByteDBCS = isTargetByteDBCS;
+
+ isTargetByteDBCS = (UBool) args->converter->fromUnicodeStatus;
+ if((sourceChar = args->converter->fromUChar32)!=0 && target <targetLimit) {
+ goto getTrail;
+ }
+ while(source < sourceLimit){
+
+ targetByteUnit = missingCharMarker;
+
+ if(target < (unsigned char*) args->targetLimit){
+ sourceChar = *source++;
+
+ /* do not convert SO/SI/ESC */
+ if(IS_2022_CONTROL(sourceChar)) {
+ /* callback(illegal) */
+ *err=U_ILLEGAL_CHAR_FOUND;
+ args->converter->fromUChar32=sourceChar;
+ break;
+ }
+
+ length = MBCS_FROM_UCHAR32_ISO2022(sharedData,sourceChar,&targetByteUnit,useFallback,MBCS_OUTPUT_2);
+ if(length < 0) {
+ length = -length; /* fallback */
+ }
+ /* only DBCS or SBCS characters are expected*/
+ /* DB characters with high bit set to 1 are expected */
+ if( length > 2 || length==0 ||
+ (length == 1 && targetByteUnit > 0x7f) ||
+ (length == 2 &&
+ ((uint16_t)(targetByteUnit - 0xa1a1) > (0xfefe - 0xa1a1) ||
+ (uint8_t)(targetByteUnit - 0xa1) > (0xfe - 0xa1)))
+ ) {
+ targetByteUnit=missingCharMarker;
+ }
+ if (targetByteUnit != missingCharMarker){
+
+ oldIsTargetByteDBCS = isTargetByteDBCS;
+ isTargetByteDBCS = (UBool)(targetByteUnit>0x00FF);
+ /* append the shift sequence */
+ if (oldIsTargetByteDBCS != isTargetByteDBCS ){
+
+ if (isTargetByteDBCS)
+ *target++ = UCNV_SO;
+ else
+ *target++ = UCNV_SI;
+ if(offsets)
+ *(offsets++) = (int32_t)(source - args->source-1);
+ }
+ /* write the targetUniChar to target */
+ if(targetByteUnit <= 0x00FF){
+ if( target < targetLimit){
+ *(target++) = (unsigned char) targetByteUnit;
+ if(offsets){
+ *(offsets++) = (int32_t)(source - args->source-1);
+ }
+
+ }else{
+ args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] = (unsigned char) (targetByteUnit);
+ *err = U_BUFFER_OVERFLOW_ERROR;
+ }
+ }else{
+ if(target < targetLimit){
+ *(target++) =(unsigned char) ((targetByteUnit>>8) -0x80);
+ if(offsets){
+ *(offsets++) = (int32_t)(source - args->source-1);
+ }
+ if(target < targetLimit){
+ *(target++) =(unsigned char) (targetByteUnit -0x80);
+ if(offsets){
+ *(offsets++) = (int32_t)(source - args->source-1);
+ }
+ }else{
+ args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] = (unsigned char) (targetByteUnit -0x80);
+ *err = U_BUFFER_OVERFLOW_ERROR;
+ }
+ }else{
+ args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] = (unsigned char) ((targetByteUnit>>8) -0x80);
+ args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] = (unsigned char) (targetByteUnit-0x80);
+ *err = U_BUFFER_OVERFLOW_ERROR;
+ }
+ }
+
+ }
+ else{
+ /* oops.. the code point is unassingned
+ * set the error and reason
+ */
+
+ /*check if the char is a First surrogate*/
+ if(UTF_IS_SURROGATE(sourceChar)) {
+ if(UTF_IS_SURROGATE_FIRST(sourceChar)) {
+getTrail:
+ /*look ahead to find the trail surrogate*/
+ if(source < sourceLimit) {
+ /* test the following code unit */
+ UChar trail=(UChar) *source;
+ if(UTF_IS_SECOND_SURROGATE(trail)) {
+ source++;
+ sourceChar=UTF16_GET_PAIR_VALUE(sourceChar, trail);
+ *err = U_INVALID_CHAR_FOUND;
+ /* convert this surrogate code point */
+ /* exit this condition tree */
+ } else {
+ /* this is an unmatched lead code unit (1st surrogate) */
+ /* callback(illegal) */
+ *err=U_ILLEGAL_CHAR_FOUND;
+ }
+ } else {
+ /* no more input */
+ *err = U_ZERO_ERROR;
+ }
+ } else {
+ /* this is an unmatched trail code unit (2nd surrogate) */
+ /* callback(illegal) */
+ *err=U_ILLEGAL_CHAR_FOUND;
+ }
+ } else {
+ /* callback(unassigned) for a BMP code point */
+ *err = U_INVALID_CHAR_FOUND;
+ }
+
+ args->converter->fromUChar32=sourceChar;
+ break;
+ }
+ } /* end if(myTargetIndex<myTargetLength) */
+ else{
+ *err =U_BUFFER_OVERFLOW_ERROR;
+ break;
+ }
+
+ }/* end while(mySourceIndex<mySourceLength) */
+
+ /*
+ * the end of the input stream and detection of truncated input
+ * are handled by the framework, but for ISO-2022-KR conversion
+ * we need to be in ASCII mode at the very end
+ *
+ * conditions:
+ * successful
+ * not in ASCII mode
+ * end of input and no truncated input
+ */
+ if( U_SUCCESS(*err) &&
+ isTargetByteDBCS &&
+ args->flush && source>=sourceLimit && args->converter->fromUChar32==0
+ ) {
+ int32_t sourceIndex;
+
+ /* we are switching to ASCII */
+ isTargetByteDBCS=FALSE;
+
+ /* get the source index of the last input character */
+ /*
+ * TODO this would be simpler and more reliable if we used a pair
+ * of sourceIndex/prevSourceIndex like in ucnvmbcs.c
+ * so that we could simply use the prevSourceIndex here;
+ * this code gives an incorrect result for the rare case of an unmatched
+ * trail surrogate that is alone in the last buffer of the text stream
+ */
+ sourceIndex=(int32_t)(source-args->source);
+ if(sourceIndex>0) {
+ --sourceIndex;
+ if( U16_IS_TRAIL(args->source[sourceIndex]) &&
+ (sourceIndex==0 || U16_IS_LEAD(args->source[sourceIndex-1]))
+ ) {
+ --sourceIndex;
+ }
+ } else {
+ sourceIndex=-1;
+ }
+
+ fromUWriteUInt8(
+ args->converter,
+ SHIFT_IN_STR, 1,
+ &target, (const char *)targetLimit,
+ &offsets, sourceIndex,
+ err);
+ }
+
+ /*save the state and return */
+ args->source = source;
+ args->target = (char*)target;
+ args->converter->fromUnicodeStatus = (uint32_t)isTargetByteDBCS;
+}
+
+/************************ To Unicode ***************************************/
+
+static void
+UConverter_toUnicode_ISO_2022_KR_OFFSETS_LOGIC_IBM(UConverterToUnicodeArgs *args,
+ UErrorCode* err){
+ char const* sourceStart;
+ UConverterDataISO2022* myData=(UConverterDataISO2022*)(args->converter->extraInfo);
+
+ UConverterToUnicodeArgs subArgs;
+ int32_t minArgsSize;
+
+ /* set up the subconverter arguments */
+ if(args->size<sizeof(UConverterToUnicodeArgs)) {
+ minArgsSize = args->size;
+ } else {
+ minArgsSize = (int32_t)sizeof(UConverterToUnicodeArgs);
+ }
+
+ uprv_memcpy(&subArgs, args, minArgsSize);
+ subArgs.size = (uint16_t)minArgsSize;
+ subArgs.converter = myData->currentConverter;
+
+ /* remember the original start of the input for offsets */
+ sourceStart = args->source;
+
+ if(myData->key != 0) {
+ /* continue with a partial escape sequence */
+ goto escape;
+ }
+
+ while(U_SUCCESS(*err) && args->source < args->sourceLimit) {
+ /*Find the end of the buffer e.g : Next Escape Seq | end of Buffer*/
+ subArgs.source = args->source;
+ subArgs.sourceLimit = getEndOfBuffer_2022(&(args->source), args->sourceLimit, args->flush);
+ if(subArgs.source != subArgs.sourceLimit) {
+ /*
+ * get the current partial byte sequence
+ *
+ * it needs to be moved between the public and the subconverter
+ * so that the conversion framework, which only sees the public
+ * converter, can handle truncated and illegal input etc.
+ */
+ if(args->converter->toULength > 0) {
+ uprv_memcpy(subArgs.converter->toUBytes, args->converter->toUBytes, args->converter->toULength);
+ }
+ subArgs.converter->toULength = args->converter->toULength;
+
+ /*
+ * Convert up to the end of the input, or to before the next escape character.
+ * Does not handle conversion extensions because the preToU[] state etc.
+ * is not copied.
+ */
+ ucnv_MBCSToUnicodeWithOffsets(&subArgs, err);
+
+ if(args->offsets != NULL && sourceStart != args->source) {
+ /* update offsets to base them on the actual start of the input */
+ int32_t *offsets = args->offsets;
+ UChar *target = args->target;
+ int32_t delta = (int32_t)(args->source - sourceStart);
+ while(target < subArgs.target) {
+ if(*offsets >= 0) {
+ *offsets += delta;
+ }
+ ++offsets;
+ ++target;
+ }
+ }
+ args->source = subArgs.source;
+ args->target = subArgs.target;
+ args->offsets = subArgs.offsets;
+
+ /* copy input/error/overflow buffers */
+ if(subArgs.converter->toULength > 0) {
+ uprv_memcpy(args->converter->toUBytes, subArgs.converter->toUBytes, subArgs.converter->toULength);
+ }
+ args->converter->toULength = subArgs.converter->toULength;
+
+ if(*err == U_BUFFER_OVERFLOW_ERROR) {
+ if(subArgs.converter->UCharErrorBufferLength > 0) {
+ uprv_memcpy(args->converter->UCharErrorBuffer, subArgs.converter->UCharErrorBuffer,
+ subArgs.converter->UCharErrorBufferLength);
+ }
+ args->converter->UCharErrorBufferLength=subArgs.converter->UCharErrorBufferLength;
+ subArgs.converter->UCharErrorBufferLength = 0;
+ }
+ }
+
+ if (U_FAILURE(*err) || (args->source == args->sourceLimit)) {
+ return;
+ }
+
+escape:
+ changeState_2022(args->converter,
+ &(args->source),
+ args->sourceLimit,
+ ISO_2022_KR,
+ err);
+ }
+}
+
+static void
+UConverter_toUnicode_ISO_2022_KR_OFFSETS_LOGIC(UConverterToUnicodeArgs *args,
+ UErrorCode* err){
+ char tempBuf[2];
+ const char *mySource = ( char *) args->source;
+ UChar *myTarget = args->target;
+ const char *mySourceLimit = args->sourceLimit;
+ UChar32 targetUniChar = 0x0000;
+ UChar mySourceChar = 0x0000;
+ UConverterDataISO2022* myData;
+ UConverterSharedData* sharedData ;
+ UBool useFallback;
+
+ myData=(UConverterDataISO2022*)(args->converter->extraInfo);
+ if(myData->version==1){
+ UConverter_toUnicode_ISO_2022_KR_OFFSETS_LOGIC_IBM(args,err);
+ return;
+ }
+
+ /* initialize state */
+ sharedData = myData->currentConverter->sharedData;
+ useFallback = args->converter->useFallback;
+
+ if(myData->key != 0) {
+ /* continue with a partial escape sequence */
+ goto escape;
+ } else if(args->converter->toULength == 1 && mySource < mySourceLimit && myTarget < args->targetLimit) {
+ /* continue with a partial double-byte character */
+ mySourceChar = args->converter->toUBytes[0];
+ args->converter->toULength = 0;
+ goto getTrailByte;
+ }
+
+ while(mySource< mySourceLimit){
+
+ if(myTarget < args->targetLimit){
+
+ mySourceChar= (unsigned char) *mySource++;
+
+ if(mySourceChar==UCNV_SI){
+ myData->toU2022State.g = 0;
+ if (myData->isEmptySegment) {
+ myData->isEmptySegment = FALSE; /* we are handling it, reset to avoid future spurious errors */
+ *err = U_ILLEGAL_ESCAPE_SEQUENCE;
+ args->converter->toUCallbackReason = UCNV_IRREGULAR;
+ args->converter->toUBytes[0] = (uint8_t)mySourceChar;
+ args->converter->toULength = 1;
+ args->target = myTarget;
+ args->source = mySource;
+ return;
+ }
+ /*consume the source */
+ continue;
+ }else if(mySourceChar==UCNV_SO){
+ myData->toU2022State.g = 1;
+ myData->isEmptySegment = TRUE; /* Begin a new segment, empty so far */
+ /*consume the source */
+ continue;
+ }else if(mySourceChar==ESC_2022){
+ mySource--;
+escape:
+ myData->isEmptySegment = FALSE; /* Any invalid ESC sequences will be detected separately, so just reset this */
+ changeState_2022(args->converter,&(mySource),
+ mySourceLimit, ISO_2022_KR, err);
+ if(U_FAILURE(*err)){
+ args->target = myTarget;
+ args->source = mySource;
+ return;
+ }
+ continue;
+ }
+
+ myData->isEmptySegment = FALSE; /* Any invalid char errors will be detected separately, so just reset this */
+ if(myData->toU2022State.g == 1) {
+ if(mySource < mySourceLimit) {
+ int leadIsOk, trailIsOk;
+ uint8_t trailByte;
+getTrailByte:
+ targetUniChar = missingCharMarker;
+ trailByte = (uint8_t)*mySource;
+ /*
+ * Ticket 5691: consistent illegal sequences:
+ * - We include at least the first byte in the illegal sequence.
+ * - If any of the non-initial bytes could be the start of a character,
+ * we stop the illegal sequence before the first one of those.
+ *
+ * In ISO-2022 DBCS, if the second byte is in the 21..7e range or is
+ * an ESC/SO/SI, we report only the first byte as the illegal sequence.
+ * Otherwise we convert or report the pair of bytes.
+ */
+ leadIsOk = (uint8_t)(mySourceChar - 0x21) <= (0x7e - 0x21);
+ trailIsOk = (uint8_t)(trailByte - 0x21) <= (0x7e - 0x21);
+ if (leadIsOk && trailIsOk) {
+ ++mySource;
+ tempBuf[0] = (char)(mySourceChar + 0x80);
+ tempBuf[1] = (char)(trailByte + 0x80);
+ targetUniChar = ucnv_MBCSSimpleGetNextUChar(sharedData, tempBuf, 2, useFallback);
+ mySourceChar = (mySourceChar << 8) | trailByte;
+ } else if (!(trailIsOk || IS_2022_CONTROL(trailByte))) {
+ /* report a pair of illegal bytes if the second byte is not a DBCS starter */
+ ++mySource;
+ /* add another bit so that the code below writes 2 bytes in case of error */
+ mySourceChar = 0x10000 | (mySourceChar << 8) | trailByte;
+ }
+ } else {
+ args->converter->toUBytes[0] = (uint8_t)mySourceChar;
+ args->converter->toULength = 1;
+ break;
+ }
+ }
+ else if(mySourceChar <= 0x7f) {
+ targetUniChar = ucnv_MBCSSimpleGetNextUChar(sharedData, mySource - 1, 1, useFallback);
+ } else {
+ targetUniChar = 0xffff;
+ }
+ if(targetUniChar < 0xfffe){
+ if(args->offsets) {
+ args->offsets[myTarget - args->target] = (int32_t)(mySource - args->source - (mySourceChar <= 0xff ? 1 : 2));
+ }
+ *(myTarget++)=(UChar)targetUniChar;
+ }
+ else {
+ /* Call the callback function*/
+ toUnicodeCallback(args->converter,mySourceChar,targetUniChar,err);
+ break;
+ }
+ }
+ else{
+ *err =U_BUFFER_OVERFLOW_ERROR;
+ break;
+ }
+ }
+ args->target = myTarget;
+ args->source = mySource;
+}
+
+/*************************** END ISO2022-KR *********************************/
+
+/*************************** ISO-2022-CN *********************************
+*
+* Rules for ISO-2022-CN Encoding:
+* i) The designator sequence must appear once on a line before any instance
+* of character set it designates.
+* ii) If two lines contain characters from the same character set, both lines
+* must include the designator sequence.
+* iii) Once the designator sequence is known, a shifting sequence has to be found
+* to invoke the shifting
+* iv) All lines start in ASCII and end in ASCII.
+* v) Four shifting sequences are employed for this purpose:
+*
+* Sequcence ASCII Eq Charsets
+* ---------- ------- ---------
+* SI <SI> US-ASCII
+* SO <SO> CNS-11643-1992 Plane 1, GB2312, ISO-IR-165
+* SS2 <ESC>N CNS-11643-1992 Plane 2
+* SS3 <ESC>O CNS-11643-1992 Planes 3-7
+*
+* vi)
+* SOdesignator : ESC "$" ")" finalchar_for_SO
+* SS2designator : ESC "$" "*" finalchar_for_SS2
+* SS3designator : ESC "$" "+" finalchar_for_SS3
+*
+* ESC $ ) A Indicates the bytes following SO are Chinese
+* characters as defined in GB 2312-80, until
+* another SOdesignation appears
+*
+*
+* ESC $ ) E Indicates the bytes following SO are as defined
+* in ISO-IR-165 (for details, see section 2.1),
+* until another SOdesignation appears
+*
+* ESC $ ) G Indicates the bytes following SO are as defined
+* in CNS 11643-plane-1, until another
+* SOdesignation appears
+*
+* ESC $ * H Indicates the two bytes immediately following
+* SS2 is a Chinese character as defined in CNS
+* 11643-plane-2, until another SS2designation
+* appears
+* (Meaning <ESC>N must preceed every 2 byte
+* sequence.)
+*
+* ESC $ + I Indicates the immediate two bytes following SS3
+* is a Chinese character as defined in CNS
+* 11643-plane-3, until another SS3designation
+* appears
+* (Meaning <ESC>O must preceed every 2 byte
+* sequence.)
+*
+* ESC $ + J Indicates the immediate two bytes following SS3
+* is a Chinese character as defined in CNS
+* 11643-plane-4, until another SS3designation
+* appears
+* (In English: <ESC>O must preceed every 2 byte
+* sequence.)
+*
+* ESC $ + K Indicates the immediate two bytes following SS3
+* is a Chinese character as defined in CNS
+* 11643-plane-5, until another SS3designation
+* appears
+*
+* ESC $ + L Indicates the immediate two bytes following SS3
+* is a Chinese character as defined in CNS
+* 11643-plane-6, until another SS3designation
+* appears
+*
+* ESC $ + M Indicates the immediate two bytes following SS3
+* is a Chinese character as defined in CNS
+* 11643-plane-7, until another SS3designation
+* appears
+*
+* As in ISO-2022-CN, each line starts in ASCII, and ends in ASCII, and
+* has its own designation information before any Chinese characters
+* appear
+*
+*/
+
+/* The following are defined this way to make the strings truely readonly */
+static const char GB_2312_80_STR[] = "\x1B\x24\x29\x41";
+static const char ISO_IR_165_STR[] = "\x1B\x24\x29\x45";
+static const char CNS_11643_1992_Plane_1_STR[] = "\x1B\x24\x29\x47";
+static const char CNS_11643_1992_Plane_2_STR[] = "\x1B\x24\x2A\x48";
+static const char CNS_11643_1992_Plane_3_STR[] = "\x1B\x24\x2B\x49";
+static const char CNS_11643_1992_Plane_4_STR[] = "\x1B\x24\x2B\x4A";
+static const char CNS_11643_1992_Plane_5_STR[] = "\x1B\x24\x2B\x4B";
+static const char CNS_11643_1992_Plane_6_STR[] = "\x1B\x24\x2B\x4C";
+static const char CNS_11643_1992_Plane_7_STR[] = "\x1B\x24\x2B\x4D";
+
+/********************** ISO2022-CN Data **************************/
+static const char* const escSeqCharsCN[10] ={
+ SHIFT_IN_STR, /* ASCII */
+ GB_2312_80_STR,
+ ISO_IR_165_STR,
+ CNS_11643_1992_Plane_1_STR,
+ CNS_11643_1992_Plane_2_STR,
+ CNS_11643_1992_Plane_3_STR,
+ CNS_11643_1992_Plane_4_STR,
+ CNS_11643_1992_Plane_5_STR,
+ CNS_11643_1992_Plane_6_STR,
+ CNS_11643_1992_Plane_7_STR
+};
+
+static void
+UConverter_fromUnicode_ISO_2022_CN_OFFSETS_LOGIC(UConverterFromUnicodeArgs* args, UErrorCode* err){
+ UConverter *cnv = args->converter;
+ UConverterDataISO2022 *converterData;
+ ISO2022State *pFromU2022State;
+ uint8_t *target = (uint8_t *) args->target;
+ const uint8_t *targetLimit = (const uint8_t *) args->targetLimit;
+ const UChar* source = args->source;
+ const UChar* sourceLimit = args->sourceLimit;
+ int32_t* offsets = args->offsets;
+ UChar32 sourceChar;
+ char buffer[8];
+ int32_t len;
+ int8_t choices[3];
+ int32_t choiceCount;
+ uint32_t targetValue = 0;
+ UBool useFallback;
+
+ /* set up the state */
+ converterData = (UConverterDataISO2022*)cnv->extraInfo;
+ pFromU2022State = &converterData->fromU2022State;
+
+ choiceCount = 0;
+
+ /* check if the last codepoint of previous buffer was a lead surrogate*/
+ if((sourceChar = cnv->fromUChar32)!=0 && target< targetLimit) {
+ goto getTrail;
+ }
+
+ while( source < sourceLimit){
+ if(target < targetLimit){
+
+ sourceChar = *(source++);
+ /*check if the char is a First surrogate*/
+ if(UTF_IS_SURROGATE(sourceChar)) {
+ if(UTF_IS_SURROGATE_FIRST(sourceChar)) {
+getTrail:
+ /*look ahead to find the trail surrogate*/
+ if(source < sourceLimit) {
+ /* test the following code unit */
+ UChar trail=(UChar) *source;
+ if(UTF_IS_SECOND_SURROGATE(trail)) {
+ source++;
+ sourceChar=UTF16_GET_PAIR_VALUE(sourceChar, trail);
+ cnv->fromUChar32=0x00;
+ /* convert this supplementary code point */
+ /* exit this condition tree */
+ } else {
+ /* this is an unmatched lead code unit (1st surrogate) */
+ /* callback(illegal) */
+ *err=U_ILLEGAL_CHAR_FOUND;
+ cnv->fromUChar32=sourceChar;
+ break;
+ }
+ } else {
+ /* no more input */
+ cnv->fromUChar32=sourceChar;
+ break;
+ }
+ } else {
+ /* this is an unmatched trail code unit (2nd surrogate) */
+ /* callback(illegal) */
+ *err=U_ILLEGAL_CHAR_FOUND;
+ cnv->fromUChar32=sourceChar;
+ break;
+ }
+ }
+
+ /* do the conversion */
+ if(sourceChar <= 0x007f ){
+ /* do not convert SO/SI/ESC */
+ if(IS_2022_CONTROL(sourceChar)) {
+ /* callback(illegal) */
+ *err=U_ILLEGAL_CHAR_FOUND;
+ cnv->fromUChar32=sourceChar;
+ break;
+ }
+
+ /* US-ASCII */
+ if(pFromU2022State->g == 0) {
+ buffer[0] = (char)sourceChar;
+ len = 1;
+ } else {
+ buffer[0] = UCNV_SI;
+ buffer[1] = (char)sourceChar;
+ len = 2;
+ pFromU2022State->g = 0;
+ choiceCount = 0;
+ }
+ if(sourceChar == CR || sourceChar == LF) {
+ /* reset the state at the end of a line */
+ uprv_memset(pFromU2022State, 0, sizeof(ISO2022State));
+ choiceCount = 0;
+ }
+ }
+ else{
+ /* convert U+0080..U+10ffff */
+ int32_t i;
+ int8_t cs, g;
+
+ if(choiceCount == 0) {
+ /* try the current SO/G1 converter first */
+ choices[0] = pFromU2022State->cs[1];
+
+ /* default to GB2312_1 if none is designated yet */
+ if(choices[0] == 0) {
+ choices[0] = GB2312_1;
+ }
+
+ if(converterData->version == 0) {
+ /* ISO-2022-CN */
+
+ /* try the other SO/G1 converter; a CNS_11643_1 lookup may result in any plane */
+ if(choices[0] == GB2312_1) {
+ choices[1] = (int8_t)CNS_11643_1;
+ } else {
+ choices[1] = (int8_t)GB2312_1;
+ }
+
+ choiceCount = 2;
+ } else if (converterData->version == 1) {
+ /* ISO-2022-CN-EXT */
+
+ /* try one of the other converters */
+ switch(choices[0]) {
+ case GB2312_1:
+ choices[1] = (int8_t)CNS_11643_1;
+ choices[2] = (int8_t)ISO_IR_165;
+ break;
+ case ISO_IR_165:
+ choices[1] = (int8_t)GB2312_1;
+ choices[2] = (int8_t)CNS_11643_1;
+ break;
+ default: /* CNS_11643_x */
+ choices[1] = (int8_t)GB2312_1;
+ choices[2] = (int8_t)ISO_IR_165;
+ break;
+ }
+
+ choiceCount = 3;
+ } else {
+ choices[0] = (int8_t)CNS_11643_1;
+ choices[1] = (int8_t)GB2312_1;
+ }
+ }
+
+ cs = g = 0;
+ /*
+ * len==0: no mapping found yet
+ * len<0: found a fallback result: continue looking for a roundtrip but no further fallbacks
+ * len>0: found a roundtrip result, done
+ */
+ len = 0;
+ /*
+ * We will turn off useFallback after finding a fallback,
+ * but we still get fallbacks from PUA code points as usual.
+ * Therefore, we will also need to check that we don't overwrite
+ * an early fallback with a later one.
+ */
+ useFallback = cnv->useFallback;
+
+ for(i = 0; i < choiceCount && len <= 0; ++i) {
+ int8_t cs0 = choices[i];
+ if(cs0 > 0) {
+ uint32_t value;
+ int32_t len2;
+ if(cs0 >= CNS_11643_0) {
+ len2 = MBCS_FROM_UCHAR32_ISO2022(
+ converterData->myConverterArray[CNS_11643],
+ sourceChar,
+ &value,
+ useFallback,
+ MBCS_OUTPUT_3);
+ if(len2 == 3 || (len2 == -3 && len == 0)) {
+ targetValue = value;
+ cs = (int8_t)(CNS_11643_0 + (value >> 16) - 0x80);
+ if(len2 >= 0) {
+ len = 2;
+ } else {
+ len = -2;
+ useFallback = FALSE;
+ }
+ if(cs == CNS_11643_1) {
+ g = 1;
+ } else if(cs == CNS_11643_2) {
+ g = 2;
+ } else /* plane 3..7 */ if(converterData->version == 1) {
+ g = 3;
+ } else {
+ /* ISO-2022-CN (without -EXT) does not support plane 3..7 */
+ len = 0;
+ }
+ }
+ } else {
+ /* GB2312_1 or ISO-IR-165 */
+ len2 = MBCS_FROM_UCHAR32_ISO2022(
+ converterData->myConverterArray[cs0],
+ sourceChar,
+ &value,
+ useFallback,
+ MBCS_OUTPUT_2);
+ if(len2 == 2 || (len2 == -2 && len == 0)) {
+ targetValue = value;
+ len = len2;
+ cs = cs0;
+ g = 1;
+ useFallback = FALSE;
+ }
+ }
+ }
+ }
+
+ if(len != 0) {
+ len = 0; /* count output bytes; it must have been abs(len) == 2 */
+
+ /* write the designation sequence if necessary */
+ if(cs != pFromU2022State->cs[g]) {
+ if(cs < CNS_11643) {
+ uprv_memcpy(buffer, escSeqCharsCN[cs], 4);
+ } else {
+ uprv_memcpy(buffer, escSeqCharsCN[CNS_11643 + (cs - CNS_11643_1)], 4);
+ }
+ len = 4;
+ pFromU2022State->cs[g] = cs;
+ if(g == 1) {
+ /* changing the SO/G1 charset invalidates the choices[] */
+ choiceCount = 0;
+ }
+ }
+
+ /* write the shift sequence if necessary */
+ if(g != pFromU2022State->g) {
+ switch(g) {
+ case 1:
+ buffer[len++] = UCNV_SO;
+
+ /* set the new state only if it is the locking shift SO/G1, not for SS2 or SS3 */
+ pFromU2022State->g = 1;
+ break;
+ case 2:
+ buffer[len++] = 0x1b;
+ buffer[len++] = 0x4e;
+ break;
+ default: /* case 3 */
+ buffer[len++] = 0x1b;
+ buffer[len++] = 0x4f;
+ break;
+ }
+ }
+
+ /* write the two output bytes */
+ buffer[len++] = (char)(targetValue >> 8);
+ buffer[len++] = (char)targetValue;
+ } else {
+ /* if we cannot find the character after checking all codepages
+ * then this is an error
+ */
+ *err = U_INVALID_CHAR_FOUND;
+ cnv->fromUChar32=sourceChar;
+ break;
+ }
+ }
+
+ /* output len>0 bytes in buffer[] */
+ if(len == 1) {
+ *target++ = buffer[0];
+ if(offsets) {
+ *offsets++ = (int32_t)(source - args->source - 1); /* -1: known to be ASCII */
+ }
+ } else if(len == 2 && (target + 2) <= targetLimit) {
+ *target++ = buffer[0];
+ *target++ = buffer[1];
+ if(offsets) {
+ int32_t sourceIndex = (int32_t)(source - args->source - U16_LENGTH(sourceChar));
+ *offsets++ = sourceIndex;
+ *offsets++ = sourceIndex;
+ }
+ } else {
+ fromUWriteUInt8(
+ cnv,
+ buffer, len,
+ &target, (const char *)targetLimit,
+ &offsets, (int32_t)(source - args->source - U16_LENGTH(sourceChar)),
+ err);
+ if(U_FAILURE(*err)) {
+ break;
+ }
+ }
+ } /* end if(myTargetIndex<myTargetLength) */
+ else{
+ *err =U_BUFFER_OVERFLOW_ERROR;
+ break;
+ }
+
+ }/* end while(mySourceIndex<mySourceLength) */
+
+ /*
+ * the end of the input stream and detection of truncated input
+ * are handled by the framework, but for ISO-2022-CN conversion
+ * we need to be in ASCII mode at the very end
+ *
+ * conditions:
+ * successful
+ * not in ASCII mode
+ * end of input and no truncated input
+ */
+ if( U_SUCCESS(*err) &&
+ pFromU2022State->g!=0 &&
+ args->flush && source>=sourceLimit && cnv->fromUChar32==0
+ ) {
+ int32_t sourceIndex;
+
+ /* we are switching to ASCII */
+ pFromU2022State->g=0;
+
+ /* get the source index of the last input character */
+ /*
+ * TODO this would be simpler and more reliable if we used a pair
+ * of sourceIndex/prevSourceIndex like in ucnvmbcs.c
+ * so that we could simply use the prevSourceIndex here;
+ * this code gives an incorrect result for the rare case of an unmatched
+ * trail surrogate that is alone in the last buffer of the text stream
+ */
+ sourceIndex=(int32_t)(source-args->source);
+ if(sourceIndex>0) {
+ --sourceIndex;
+ if( U16_IS_TRAIL(args->source[sourceIndex]) &&
+ (sourceIndex==0 || U16_IS_LEAD(args->source[sourceIndex-1]))
+ ) {
+ --sourceIndex;
+ }
+ } else {
+ sourceIndex=-1;
+ }
+
+ fromUWriteUInt8(
+ cnv,
+ SHIFT_IN_STR, 1,
+ &target, (const char *)targetLimit,
+ &offsets, sourceIndex,
+ err);
+ }
+
+ /*save the state and return */
+ args->source = source;
+ args->target = (char*)target;
+}
+
+
+static void
+UConverter_toUnicode_ISO_2022_CN_OFFSETS_LOGIC(UConverterToUnicodeArgs *args,
+ UErrorCode* err){
+ char tempBuf[3];
+ const char *mySource = (char *) args->source;
+ UChar *myTarget = args->target;
+ const char *mySourceLimit = args->sourceLimit;
+ uint32_t targetUniChar = 0x0000;
+ uint32_t mySourceChar = 0x0000;
+ UConverterDataISO2022* myData;
+ ISO2022State *pToU2022State;
+
+ myData=(UConverterDataISO2022*)(args->converter->extraInfo);
+ pToU2022State = &myData->toU2022State;
+
+ if(myData->key != 0) {
+ /* continue with a partial escape sequence */
+ goto escape;
+ } else if(args->converter->toULength == 1 && mySource < mySourceLimit && myTarget < args->targetLimit) {
+ /* continue with a partial double-byte character */
+ mySourceChar = args->converter->toUBytes[0];
+ args->converter->toULength = 0;
+ targetUniChar = missingCharMarker;
+ goto getTrailByte;
+ }
+
+ while(mySource < mySourceLimit){
+
+ targetUniChar =missingCharMarker;
+
+ if(myTarget < args->targetLimit){
+
+ mySourceChar= (unsigned char) *mySource++;
+
+ switch(mySourceChar){
+ case UCNV_SI:
+ pToU2022State->g=0;
+ if (myData->isEmptySegment) {
+ myData->isEmptySegment = FALSE; /* we are handling it, reset to avoid future spurious errors */
+ *err = U_ILLEGAL_ESCAPE_SEQUENCE;
+ args->converter->toUCallbackReason = UCNV_IRREGULAR;
+ args->converter->toUBytes[0] = mySourceChar;
+ args->converter->toULength = 1;
+ args->target = myTarget;
+ args->source = mySource;
+ return;
+ }
+ continue;
+
+ case UCNV_SO:
+ if(pToU2022State->cs[1] != 0) {
+ pToU2022State->g=1;
+ myData->isEmptySegment = TRUE; /* Begin a new segment, empty so far */
+ continue;
+ } else {
+ /* illegal to have SO before a matching designator */
+ myData->isEmptySegment = FALSE; /* Handling a different error, reset this to avoid future spurious errs */
+ break;
+ }
+
+ case ESC_2022:
+ mySource--;
+escape:
+ {
+ const char * mySourceBefore = mySource;
+ int8_t toULengthBefore = args->converter->toULength;
+
+ changeState_2022(args->converter,&(mySource),
+ mySourceLimit, ISO_2022_CN,err);
+
+ /* After SO there must be at least one character before a designator (designator error handled separately) */
+ if(myData->key==0 && U_SUCCESS(*err) && myData->isEmptySegment) {
+ *err = U_ILLEGAL_ESCAPE_SEQUENCE;
+ args->converter->toUCallbackReason = UCNV_IRREGULAR;
+ args->converter->toULength = (int8_t)(toULengthBefore + (mySource - mySourceBefore));
+ }
+ }
+
+ /* invalid or illegal escape sequence */
+ if(U_FAILURE(*err)){
+ args->target = myTarget;
+ args->source = mySource;
+ myData->isEmptySegment = FALSE; /* Reset to avoid future spurious errors */
+ return;
+ }
+ continue;
+
+ /* ISO-2022-CN does not use single-byte (C1) SS2 and SS3 */
+
+ case CR:
+ /*falls through*/
+ case LF:
+ uprv_memset(pToU2022State, 0, sizeof(ISO2022State));
+ /* falls through */
+ default:
+ /* convert one or two bytes */
+ myData->isEmptySegment = FALSE;
+ if(pToU2022State->g != 0) {
+ if(mySource < mySourceLimit) {
+ UConverterSharedData *cnv;
+ StateEnum tempState;
+ int32_t tempBufLen;
+ int leadIsOk, trailIsOk;
+ uint8_t trailByte;
+getTrailByte:
+ trailByte = (uint8_t)*mySource;
+ /*
+ * Ticket 5691: consistent illegal sequences:
+ * - We include at least the first byte in the illegal sequence.
+ * - If any of the non-initial bytes could be the start of a character,
+ * we stop the illegal sequence before the first one of those.
+ *
+ * In ISO-2022 DBCS, if the second byte is in the 21..7e range or is
+ * an ESC/SO/SI, we report only the first byte as the illegal sequence.
+ * Otherwise we convert or report the pair of bytes.
+ */
+ leadIsOk = (uint8_t)(mySourceChar - 0x21) <= (0x7e - 0x21);
+ trailIsOk = (uint8_t)(trailByte - 0x21) <= (0x7e - 0x21);
+ if (leadIsOk && trailIsOk) {
+ ++mySource;
+ tempState = (StateEnum)pToU2022State->cs[pToU2022State->g];
+ if(tempState >= CNS_11643_0) {
+ cnv = myData->myConverterArray[CNS_11643];
+ tempBuf[0] = (char) (0x80+(tempState-CNS_11643_0));
+ tempBuf[1] = (char) (mySourceChar);
+ tempBuf[2] = (char) trailByte;
+ tempBufLen = 3;
+
+ }else{
+ cnv = myData->myConverterArray[tempState];
+ tempBuf[0] = (char) (mySourceChar);
+ tempBuf[1] = (char) trailByte;
+ tempBufLen = 2;
+ }
+ targetUniChar = ucnv_MBCSSimpleGetNextUChar(cnv, tempBuf, tempBufLen, FALSE);
+ mySourceChar = (mySourceChar << 8) | trailByte;
+ } else if (!(trailIsOk || IS_2022_CONTROL(trailByte))) {
+ /* report a pair of illegal bytes if the second byte is not a DBCS starter */
+ ++mySource;
+ /* add another bit so that the code below writes 2 bytes in case of error */
+ mySourceChar = 0x10000 | (mySourceChar << 8) | trailByte;
+ }
+ if(pToU2022State->g>=2) {
+ /* return from a single-shift state to the previous one */
+ pToU2022State->g=pToU2022State->prevG;
+ }
+ } else {
+ args->converter->toUBytes[0] = (uint8_t)mySourceChar;
+ args->converter->toULength = 1;
+ goto endloop;
+ }
+ }
+ else{
+ if(mySourceChar <= 0x7f) {
+ targetUniChar = (UChar) mySourceChar;
+ }
+ }
+ break;
+ }
+ if(targetUniChar < (missingCharMarker-1/*0xfffe*/)){
+ if(args->offsets){
+ args->offsets[myTarget - args->target] = (int32_t)(mySource - args->source - (mySourceChar <= 0xff ? 1 : 2));
+ }
+ *(myTarget++)=(UChar)targetUniChar;
+ }
+ else if(targetUniChar > missingCharMarker){
+ /* disassemble the surrogate pair and write to output*/
+ targetUniChar-=0x0010000;
+ *myTarget = (UChar)(0xd800+(UChar)(targetUniChar>>10));
+ if(args->offsets){
+ args->offsets[myTarget - args->target] = (int32_t)(mySource - args->source - (mySourceChar <= 0xff ? 1 : 2));
+ }
+ ++myTarget;
+ if(myTarget< args->targetLimit){
+ *myTarget = (UChar)(0xdc00+(UChar)(targetUniChar&0x3ff));
+ if(args->offsets){
+ args->offsets[myTarget - args->target] = (int32_t)(mySource - args->source - (mySourceChar <= 0xff ? 1 : 2));
+ }
+ ++myTarget;
+ }else{
+ args->converter->UCharErrorBuffer[args->converter->UCharErrorBufferLength++]=
+ (UChar)(0xdc00+(UChar)(targetUniChar&0x3ff));
+ }
+
+ }
+ else{
+ /* Call the callback function*/
+ toUnicodeCallback(args->converter,mySourceChar,targetUniChar,err);
+ break;
+ }
+ }
+ else{
+ *err =U_BUFFER_OVERFLOW_ERROR;
+ break;
+ }
+ }
+endloop:
+ args->target = myTarget;
+ args->source = mySource;
+}
+
+static void
+_ISO_2022_WriteSub(UConverterFromUnicodeArgs *args, int32_t offsetIndex, UErrorCode *err) {
+ UConverter *cnv = args->converter;
+ UConverterDataISO2022 *myConverterData=(UConverterDataISO2022 *) cnv->extraInfo;
+ ISO2022State *pFromU2022State=&myConverterData->fromU2022State;
+ char *p, *subchar;
+ char buffer[8];
+ int32_t length;
+
+ subchar=(char *)cnv->subChars;
+ length=cnv->subCharLen; /* assume length==1 for most variants */
+
+ p = buffer;
+ switch(myConverterData->locale[0]){
+ case 'j':
+ {
+ int8_t cs;
+
+ if(pFromU2022State->g == 1) {
+ /* JIS7: switch from G1 to G0 */
+ pFromU2022State->g = 0;
+ *p++ = UCNV_SI;
+ }
+
+ cs = pFromU2022State->cs[0];
+ if(cs != ASCII && cs != JISX201) {
+ /* not in ASCII or JIS X 0201: switch to ASCII */
+ pFromU2022State->cs[0] = (int8_t)ASCII;
+ *p++ = '\x1b';
+ *p++ = '\x28';
+ *p++ = '\x42';
+ }
+
+ *p++ = subchar[0];
+ break;
+ }
+ case 'c':
+ if(pFromU2022State->g != 0) {
+ /* not in ASCII mode: switch to ASCII */
+ pFromU2022State->g = 0;
+ *p++ = UCNV_SI;
+ }
+ *p++ = subchar[0];
+ break;
+ case 'k':
+ if(myConverterData->version == 0) {
+ if(length == 1) {
+ if((UBool)args->converter->fromUnicodeStatus) {
+ /* in DBCS mode: switch to SBCS */
+ args->converter->fromUnicodeStatus = 0;
+ *p++ = UCNV_SI;
+ }
+ *p++ = subchar[0];
+ } else /* length == 2*/ {
+ if(!(UBool)args->converter->fromUnicodeStatus) {
+ /* in SBCS mode: switch to DBCS */
+ args->converter->fromUnicodeStatus = 1;
+ *p++ = UCNV_SO;
+ }
+ *p++ = subchar[0];
+ *p++ = subchar[1];
+ }
+ break;
+ } else {
+ /* save the subconverter's substitution string */
+ uint8_t *currentSubChars = myConverterData->currentConverter->subChars;
+ int8_t currentSubCharLen = myConverterData->currentConverter->subCharLen;
+
+ /* set our substitution string into the subconverter */
+ myConverterData->currentConverter->subChars = (uint8_t *)subchar;
+ myConverterData->currentConverter->subCharLen = (int8_t)length;
+
+ /* let the subconverter write the subchar, set/retrieve fromUChar32 state */
+ args->converter = myConverterData->currentConverter;
+ myConverterData->currentConverter->fromUChar32 = cnv->fromUChar32;
+ ucnv_cbFromUWriteSub(args, 0, err);
+ cnv->fromUChar32 = myConverterData->currentConverter->fromUChar32;
+ args->converter = cnv;
+
+ /* restore the subconverter's substitution string */
+ myConverterData->currentConverter->subChars = currentSubChars;
+ myConverterData->currentConverter->subCharLen = currentSubCharLen;
+
+ if(*err == U_BUFFER_OVERFLOW_ERROR) {
+ if(myConverterData->currentConverter->charErrorBufferLength > 0) {
+ uprv_memcpy(
+ cnv->charErrorBuffer,
+ myConverterData->currentConverter->charErrorBuffer,
+ myConverterData->currentConverter->charErrorBufferLength);
+ }
+ cnv->charErrorBufferLength = myConverterData->currentConverter->charErrorBufferLength;
+ myConverterData->currentConverter->charErrorBufferLength = 0;
+ }
+ return;
+ }
+ default:
+ /* not expected */
+ break;
+ }
+ ucnv_cbFromUWriteBytes(args,
+ buffer, (int32_t)(p - buffer),
+ offsetIndex, err);
+}
+
+/*
+ * Structure for cloning an ISO 2022 converter into a single memory block.
+ * ucnv_safeClone() of the converter will align the entire cloneStruct,
+ * and then ucnv_safeClone() of the sub-converter may additionally align
+ * currentConverter inside the cloneStruct, for which we need the deadSpace
+ * after currentConverter.
+ * This is because UAlignedMemory may be larger than the actually
+ * necessary alignment size for the platform.
+ * The other cloneStruct fields will not be moved around,
+ * and are aligned properly with cloneStruct's alignment.
+ */
+struct cloneStruct
+{
+ UConverter cnv;
+ UConverter currentConverter;
+ UAlignedMemory deadSpace;
+ UConverterDataISO2022 mydata;
+};
+
+
+static UConverter *
+_ISO_2022_SafeClone(
+ const UConverter *cnv,
+ void *stackBuffer,
+ int32_t *pBufferSize,
+ UErrorCode *status)
+{
+ struct cloneStruct * localClone;
+ UConverterDataISO2022 *cnvData;
+ int32_t i, size;
+
+ if (*pBufferSize == 0) { /* 'preflighting' request - set needed size into *pBufferSize */
+ *pBufferSize = (int32_t)sizeof(struct cloneStruct);
+ return NULL;
+ }
+
+ cnvData = (UConverterDataISO2022 *)cnv->extraInfo;
+ localClone = (struct cloneStruct *)stackBuffer;
+
+ /* ucnv.c/ucnv_safeClone() copied the main UConverter already */
+
+ uprv_memcpy(&localClone->mydata, cnvData, sizeof(UConverterDataISO2022));
+ localClone->cnv.extraInfo = &localClone->mydata; /* set pointer to extra data */
+ localClone->cnv.isExtraLocal = TRUE;
+
+ /* share the subconverters */
+
+ if(cnvData->currentConverter != NULL) {
+ size = (int32_t)(sizeof(UConverter) + sizeof(UAlignedMemory)); /* include size of padding */
+ localClone->mydata.currentConverter =
+ ucnv_safeClone(cnvData->currentConverter,
+ &localClone->currentConverter,
+ &size, status);
+ if(U_FAILURE(*status)) {
+ return NULL;
+ }
+ }
+
+ for(i=0; i<UCNV_2022_MAX_CONVERTERS; ++i) {
+ if(cnvData->myConverterArray[i] != NULL) {
+ ucnv_incrementRefCount(cnvData->myConverterArray[i]);
+ }
+ }
+
+ return &localClone->cnv;
+}
+
+static void
+_ISO_2022_GetUnicodeSet(const UConverter *cnv,
+ const USetAdder *sa,
+ UConverterUnicodeSet which,
+ UErrorCode *pErrorCode)
+{
+ int32_t i;
+ UConverterDataISO2022* cnvData;
+
+ if (U_FAILURE(*pErrorCode)) {
+ return;
+ }
+#ifdef U_ENABLE_GENERIC_ISO_2022
+ if (cnv->sharedData == &_ISO2022Data) {
+ /* We use UTF-8 in this case */
+ sa->addRange(sa->set, 0, 0xd7FF);
+ sa->addRange(sa->set, 0xE000, 0x10FFFF);
+ return;
+ }
+#endif
+
+ cnvData = (UConverterDataISO2022*)cnv->extraInfo;
+
+ /* open a set and initialize it with code points that are algorithmically round-tripped */
+ switch(cnvData->locale[0]){
+ case 'j':
+ /* include JIS X 0201 which is hardcoded */
+ sa->add(sa->set, 0xa5);
+ sa->add(sa->set, 0x203e);
+ if(jpCharsetMasks[cnvData->version]&CSM(ISO8859_1)) {
+ /* include Latin-1 for some variants of JP */
+ sa->addRange(sa->set, 0, 0xff);
+ } else {
+ /* include ASCII for JP */
+ sa->addRange(sa->set, 0, 0x7f);
+ }
+ if(cnvData->version==3 || cnvData->version==4 || which==UCNV_ROUNDTRIP_AND_FALLBACK_SET) {
+ /*
+ * Do not test (jpCharsetMasks[cnvData->version]&CSM(HWKANA_7BIT))!=0
+ * because the bit is on for all JP versions although only versions 3 & 4 (JIS7 & JIS8)
+ * use half-width Katakana.
+ * This is because all ISO-2022-JP variants are lenient in that they accept (in toUnicode)
+ * half-width Katakana via the ESC ( I sequence.
+ * However, we only emit (fromUnicode) half-width Katakana according to the
+ * definition of each variant.
+ *
+ * When including fallbacks,
+ * we need to include half-width Katakana Unicode code points for all JP variants because
+ * JIS X 0208 has hardcoded fallbacks for them (which map to full-width Katakana).
+ */
+ /* include half-width Katakana for JP */
+ sa->addRange(sa->set, HWKANA_START, HWKANA_END);
+ }
+ break;
+ case 'c':
+ case 'z':
+ /* include ASCII for CN */
+ sa->addRange(sa->set, 0, 0x7f);
+ break;
+ case 'k':
+ /* there is only one converter for KR, and it is not in the myConverterArray[] */
+ cnvData->currentConverter->sharedData->impl->getUnicodeSet(
+ cnvData->currentConverter, sa, which, pErrorCode);
+ /* the loop over myConverterArray[] will simply not find another converter */
+ break;
+ default:
+ break;
+ }
+
+#if 0 /* Replaced by ucnv_MBCSGetFilteredUnicodeSetForUnicode() until we implement ucnv_getUnicodeSet() with reverse fallbacks. */
+ if( (cnvData->locale[0]=='c' || cnvData->locale[0]=='z') &&
+ cnvData->version==0 && i==CNS_11643
+ ) {
+ /* special handling for non-EXT ISO-2022-CN: add only code points for CNS planes 1 and 2 */
+ ucnv_MBCSGetUnicodeSetForBytes(
+ cnvData->myConverterArray[i],
+ sa, UCNV_ROUNDTRIP_SET,
+ 0, 0x81, 0x82,
+ pErrorCode);
+ }
+#endif
+
+ for (i=0; i<UCNV_2022_MAX_CONVERTERS; i++) {
+ UConverterSetFilter filter;
+ if(cnvData->myConverterArray[i]!=NULL) {
+ if( (cnvData->locale[0]=='c' || cnvData->locale[0]=='z') &&
+ cnvData->version==0 && i==CNS_11643
+ ) {
+ /*
+ * Version-specific for CN:
+ * CN version 0 does not map CNS planes 3..7 although
+ * they are all available in the CNS conversion table;
+ * CN version 1 (-EXT) does map them all.
+ * The two versions create different Unicode sets.
+ */
+ filter=UCNV_SET_FILTER_2022_CN;
+ } else if(cnvData->locale[0]=='j' && i==JISX208) {
+ /*
+ * Only add code points that map to Shift-JIS codes
+ * corresponding to JIS X 0208.
+ */
+ filter=UCNV_SET_FILTER_SJIS;
+ } else if(i==KSC5601) {
+ /*
+ * Some of the KSC 5601 tables (convrtrs.txt has this aliases on multiple tables)
+ * are broader than GR94.
+ */
+ filter=UCNV_SET_FILTER_GR94DBCS;
+ } else {
+ filter=UCNV_SET_FILTER_NONE;
+ }
+ ucnv_MBCSGetFilteredUnicodeSetForUnicode(cnvData->myConverterArray[i], sa, which, filter, pErrorCode);
+ }
+ }
+
+ /*
+ * ISO 2022 converters must not convert SO/SI/ESC despite what
+ * sub-converters do by themselves.
+ * Remove these characters from the set.
+ */
+ sa->remove(sa->set, 0x0e);
+ sa->remove(sa->set, 0x0f);
+ sa->remove(sa->set, 0x1b);
+
+ /* ISO 2022 converters do not convert C1 controls either */
+ sa->removeRange(sa->set, 0x80, 0x9f);
+}
+
+static const UConverterImpl _ISO2022Impl={
+ UCNV_ISO_2022,
+
+ NULL,
+ NULL,
+
+ _ISO2022Open,
+ _ISO2022Close,
+ _ISO2022Reset,
+
+#ifdef U_ENABLE_GENERIC_ISO_2022
+ T_UConverter_toUnicode_ISO_2022_OFFSETS_LOGIC,
+ T_UConverter_toUnicode_ISO_2022_OFFSETS_LOGIC,
+ ucnv_fromUnicode_UTF8,
+ ucnv_fromUnicode_UTF8_OFFSETS_LOGIC,
+#else
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+#endif
+ NULL,
+
+ NULL,
+ _ISO2022getName,
+ _ISO_2022_WriteSub,
+ _ISO_2022_SafeClone,
+ _ISO_2022_GetUnicodeSet
+};
+static const UConverterStaticData _ISO2022StaticData={
+ sizeof(UConverterStaticData),
+ "ISO_2022",
+ 2022,
+ UCNV_IBM,
+ UCNV_ISO_2022,
+ 1,
+ 3, /* max 3 bytes per UChar from UTF-8 (4 bytes from surrogate _pair_) */
+ { 0x1a, 0, 0, 0 },
+ 1,
+ FALSE,
+ FALSE,
+ 0,
+ 0,
+ { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */
+};
+const UConverterSharedData _ISO2022Data={
+ sizeof(UConverterSharedData),
+ ~((uint32_t) 0),
+ NULL,
+ NULL,
+ &_ISO2022StaticData,
+ FALSE,
+ &_ISO2022Impl,
+ 0
+};
+
+/*************JP****************/
+static const UConverterImpl _ISO2022JPImpl={
+ UCNV_ISO_2022,
+
+ NULL,
+ NULL,
+
+ _ISO2022Open,
+ _ISO2022Close,
+ _ISO2022Reset,
+
+ UConverter_toUnicode_ISO_2022_JP_OFFSETS_LOGIC,
+ UConverter_toUnicode_ISO_2022_JP_OFFSETS_LOGIC,
+ UConverter_fromUnicode_ISO_2022_JP_OFFSETS_LOGIC,
+ UConverter_fromUnicode_ISO_2022_JP_OFFSETS_LOGIC,
+ NULL,
+
+ NULL,
+ _ISO2022getName,
+ _ISO_2022_WriteSub,
+ _ISO_2022_SafeClone,
+ _ISO_2022_GetUnicodeSet
+};
+static const UConverterStaticData _ISO2022JPStaticData={
+ sizeof(UConverterStaticData),
+ "ISO_2022_JP",
+ 0,
+ UCNV_IBM,
+ UCNV_ISO_2022,
+ 1,
+ 6, /* max 6 bytes per UChar: 4-byte escape sequence + DBCS */
+ { 0x1a, 0, 0, 0 },
+ 1,
+ FALSE,
+ FALSE,
+ 0,
+ 0,
+ { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */
+};
+static const UConverterSharedData _ISO2022JPData={
+ sizeof(UConverterSharedData),
+ ~((uint32_t) 0),
+ NULL,
+ NULL,
+ &_ISO2022JPStaticData,
+ FALSE,
+ &_ISO2022JPImpl,
+ 0
+};
+
+/************* KR ***************/
+static const UConverterImpl _ISO2022KRImpl={
+ UCNV_ISO_2022,
+
+ NULL,
+ NULL,
+
+ _ISO2022Open,
+ _ISO2022Close,
+ _ISO2022Reset,
+
+ UConverter_toUnicode_ISO_2022_KR_OFFSETS_LOGIC,
+ UConverter_toUnicode_ISO_2022_KR_OFFSETS_LOGIC,
+ UConverter_fromUnicode_ISO_2022_KR_OFFSETS_LOGIC,
+ UConverter_fromUnicode_ISO_2022_KR_OFFSETS_LOGIC,
+ NULL,
+
+ NULL,
+ _ISO2022getName,
+ _ISO_2022_WriteSub,
+ _ISO_2022_SafeClone,
+ _ISO_2022_GetUnicodeSet
+};
+static const UConverterStaticData _ISO2022KRStaticData={
+ sizeof(UConverterStaticData),
+ "ISO_2022_KR",
+ 0,
+ UCNV_IBM,
+ UCNV_ISO_2022,
+ 1,
+ 3, /* max 3 bytes per UChar: SO+DBCS */
+ { 0x1a, 0, 0, 0 },
+ 1,
+ FALSE,
+ FALSE,
+ 0,
+ 0,
+ { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */
+};
+static const UConverterSharedData _ISO2022KRData={
+ sizeof(UConverterSharedData),
+ ~((uint32_t) 0),
+ NULL,
+ NULL,
+ &_ISO2022KRStaticData,
+ FALSE,
+ &_ISO2022KRImpl,
+ 0
+};
+
+/*************** CN ***************/
+static const UConverterImpl _ISO2022CNImpl={
+
+ UCNV_ISO_2022,
+
+ NULL,
+ NULL,
+
+ _ISO2022Open,
+ _ISO2022Close,
+ _ISO2022Reset,
+
+ UConverter_toUnicode_ISO_2022_CN_OFFSETS_LOGIC,
+ UConverter_toUnicode_ISO_2022_CN_OFFSETS_LOGIC,
+ UConverter_fromUnicode_ISO_2022_CN_OFFSETS_LOGIC,
+ UConverter_fromUnicode_ISO_2022_CN_OFFSETS_LOGIC,
+ NULL,
+
+ NULL,
+ _ISO2022getName,
+ _ISO_2022_WriteSub,
+ _ISO_2022_SafeClone,
+ _ISO_2022_GetUnicodeSet
+};
+static const UConverterStaticData _ISO2022CNStaticData={
+ sizeof(UConverterStaticData),
+ "ISO_2022_CN",
+ 0,
+ UCNV_IBM,
+ UCNV_ISO_2022,
+ 1,
+ 8, /* max 8 bytes per UChar: 4-byte CNS designator + 2 bytes for SS2/SS3 + DBCS */
+ { 0x1a, 0, 0, 0 },
+ 1,
+ FALSE,
+ FALSE,
+ 0,
+ 0,
+ { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */
+};
+static const UConverterSharedData _ISO2022CNData={
+ sizeof(UConverterSharedData),
+ ~((uint32_t) 0),
+ NULL,
+ NULL,
+ &_ISO2022CNStaticData,
+ FALSE,
+ &_ISO2022CNImpl,
+ 0
+};
+
+
+
+#endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */