summaryrefslogtreecommitdiff
path: root/Build/source/libs/gmp/gmp-6.0.0/mpz/oddfac_1.c
diff options
context:
space:
mode:
Diffstat (limited to 'Build/source/libs/gmp/gmp-6.0.0/mpz/oddfac_1.c')
-rw-r--r--Build/source/libs/gmp/gmp-6.0.0/mpz/oddfac_1.c427
1 files changed, 427 insertions, 0 deletions
diff --git a/Build/source/libs/gmp/gmp-6.0.0/mpz/oddfac_1.c b/Build/source/libs/gmp/gmp-6.0.0/mpz/oddfac_1.c
new file mode 100644
index 00000000000..cf0bff06505
--- /dev/null
+++ b/Build/source/libs/gmp/gmp-6.0.0/mpz/oddfac_1.c
@@ -0,0 +1,427 @@
+/* mpz_oddfac_1(RESULT, N) -- Set RESULT to the odd factor of N!.
+
+Contributed to the GNU project by Marco Bodrato.
+
+THE FUNCTION IN THIS FILE IS INTERNAL WITH A MUTABLE INTERFACE.
+IT IS ONLY SAFE TO REACH IT THROUGH DOCUMENTED INTERFACES.
+IN FACT, IT IS ALMOST GUARANTEED THAT IT WILL CHANGE OR
+DISAPPEAR IN A FUTURE GNU MP RELEASE.
+
+Copyright 2010-2012 Free Software Foundation, Inc.
+
+This file is part of the GNU MP Library.
+
+The GNU MP Library is free software; you can redistribute it and/or modify
+it under the terms of either:
+
+ * the GNU Lesser General Public License as published by the Free
+ Software Foundation; either version 3 of the License, or (at your
+ option) any later version.
+
+or
+
+ * the GNU General Public License as published by the Free Software
+ Foundation; either version 2 of the License, or (at your option) any
+ later version.
+
+or both in parallel, as here.
+
+The GNU MP Library is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received copies of the GNU General Public License and the
+GNU Lesser General Public License along with the GNU MP Library. If not,
+see https://www.gnu.org/licenses/. */
+
+#include "gmp.h"
+#include "gmp-impl.h"
+#include "longlong.h"
+
+/* TODO:
+ - split this file in smaller parts with functions that can be recycled for different computations.
+ */
+
+/**************************************************************/
+/* Section macros: common macros, for mswing/fac/bin (&sieve) */
+/**************************************************************/
+
+#define FACTOR_LIST_APPEND(PR, MAX_PR, VEC, I) \
+ if ((PR) > (MAX_PR)) { \
+ (VEC)[(I)++] = (PR); \
+ (PR) = 1; \
+ }
+
+#define FACTOR_LIST_STORE(P, PR, MAX_PR, VEC, I) \
+ do { \
+ if ((PR) > (MAX_PR)) { \
+ (VEC)[(I)++] = (PR); \
+ (PR) = (P); \
+ } else \
+ (PR) *= (P); \
+ } while (0)
+
+#define LOOP_ON_SIEVE_CONTINUE(prime,end,sieve) \
+ __max_i = (end); \
+ \
+ do { \
+ ++__i; \
+ if (((sieve)[__index] & __mask) == 0) \
+ { \
+ (prime) = id_to_n(__i)
+
+#define LOOP_ON_SIEVE_BEGIN(prime,start,end,off,sieve) \
+ do { \
+ mp_limb_t __mask, __index, __max_i, __i; \
+ \
+ __i = (start)-(off); \
+ __index = __i / GMP_LIMB_BITS; \
+ __mask = CNST_LIMB(1) << (__i % GMP_LIMB_BITS); \
+ __i += (off); \
+ \
+ LOOP_ON_SIEVE_CONTINUE(prime,end,sieve)
+
+#define LOOP_ON_SIEVE_STOP \
+ } \
+ __mask = __mask << 1 | __mask >> (GMP_LIMB_BITS-1); \
+ __index += __mask & 1; \
+ } while (__i <= __max_i) \
+
+#define LOOP_ON_SIEVE_END \
+ LOOP_ON_SIEVE_STOP; \
+ } while (0)
+
+/*********************************************************/
+/* Section sieve: sieving functions and tools for primes */
+/*********************************************************/
+
+#if WANT_ASSERT
+static mp_limb_t
+bit_to_n (mp_limb_t bit) { return (bit*3+4)|1; }
+#endif
+
+/* id_to_n (x) = bit_to_n (x-1) = (id*3+1)|1*/
+static mp_limb_t
+id_to_n (mp_limb_t id) { return id*3+1+(id&1); }
+
+/* n_to_bit (n) = ((n-1)&(-CNST_LIMB(2)))/3U-1 */
+static mp_limb_t
+n_to_bit (mp_limb_t n) { return ((n-5)|1)/3U; }
+
+#if WANT_ASSERT
+static mp_size_t
+primesieve_size (mp_limb_t n) { return n_to_bit(n) / GMP_LIMB_BITS + 1; }
+#endif
+
+/*********************************************************/
+/* Section mswing: 2-multiswing factorial */
+/*********************************************************/
+
+/* Returns an approximation of the sqare root of x. *
+ * It gives: x <= limb_apprsqrt (x) ^ 2 < x * 9/4 */
+static mp_limb_t
+limb_apprsqrt (mp_limb_t x)
+{
+ int s;
+
+ ASSERT (x > 2);
+ count_leading_zeros (s, x - 1);
+ s = GMP_LIMB_BITS - 1 - s;
+ return (CNST_LIMB(1) << (s >> 1)) + (CNST_LIMB(1) << ((s - 1) >> 1));
+}
+
+#if 0
+/* A count-then-exponentiate variant for SWING_A_PRIME */
+#define SWING_A_PRIME(P, N, PR, MAX_PR, VEC, I) \
+ do { \
+ mp_limb_t __q, __prime; \
+ int __exp; \
+ __prime = (P); \
+ __exp = 0; \
+ __q = (N); \
+ do { \
+ __q /= __prime; \
+ __exp += __q & 1; \
+ } while (__q >= __prime); \
+ if (__exp) { /* Store $prime^{exp}$ */ \
+ for (__q = __prime; --__exp; __q *= __prime); \
+ FACTOR_LIST_STORE(__q, PR, MAX_PR, VEC, I); \
+ }; \
+ } while (0)
+#else
+#define SWING_A_PRIME(P, N, PR, MAX_PR, VEC, I) \
+ do { \
+ mp_limb_t __q, __prime; \
+ __prime = (P); \
+ FACTOR_LIST_APPEND(PR, MAX_PR, VEC, I); \
+ __q = (N); \
+ do { \
+ __q /= __prime; \
+ if ((__q & 1) != 0) (PR) *= __prime; \
+ } while (__q >= __prime); \
+ } while (0)
+#endif
+
+#define SH_SWING_A_PRIME(P, N, PR, MAX_PR, VEC, I) \
+ do { \
+ mp_limb_t __prime; \
+ __prime = (P); \
+ if ((((N) / __prime) & 1) != 0) \
+ FACTOR_LIST_STORE(__prime, PR, MAX_PR, VEC, I); \
+ } while (0)
+
+/* mpz_2multiswing_1 computes the odd part of the 2-multiswing
+ factorial of the parameter n. The result x is an odd positive
+ integer so that multiswing(n,2) = x 2^a.
+
+ Uses the algorithm described by Peter Luschny in "Divide, Swing and
+ Conquer the Factorial!".
+
+ The pointer sieve points to primesieve_size(n) limbs containing a
+ bit-array where primes are marked as 0.
+ Enough (FIXME: explain :-) limbs must be pointed by factors.
+ */
+
+static void
+mpz_2multiswing_1 (mpz_ptr x, mp_limb_t n, mp_ptr sieve, mp_ptr factors)
+{
+ mp_limb_t prod, max_prod;
+ mp_size_t j;
+
+ ASSERT (n >= 26);
+
+ j = 0;
+ prod = -(n & 1);
+ n &= ~ CNST_LIMB(1); /* n-1, if n is odd */
+
+ prod = (prod & n) + 1; /* the original n, if it was odd, 1 otherwise */
+ max_prod = GMP_NUMB_MAX / (n-1);
+
+ /* Handle prime = 3 separately. */
+ SWING_A_PRIME (3, n, prod, max_prod, factors, j);
+
+ /* Swing primes from 5 to n/3 */
+ {
+ mp_limb_t s;
+
+ {
+ mp_limb_t prime;
+
+ s = limb_apprsqrt(n);
+ ASSERT (s >= 5);
+ s = n_to_bit (s);
+ LOOP_ON_SIEVE_BEGIN (prime, n_to_bit (5), s, 0,sieve);
+ SWING_A_PRIME (prime, n, prod, max_prod, factors, j);
+ LOOP_ON_SIEVE_END;
+ s++;
+ }
+
+ ASSERT (max_prod <= GMP_NUMB_MAX / 3);
+ ASSERT (bit_to_n (s) * bit_to_n (s) > n);
+ ASSERT (s <= n_to_bit (n / 3));
+ {
+ mp_limb_t prime;
+ mp_limb_t l_max_prod = max_prod * 3;
+
+ LOOP_ON_SIEVE_BEGIN (prime, s, n_to_bit (n/3), 0, sieve);
+ SH_SWING_A_PRIME (prime, n, prod, l_max_prod, factors, j);
+ LOOP_ON_SIEVE_END;
+ }
+ }
+
+ /* Store primes from (n+1)/2 to n */
+ {
+ mp_limb_t prime;
+ LOOP_ON_SIEVE_BEGIN (prime, n_to_bit (n >> 1) + 1, n_to_bit (n), 0,sieve);
+ FACTOR_LIST_STORE (prime, prod, max_prod, factors, j);
+ LOOP_ON_SIEVE_END;
+ }
+
+ if (LIKELY (j != 0))
+ {
+ factors[j++] = prod;
+ mpz_prodlimbs (x, factors, j);
+ }
+ else
+ {
+ PTR (x)[0] = prod;
+ SIZ (x) = 1;
+ }
+}
+
+#undef SWING_A_PRIME
+#undef SH_SWING_A_PRIME
+#undef LOOP_ON_SIEVE_END
+#undef LOOP_ON_SIEVE_STOP
+#undef LOOP_ON_SIEVE_BEGIN
+#undef LOOP_ON_SIEVE_CONTINUE
+#undef FACTOR_LIST_APPEND
+
+/*********************************************************/
+/* Section oddfac: odd factorial, needed also by binomial*/
+/*********************************************************/
+
+#if TUNE_PROGRAM_BUILD
+#define FACTORS_PER_LIMB (GMP_NUMB_BITS / (LOG2C(FAC_DSC_THRESHOLD_LIMIT-1)+1))
+#else
+#define FACTORS_PER_LIMB (GMP_NUMB_BITS / (LOG2C(FAC_DSC_THRESHOLD-1)+1))
+#endif
+
+/* mpz_oddfac_1 computes the odd part of the factorial of the
+ parameter n. I.e. n! = x 2^a, where x is the returned value: an
+ odd positive integer.
+
+ If flag != 0 a square is skipped in the DSC part, e.g.
+ if n is odd, n > FAC_DSC_THRESHOLD and flag = 1, x is set to n!!.
+
+ If n is too small, flag is ignored, and an ASSERT can be triggered.
+
+ TODO: FAC_DSC_THRESHOLD is used here with two different roles:
+ - to decide when prime factorisation is needed,
+ - to stop the recursion, once sieving is done.
+ Maybe two thresholds can do a better job.
+ */
+void
+mpz_oddfac_1 (mpz_ptr x, mp_limb_t n, unsigned flag)
+{
+ ASSERT (n <= GMP_NUMB_MAX);
+ ASSERT (flag == 0 || (flag == 1 && n > ODD_FACTORIAL_TABLE_LIMIT && ABOVE_THRESHOLD (n, FAC_DSC_THRESHOLD)));
+
+ if (n <= ODD_FACTORIAL_TABLE_LIMIT)
+ {
+ PTR (x)[0] = __gmp_oddfac_table[n];
+ SIZ (x) = 1;
+ }
+ else if (n <= ODD_DOUBLEFACTORIAL_TABLE_LIMIT + 1)
+ {
+ mp_ptr px;
+
+ px = MPZ_NEWALLOC (x, 2);
+ umul_ppmm (px[1], px[0], __gmp_odd2fac_table[(n - 1) >> 1], __gmp_oddfac_table[n >> 1]);
+ SIZ (x) = 2;
+ }
+ else
+ {
+ unsigned s;
+ mp_ptr factors;
+
+ s = 0;
+ {
+ mp_limb_t tn;
+ mp_limb_t prod, max_prod, i;
+ mp_size_t j;
+ TMP_SDECL;
+
+#if TUNE_PROGRAM_BUILD
+ ASSERT (FAC_DSC_THRESHOLD_LIMIT >= FAC_DSC_THRESHOLD);
+ ASSERT (FAC_DSC_THRESHOLD >= 2 * (ODD_DOUBLEFACTORIAL_TABLE_LIMIT + 2));
+#endif
+
+ /* Compute the number of recursive steps for the DSC algorithm. */
+ for (tn = n; ABOVE_THRESHOLD (tn, FAC_DSC_THRESHOLD); s++)
+ tn >>= 1;
+
+ j = 0;
+
+ TMP_SMARK;
+ factors = TMP_SALLOC_LIMBS (1 + tn / FACTORS_PER_LIMB);
+ ASSERT (tn >= FACTORS_PER_LIMB);
+
+ prod = 1;
+#if TUNE_PROGRAM_BUILD
+ max_prod = GMP_NUMB_MAX / FAC_DSC_THRESHOLD_LIMIT;
+#else
+ max_prod = GMP_NUMB_MAX / FAC_DSC_THRESHOLD;
+#endif
+
+ ASSERT (tn > ODD_DOUBLEFACTORIAL_TABLE_LIMIT + 1);
+ do {
+ i = ODD_DOUBLEFACTORIAL_TABLE_LIMIT + 2;
+ factors[j++] = ODD_DOUBLEFACTORIAL_TABLE_MAX;
+ do {
+ FACTOR_LIST_STORE (i, prod, max_prod, factors, j);
+ i += 2;
+ } while (i <= tn);
+ max_prod <<= 1;
+ tn >>= 1;
+ } while (tn > ODD_DOUBLEFACTORIAL_TABLE_LIMIT + 1);
+
+ factors[j++] = prod;
+ factors[j++] = __gmp_odd2fac_table[(tn - 1) >> 1];
+ factors[j++] = __gmp_oddfac_table[tn >> 1];
+ mpz_prodlimbs (x, factors, j);
+
+ TMP_SFREE;
+ }
+
+ if (s != 0)
+ /* Use the algorithm described by Peter Luschny in "Divide,
+ Swing and Conquer the Factorial!".
+
+ Improvement: there are two temporary buffers, factors and
+ square, that are never used together; with a good estimate
+ of the maximal needed size, they could share a single
+ allocation.
+ */
+ {
+ mpz_t mswing;
+ mp_ptr sieve;
+ mp_size_t size;
+ TMP_DECL;
+
+ TMP_MARK;
+
+ flag--;
+ size = n / GMP_NUMB_BITS + 4;
+ ASSERT (primesieve_size (n - 1) <= size - (size / 2 + 1));
+ /* 2-multiswing(n) < 2^(n-1)*sqrt(n/pi) < 2^(n+GMP_NUMB_BITS);
+ one more can be overwritten by mul, another for the sieve */
+ MPZ_TMP_INIT (mswing, size);
+ /* Initialize size, so that ASSERT can check it correctly. */
+ ASSERT_CODE (SIZ (mswing) = 0);
+
+ /* Put the sieve on the second half, it will be overwritten by the last mswing. */
+ sieve = PTR (mswing) + size / 2 + 1;
+
+ size = (gmp_primesieve (sieve, n - 1) + 1) / log_n_max (n) + 1;
+
+ factors = TMP_ALLOC_LIMBS (size);
+ do {
+ mp_ptr square, px;
+ mp_size_t nx, ns;
+ mp_limb_t cy;
+ TMP_DECL;
+
+ s--;
+ ASSERT (ABSIZ (mswing) < ALLOC (mswing) / 2); /* Check: sieve has not been overwritten */
+ mpz_2multiswing_1 (mswing, n >> s, sieve, factors);
+
+ TMP_MARK;
+ nx = SIZ (x);
+ if (s == flag) {
+ size = nx;
+ square = TMP_ALLOC_LIMBS (size);
+ MPN_COPY (square, PTR (x), nx);
+ } else {
+ size = nx << 1;
+ square = TMP_ALLOC_LIMBS (size);
+ mpn_sqr (square, PTR (x), nx);
+ size -= (square[size - 1] == 0);
+ }
+ ns = SIZ (mswing);
+ nx = size + ns;
+ px = MPZ_NEWALLOC (x, nx);
+ ASSERT (ns <= size);
+ cy = mpn_mul (px, square, size, PTR(mswing), ns); /* n!= n$ * floor(n/2)!^2 */
+
+ TMP_FREE;
+ SIZ(x) = nx - (cy == 0);
+ } while (s != 0);
+ TMP_FREE;
+ }
+ }
+}
+
+#undef FACTORS_PER_LIMB
+#undef FACTOR_LIST_STORE