summaryrefslogtreecommitdiff
path: root/Build/source/libs/gmp/gmp-6.0.0/mpz/bin_uiui.c
diff options
context:
space:
mode:
Diffstat (limited to 'Build/source/libs/gmp/gmp-6.0.0/mpz/bin_uiui.c')
-rw-r--r--Build/source/libs/gmp/gmp-6.0.0/mpz/bin_uiui.c696
1 files changed, 696 insertions, 0 deletions
diff --git a/Build/source/libs/gmp/gmp-6.0.0/mpz/bin_uiui.c b/Build/source/libs/gmp/gmp-6.0.0/mpz/bin_uiui.c
new file mode 100644
index 00000000000..94a9dc5c75d
--- /dev/null
+++ b/Build/source/libs/gmp/gmp-6.0.0/mpz/bin_uiui.c
@@ -0,0 +1,696 @@
+/* mpz_bin_uiui - compute n over k.
+
+Contributed to the GNU project by Torbjorn Granlund and Marco Bodrato.
+
+Copyright 2010-2012 Free Software Foundation, Inc.
+
+This file is part of the GNU MP Library.
+
+The GNU MP Library is free software; you can redistribute it and/or modify
+it under the terms of either:
+
+ * the GNU Lesser General Public License as published by the Free
+ Software Foundation; either version 3 of the License, or (at your
+ option) any later version.
+
+or
+
+ * the GNU General Public License as published by the Free Software
+ Foundation; either version 2 of the License, or (at your option) any
+ later version.
+
+or both in parallel, as here.
+
+The GNU MP Library is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received copies of the GNU General Public License and the
+GNU Lesser General Public License along with the GNU MP Library. If not,
+see https://www.gnu.org/licenses/. */
+
+#include "gmp.h"
+#include "gmp-impl.h"
+#include "longlong.h"
+
+#ifndef BIN_GOETGHELUCK_THRESHOLD
+#define BIN_GOETGHELUCK_THRESHOLD 1000
+#endif
+#ifndef BIN_UIUI_ENABLE_SMALLDC
+#define BIN_UIUI_ENABLE_SMALLDC 1
+#endif
+#ifndef BIN_UIUI_RECURSIVE_SMALLDC
+#define BIN_UIUI_RECURSIVE_SMALLDC (GMP_NUMB_BITS > 32)
+#endif
+
+/* Algorithm:
+
+ Accumulate chunks of factors first limb-by-limb (using one of mul0-mul8)
+ which are then accumulated into mpn numbers. The first inner loop
+ accumulates divisor factors, the 2nd inner loop accumulates exactly the same
+ number of dividend factors. We avoid accumulating more for the divisor,
+ even with its smaller factors, since we else cannot guarantee divisibility.
+
+ Since we know each division will yield an integer, we compute the quotient
+ using Hensel norm: If the quotient is limited by 2^t, we compute A / B mod
+ 2^t.
+
+ Improvements:
+
+ (1) An obvious improvement to this code would be to compute mod 2^t
+ everywhere. Unfortunately, we cannot determine t beforehand, unless we
+ invoke some approximation, such as Stirling's formula. Of course, we don't
+ need t to be tight. However, it is not clear that this would help much,
+ our numbers are kept reasonably small already.
+
+ (2) Compute nmax/kmax semi-accurately, without scalar division or a loop.
+ Extracting the 3 msb, then doing a table lookup using cnt*8+msb as index,
+ would make it both reasonably accurate and fast. (We could use a table
+ stored into a limb, perhaps.) The table should take the removed factors of
+ 2 into account (those done on-the-fly in mulN).
+
+ (3) The first time in the loop we compute the odd part of a
+ factorial in kp, we might use oddfac_1 for this task.
+ */
+
+/* This threshold determines how large divisor to accumulate before we call
+ bdiv. Perhaps we should never call bdiv, and accumulate all we are told,
+ since we are just basecase code anyway? Presumably, this depends on the
+ relative speed of the asymptotically fast code and this code. */
+#define SOME_THRESHOLD 20
+
+/* Multiply-into-limb functions. These remove factors of 2 on-the-fly. FIXME:
+ All versions of MAXFACS don't take this 2 removal into account now, meaning
+ that then, shifting just adds some overhead. (We remove factors from the
+ completed limb anyway.) */
+
+static mp_limb_t
+mul1 (mp_limb_t m)
+{
+ return m;
+}
+
+static mp_limb_t
+mul2 (mp_limb_t m)
+{
+ /* We need to shift before multiplying, to avoid an overflow. */
+ mp_limb_t m01 = (m | 1) * ((m + 1) >> 1);
+ return m01;
+}
+
+static mp_limb_t
+mul3 (mp_limb_t m)
+{
+ mp_limb_t m01 = (m + 0) * (m + 1) >> 1;
+ mp_limb_t m2 = (m + 2);
+ return m01 * m2;
+}
+
+static mp_limb_t
+mul4 (mp_limb_t m)
+{
+ mp_limb_t m01 = (m + 0) * (m + 1) >> 1;
+ mp_limb_t m23 = (m + 2) * (m + 3) >> 1;
+ return m01 * m23;
+}
+
+static mp_limb_t
+mul5 (mp_limb_t m)
+{
+ mp_limb_t m012 = (m + 0) * (m + 1) * (m + 2) >> 1;
+ mp_limb_t m34 = (m + 3) * (m + 4) >> 1;
+ return m012 * m34;
+}
+
+static mp_limb_t
+mul6 (mp_limb_t m)
+{
+ mp_limb_t m01 = (m + 0) * (m + 1);
+ mp_limb_t m23 = (m + 2) * (m + 3);
+ mp_limb_t m45 = (m + 4) * (m + 5) >> 1;
+ mp_limb_t m0123 = m01 * m23 >> 3;
+ return m0123 * m45;
+}
+
+static mp_limb_t
+mul7 (mp_limb_t m)
+{
+ mp_limb_t m01 = (m + 0) * (m + 1);
+ mp_limb_t m23 = (m + 2) * (m + 3);
+ mp_limb_t m456 = (m + 4) * (m + 5) * (m + 6) >> 1;
+ mp_limb_t m0123 = m01 * m23 >> 3;
+ return m0123 * m456;
+}
+
+static mp_limb_t
+mul8 (mp_limb_t m)
+{
+ mp_limb_t m01 = (m + 0) * (m + 1);
+ mp_limb_t m23 = (m + 2) * (m + 3);
+ mp_limb_t m45 = (m + 4) * (m + 5);
+ mp_limb_t m67 = (m + 6) * (m + 7);
+ mp_limb_t m0123 = m01 * m23 >> 3;
+ mp_limb_t m4567 = m45 * m67 >> 3;
+ return m0123 * m4567;
+}
+
+typedef mp_limb_t (* mulfunc_t) (mp_limb_t);
+
+static const mulfunc_t mulfunc[] = {mul1,mul2,mul3,mul4,mul5,mul6,mul7,mul8};
+#define M (numberof(mulfunc))
+
+/* Number of factors-of-2 removed by the corresponding mulN function. */
+static const unsigned char tcnttab[] = {0, 1, 1, 2, 2, 4, 4, 6};
+
+#if 1
+/* This variant is inaccurate but share the code with other functions. */
+#define MAXFACS(max,l) \
+ do { \
+ (max) = log_n_max (l); \
+ } while (0)
+#else
+
+/* This variant is exact(?) but uses a loop. It takes the 2 removal
+ of mulN into account. */
+static const unsigned long ftab[] =
+#if GMP_NUMB_BITS == 64
+ /* 1 to 8 factors per iteration */
+ {CNST_LIMB(0xffffffffffffffff),CNST_LIMB(0x100000000),0x32cbfe,0x16a0b,0x24c4,0xa16,0x34b,0x1b2 /*,0xdf,0x8d */};
+#endif
+#if GMP_NUMB_BITS == 32
+ /* 1 to 7 factors per iteration */
+ {0xffffffff,0x10000,0x801,0x16b,0x71,0x42,0x26 /* ,0x1e */};
+#endif
+
+#define MAXFACS(max,l) \
+ do { \
+ int __i; \
+ for (__i = numberof (ftab) - 1; l > ftab[__i]; __i--) \
+ ; \
+ (max) = __i + 1; \
+ } while (0)
+#endif
+
+/* Entry i contains (i!/2^t)^(-1) where t is chosen such that the parenthesis
+ is an odd integer. */
+static const mp_limb_t facinv[] = { ONE_LIMB_ODD_FACTORIAL_INVERSES_TABLE };
+
+static void
+mpz_bdiv_bin_uiui (mpz_ptr r, unsigned long int n, unsigned long int k)
+{
+ int nmax, kmax, nmaxnow, numfac;
+ mp_ptr np, kp;
+ mp_size_t nn, kn, alloc;
+ mp_limb_t i, j, t, iii, jjj, cy, dinv;
+ mp_bitcnt_t i2cnt, j2cnt;
+ int cnt;
+ mp_size_t maxn;
+ TMP_DECL;
+
+ ASSERT (k > ODD_FACTORIAL_TABLE_LIMIT);
+ TMP_MARK;
+
+ maxn = 1 + n / GMP_NUMB_BITS; /* absolutely largest result size (limbs) */
+
+ /* FIXME: This allocation might be insufficient, but is usually way too
+ large. */
+ alloc = SOME_THRESHOLD - 1 + MAX (3 * maxn / 2, SOME_THRESHOLD);
+ alloc = MIN (alloc, k) + 1;
+ np = TMP_ALLOC_LIMBS (alloc);
+ kp = TMP_ALLOC_LIMBS (SOME_THRESHOLD + 1);
+
+ MAXFACS (nmax, n);
+ ASSERT (nmax <= M);
+ MAXFACS (kmax, k);
+ ASSERT (kmax <= M);
+ ASSERT (k >= M);
+
+ i = n - k + 1;
+
+ np[0] = 1; nn = 1;
+
+ i2cnt = 0; /* total low zeros in dividend */
+ j2cnt = __gmp_fac2cnt_table[ODD_FACTORIAL_TABLE_LIMIT / 2 - 1];
+ /* total low zeros in divisor */
+
+ numfac = 1;
+ j = ODD_FACTORIAL_TABLE_LIMIT + 1;
+ jjj = ODD_FACTORIAL_TABLE_MAX;
+ ASSERT (__gmp_oddfac_table[ODD_FACTORIAL_TABLE_LIMIT] == ODD_FACTORIAL_TABLE_MAX);
+
+ while (1)
+ {
+ kp[0] = jjj; /* store new factors */
+ kn = 1;
+ t = k - j + 1;
+ kmax = MIN (kmax, t);
+
+ while (kmax != 0 && kn < SOME_THRESHOLD)
+ {
+ jjj = mulfunc[kmax - 1] (j);
+ j += kmax; /* number of factors used */
+ count_trailing_zeros (cnt, jjj); /* count low zeros */
+ jjj >>= cnt; /* remove remaining low zeros */
+ j2cnt += tcnttab[kmax - 1] + cnt; /* update low zeros count */
+ cy = mpn_mul_1 (kp, kp, kn, jjj); /* accumulate new factors */
+ kp[kn] = cy;
+ kn += cy != 0;
+ t = k - j + 1;
+ kmax = MIN (kmax, t);
+ }
+ numfac = j - numfac;
+
+ while (numfac != 0)
+ {
+ nmaxnow = MIN (nmax, numfac);
+ iii = mulfunc[nmaxnow - 1] (i);
+ i += nmaxnow; /* number of factors used */
+ count_trailing_zeros (cnt, iii); /* count low zeros */
+ iii >>= cnt; /* remove remaining low zeros */
+ i2cnt += tcnttab[nmaxnow - 1] + cnt; /* update low zeros count */
+ cy = mpn_mul_1 (np, np, nn, iii); /* accumulate new factors */
+ np[nn] = cy;
+ nn += cy != 0;
+ numfac -= nmaxnow;
+ }
+
+ ASSERT (nn < alloc);
+
+ binvert_limb (dinv, kp[0]);
+ nn += (np[nn - 1] >= kp[kn - 1]);
+ nn -= kn;
+ mpn_sbpi1_bdiv_q (np, np, nn, kp, MIN(kn,nn), -dinv);
+
+ if (kmax == 0)
+ break;
+ numfac = j;
+
+ jjj = mulfunc[kmax - 1] (j);
+ j += kmax; /* number of factors used */
+ count_trailing_zeros (cnt, jjj); /* count low zeros */
+ jjj >>= cnt; /* remove remaining low zeros */
+ j2cnt += tcnttab[kmax - 1] + cnt; /* update low zeros count */
+ }
+
+ /* Put back the right number of factors of 2. */
+ cnt = i2cnt - j2cnt;
+ if (cnt != 0)
+ {
+ ASSERT (cnt < GMP_NUMB_BITS); /* can happen, but not for intended use */
+ cy = mpn_lshift (np, np, nn, cnt);
+ np[nn] = cy;
+ nn += cy != 0;
+ }
+
+ nn -= np[nn - 1] == 0; /* normalisation */
+
+ kp = MPZ_NEWALLOC (r, nn);
+ SIZ(r) = nn;
+ MPN_COPY (kp, np, nn);
+ TMP_FREE;
+}
+
+static void
+mpz_smallk_bin_uiui (mpz_ptr r, unsigned long int n, unsigned long int k)
+{
+ int nmax, numfac;
+ mp_ptr rp;
+ mp_size_t rn, alloc;
+ mp_limb_t i, iii, cy;
+ mp_bitcnt_t i2cnt, cnt;
+
+ count_leading_zeros (cnt, (mp_limb_t) n);
+ cnt = GMP_LIMB_BITS - cnt;
+ alloc = cnt * k / GMP_NUMB_BITS + 3; /* FIXME: ensure rounding is enough. */
+ rp = MPZ_NEWALLOC (r, alloc);
+
+ MAXFACS (nmax, n);
+ nmax = MIN (nmax, M);
+
+ i = n - k + 1;
+
+ nmax = MIN (nmax, k);
+ rp[0] = mulfunc[nmax - 1] (i);
+ rn = 1;
+ i += nmax; /* number of factors used */
+ i2cnt = tcnttab[nmax - 1]; /* low zeros count */
+ numfac = k - nmax;
+ while (numfac != 0)
+ {
+ nmax = MIN (nmax, numfac);
+ iii = mulfunc[nmax - 1] (i);
+ i += nmax; /* number of factors used */
+ i2cnt += tcnttab[nmax - 1]; /* update low zeros count */
+ cy = mpn_mul_1 (rp, rp, rn, iii); /* accumulate new factors */
+ rp[rn] = cy;
+ rn += cy != 0;
+ numfac -= nmax;
+ }
+
+ ASSERT (rn < alloc);
+
+ mpn_pi1_bdiv_q_1 (rp, rp, rn, __gmp_oddfac_table[k], facinv[k - 2],
+ __gmp_fac2cnt_table[k / 2 - 1] - i2cnt);
+ /* A two-fold, branch-free normalisation is possible :*/
+ /* rn -= rp[rn - 1] == 0; */
+ /* rn -= rp[rn - 1] == 0; */
+ MPN_NORMALIZE_NOT_ZERO (rp, rn);
+
+ SIZ(r) = rn;
+}
+
+/* Algorithm:
+
+ Plain and simply multiply things together.
+
+ We tabulate factorials (k!/2^t)^(-1) mod B (where t is chosen such
+ that k!/2^t is odd).
+
+*/
+
+static mp_limb_t
+bc_bin_uiui (unsigned int n, unsigned int k)
+{
+ return ((__gmp_oddfac_table[n] * facinv[k - 2] * facinv[n - k - 2])
+ << (__gmp_fac2cnt_table[n / 2 - 1] - __gmp_fac2cnt_table[k / 2 - 1] - __gmp_fac2cnt_table[(n-k) / 2 - 1]))
+ & GMP_NUMB_MASK;
+}
+
+/* Algorithm:
+
+ Recursively exploit the relation
+ bin(n,k) = bin(n,k>>1)*bin(n-k>>1,k-k>>1)/bin(k,k>>1) .
+
+ Values for binomial(k,k>>1) that fit in a limb are precomputed
+ (with inverses).
+*/
+
+/* bin2kk[i - ODD_CENTRAL_BINOMIAL_OFFSET] =
+ binomial(i*2,i)/2^t (where t is chosen so that it is odd). */
+static const mp_limb_t bin2kk[] = { ONE_LIMB_ODD_CENTRAL_BINOMIAL_TABLE };
+
+/* bin2kkinv[i] = bin2kk[i]^-1 mod B */
+static const mp_limb_t bin2kkinv[] = { ONE_LIMB_ODD_CENTRAL_BINOMIAL_INVERSE_TABLE };
+
+/* bin2kk[i] = binomial((i+MIN_S)*2,i+MIN_S)/2^t. This table contains the t values. */
+static const unsigned char fac2bin[] = { CENTRAL_BINOMIAL_2FAC_TABLE };
+
+static void
+mpz_smallkdc_bin_uiui (mpz_ptr r, unsigned long int n, unsigned long int k)
+{
+ mp_ptr rp;
+ mp_size_t rn;
+ unsigned long int hk;
+
+ hk = k >> 1;
+
+ if ((! BIN_UIUI_RECURSIVE_SMALLDC) || hk <= ODD_FACTORIAL_TABLE_LIMIT)
+ mpz_smallk_bin_uiui (r, n, hk);
+ else
+ mpz_smallkdc_bin_uiui (r, n, hk);
+ k -= hk;
+ n -= hk;
+ if (n <= ODD_FACTORIAL_EXTTABLE_LIMIT) {
+ mp_limb_t cy;
+ rn = SIZ (r);
+ rp = MPZ_REALLOC (r, rn + 1);
+ cy = mpn_mul_1 (rp, rp, rn, bc_bin_uiui (n, k));
+ rp [rn] = cy;
+ rn += cy != 0;
+ } else {
+ mp_limb_t buffer[ODD_CENTRAL_BINOMIAL_TABLE_LIMIT + 3];
+ mpz_t t;
+
+ ALLOC (t) = ODD_CENTRAL_BINOMIAL_TABLE_LIMIT + 3;
+ PTR (t) = buffer;
+ if ((! BIN_UIUI_RECURSIVE_SMALLDC) || k <= ODD_FACTORIAL_TABLE_LIMIT)
+ mpz_smallk_bin_uiui (t, n, k);
+ else
+ mpz_smallkdc_bin_uiui (t, n, k);
+ mpz_mul (r, r, t);
+ rp = PTR (r);
+ rn = SIZ (r);
+ }
+
+ mpn_pi1_bdiv_q_1 (rp, rp, rn, bin2kk[k - ODD_CENTRAL_BINOMIAL_OFFSET],
+ bin2kkinv[k - ODD_CENTRAL_BINOMIAL_OFFSET],
+ fac2bin[k - ODD_CENTRAL_BINOMIAL_OFFSET] - (k != hk));
+ /* A two-fold, branch-free normalisation is possible :*/
+ /* rn -= rp[rn - 1] == 0; */
+ /* rn -= rp[rn - 1] == 0; */
+ MPN_NORMALIZE_NOT_ZERO (rp, rn);
+
+ SIZ(r) = rn;
+}
+
+/* mpz_goetgheluck_bin_uiui(RESULT, N, K) -- Set RESULT to binomial(N,K).
+ *
+ * Contributed to the GNU project by Marco Bodrato.
+ *
+ * Implementation of the algorithm by P. Goetgheluck, "Computing
+ * Binomial Coefficients", The American Mathematical Monthly, Vol. 94,
+ * No. 4 (April 1987), pp. 360-365.
+ *
+ * Acknowledgment: Peter Luschny did spot the slowness of the previous
+ * code and suggested the reference.
+ */
+
+/* TODO: Remove duplicated constants / macros / static functions...
+ */
+
+/*************************************************************/
+/* Section macros: common macros, for swing/fac/bin (&sieve) */
+/*************************************************************/
+
+#define FACTOR_LIST_APPEND(PR, MAX_PR, VEC, I) \
+ if ((PR) > (MAX_PR)) { \
+ (VEC)[(I)++] = (PR); \
+ (PR) = 1; \
+ }
+
+#define FACTOR_LIST_STORE(P, PR, MAX_PR, VEC, I) \
+ do { \
+ if ((PR) > (MAX_PR)) { \
+ (VEC)[(I)++] = (PR); \
+ (PR) = (P); \
+ } else \
+ (PR) *= (P); \
+ } while (0)
+
+#define LOOP_ON_SIEVE_CONTINUE(prime,end,sieve) \
+ __max_i = (end); \
+ \
+ do { \
+ ++__i; \
+ if (((sieve)[__index] & __mask) == 0) \
+ { \
+ (prime) = id_to_n(__i)
+
+#define LOOP_ON_SIEVE_BEGIN(prime,start,end,off,sieve) \
+ do { \
+ mp_limb_t __mask, __index, __max_i, __i; \
+ \
+ __i = (start)-(off); \
+ __index = __i / GMP_LIMB_BITS; \
+ __mask = CNST_LIMB(1) << (__i % GMP_LIMB_BITS); \
+ __i += (off); \
+ \
+ LOOP_ON_SIEVE_CONTINUE(prime,end,sieve)
+
+#define LOOP_ON_SIEVE_STOP \
+ } \
+ __mask = __mask << 1 | __mask >> (GMP_LIMB_BITS-1); \
+ __index += __mask & 1; \
+ } while (__i <= __max_i) \
+
+#define LOOP_ON_SIEVE_END \
+ LOOP_ON_SIEVE_STOP; \
+ } while (0)
+
+/*********************************************************/
+/* Section sieve: sieving functions and tools for primes */
+/*********************************************************/
+
+#if WANT_ASSERT
+static mp_limb_t
+bit_to_n (mp_limb_t bit) { return (bit*3+4)|1; }
+#endif
+
+/* id_to_n (x) = bit_to_n (x-1) = (id*3+1)|1*/
+static mp_limb_t
+id_to_n (mp_limb_t id) { return id*3+1+(id&1); }
+
+/* n_to_bit (n) = ((n-1)&(-CNST_LIMB(2)))/3U-1 */
+static mp_limb_t
+n_to_bit (mp_limb_t n) { return ((n-5)|1)/3U; }
+
+static mp_size_t
+primesieve_size (mp_limb_t n) { return n_to_bit(n) / GMP_LIMB_BITS + 1; }
+
+/*********************************************************/
+/* Section binomial: fast binomial implementation */
+/*********************************************************/
+
+#define COUNT_A_PRIME(P, N, K, PR, MAX_PR, VEC, I) \
+ do { \
+ mp_limb_t __a, __b, __prime, __ma,__mb; \
+ __prime = (P); \
+ __a = (N); __b = (K); __mb = 0; \
+ FACTOR_LIST_APPEND(PR, MAX_PR, VEC, I); \
+ do { \
+ __mb += __b % __prime; __b /= __prime; \
+ __ma = __a % __prime; __a /= __prime; \
+ if (__ma < __mb) { \
+ __mb = 1; (PR) *= __prime; \
+ } else __mb = 0; \
+ } while (__a >= __prime); \
+ } while (0)
+
+#define SH_COUNT_A_PRIME(P, N, K, PR, MAX_PR, VEC, I) \
+ do { \
+ mp_limb_t __prime; \
+ __prime = (P); \
+ if (((N) % __prime) < ((K) % __prime)) { \
+ FACTOR_LIST_STORE (__prime, PR, MAX_PR, VEC, I); \
+ } \
+ } while (0)
+
+/* Returns an approximation of the sqare root of x. *
+ * It gives: x <= limb_apprsqrt (x) ^ 2 < x * 9/4 */
+static mp_limb_t
+limb_apprsqrt (mp_limb_t x)
+{
+ int s;
+
+ ASSERT (x > 2);
+ count_leading_zeros (s, x - 1);
+ s = GMP_LIMB_BITS - 1 - s;
+ return (CNST_LIMB(1) << (s >> 1)) + (CNST_LIMB(1) << ((s - 1) >> 1));
+}
+
+static void
+mpz_goetgheluck_bin_uiui (mpz_ptr r, unsigned long int n, unsigned long int k)
+{
+ mp_limb_t *sieve, *factors, count;
+ mp_limb_t prod, max_prod, j;
+ TMP_DECL;
+
+ ASSERT (BIN_GOETGHELUCK_THRESHOLD >= 13);
+ ASSERT (n >= 25);
+
+ TMP_MARK;
+ sieve = TMP_ALLOC_LIMBS (primesieve_size (n));
+
+ count = gmp_primesieve (sieve, n) + 1;
+ factors = TMP_ALLOC_LIMBS (count / log_n_max (n) + 1);
+
+ max_prod = GMP_NUMB_MAX / n;
+
+ /* Handle primes = 2, 3 separately. */
+ popc_limb (count, n - k);
+ popc_limb (j, k);
+ count += j;
+ popc_limb (j, n);
+ count -= j;
+ prod = CNST_LIMB(1) << count;
+
+ j = 0;
+ COUNT_A_PRIME (3, n, k, prod, max_prod, factors, j);
+
+ /* Accumulate prime factors from 5 to n/2 */
+ {
+ mp_limb_t s;
+
+ {
+ mp_limb_t prime;
+ s = limb_apprsqrt(n);
+ s = n_to_bit (s);
+ LOOP_ON_SIEVE_BEGIN (prime, n_to_bit (5), s, 0,sieve);
+ COUNT_A_PRIME (prime, n, k, prod, max_prod, factors, j);
+ LOOP_ON_SIEVE_END;
+ s++;
+ }
+
+ ASSERT (max_prod <= GMP_NUMB_MAX / 2);
+ max_prod <<= 1;
+ ASSERT (bit_to_n (s) * bit_to_n (s) > n);
+ ASSERT (s <= n_to_bit (n >> 1));
+ {
+ mp_limb_t prime;
+
+ LOOP_ON_SIEVE_BEGIN (prime, s, n_to_bit (n >> 1), 0,sieve);
+ SH_COUNT_A_PRIME (prime, n, k, prod, max_prod, factors, j);
+ LOOP_ON_SIEVE_END;
+ }
+ max_prod >>= 1;
+ }
+
+ /* Store primes from (n-k)+1 to n */
+ ASSERT (n_to_bit (n - k) < n_to_bit (n));
+ {
+ mp_limb_t prime;
+ LOOP_ON_SIEVE_BEGIN (prime, n_to_bit (n - k) + 1, n_to_bit (n), 0,sieve);
+ FACTOR_LIST_STORE (prime, prod, max_prod, factors, j);
+ LOOP_ON_SIEVE_END;
+ }
+
+ if (LIKELY (j != 0))
+ {
+ factors[j++] = prod;
+ mpz_prodlimbs (r, factors, j);
+ }
+ else
+ {
+ PTR (r)[0] = prod;
+ SIZ (r) = 1;
+ }
+ TMP_FREE;
+}
+
+#undef COUNT_A_PRIME
+#undef SH_COUNT_A_PRIME
+#undef LOOP_ON_SIEVE_END
+#undef LOOP_ON_SIEVE_STOP
+#undef LOOP_ON_SIEVE_BEGIN
+#undef LOOP_ON_SIEVE_CONTINUE
+
+/*********************************************************/
+/* End of implementation of Goetgheluck's algorithm */
+/*********************************************************/
+
+void
+mpz_bin_uiui (mpz_ptr r, unsigned long int n, unsigned long int k)
+{
+ if (UNLIKELY (n < k)) {
+ SIZ (r) = 0;
+#if BITS_PER_ULONG > GMP_NUMB_BITS
+ } else if (UNLIKELY (n > GMP_NUMB_MAX)) {
+ mpz_t tmp;
+
+ mpz_init_set_ui (tmp, n);
+ mpz_bin_ui (r, tmp, k);
+ mpz_clear (tmp);
+#endif
+ } else {
+ ASSERT (n <= GMP_NUMB_MAX);
+ /* Rewrite bin(n,k) as bin(n,n-k) if that is smaller. */
+ k = MIN (k, n - k);
+ if (k < 2) {
+ PTR(r)[0] = k ? n : 1; /* 1 + ((-k) & (n-1)); */
+ SIZ(r) = 1;
+ } else if (n <= ODD_FACTORIAL_EXTTABLE_LIMIT) { /* k >= 2, n >= 4 */
+ PTR(r)[0] = bc_bin_uiui (n, k);
+ SIZ(r) = 1;
+ } else if (k <= ODD_FACTORIAL_TABLE_LIMIT)
+ mpz_smallk_bin_uiui (r, n, k);
+ else if (BIN_UIUI_ENABLE_SMALLDC &&
+ k <= (BIN_UIUI_RECURSIVE_SMALLDC ? ODD_CENTRAL_BINOMIAL_TABLE_LIMIT : ODD_FACTORIAL_TABLE_LIMIT)* 2)
+ mpz_smallkdc_bin_uiui (r, n, k);
+ else if (ABOVE_THRESHOLD (k, BIN_GOETGHELUCK_THRESHOLD) &&
+ k > (n >> 4)) /* k > ODD_FACTORIAL_TABLE_LIMIT */
+ mpz_goetgheluck_bin_uiui (r, n, k);
+ else
+ mpz_bdiv_bin_uiui (r, n, k);
+ }
+}