summaryrefslogtreecommitdiff
path: root/Build/source/libs/gmp/gmp-6.0.0/mpn/x86/k7/mmx/divrem_1.asm
diff options
context:
space:
mode:
Diffstat (limited to 'Build/source/libs/gmp/gmp-6.0.0/mpn/x86/k7/mmx/divrem_1.asm')
-rw-r--r--Build/source/libs/gmp/gmp-6.0.0/mpn/x86/k7/mmx/divrem_1.asm832
1 files changed, 832 insertions, 0 deletions
diff --git a/Build/source/libs/gmp/gmp-6.0.0/mpn/x86/k7/mmx/divrem_1.asm b/Build/source/libs/gmp/gmp-6.0.0/mpn/x86/k7/mmx/divrem_1.asm
new file mode 100644
index 00000000000..cf343280bbd
--- /dev/null
+++ b/Build/source/libs/gmp/gmp-6.0.0/mpn/x86/k7/mmx/divrem_1.asm
@@ -0,0 +1,832 @@
+dnl AMD K7 mpn_divrem_1, mpn_divrem_1c, mpn_preinv_divrem_1 -- mpn by limb
+dnl division.
+
+dnl Copyright 1999-2002, 2004 Free Software Foundation, Inc.
+
+dnl This file is part of the GNU MP Library.
+dnl
+dnl The GNU MP Library is free software; you can redistribute it and/or modify
+dnl it under the terms of either:
+dnl
+dnl * the GNU Lesser General Public License as published by the Free
+dnl Software Foundation; either version 3 of the License, or (at your
+dnl option) any later version.
+dnl
+dnl or
+dnl
+dnl * the GNU General Public License as published by the Free Software
+dnl Foundation; either version 2 of the License, or (at your option) any
+dnl later version.
+dnl
+dnl or both in parallel, as here.
+dnl
+dnl The GNU MP Library is distributed in the hope that it will be useful, but
+dnl WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+dnl or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+dnl for more details.
+dnl
+dnl You should have received copies of the GNU General Public License and the
+dnl GNU Lesser General Public License along with the GNU MP Library. If not,
+dnl see https://www.gnu.org/licenses/.
+
+include(`../config.m4')
+
+
+C K7: 17.0 cycles/limb integer part, 15.0 cycles/limb fraction part.
+
+
+C mp_limb_t mpn_divrem_1 (mp_ptr dst, mp_size_t xsize,
+C mp_srcptr src, mp_size_t size,
+C mp_limb_t divisor);
+C mp_limb_t mpn_divrem_1c (mp_ptr dst, mp_size_t xsize,
+C mp_srcptr src, mp_size_t size,
+C mp_limb_t divisor, mp_limb_t carry);
+C mp_limb_t mpn_preinv_divrem_1 (mp_ptr dst, mp_size_t xsize,
+C mp_srcptr src, mp_size_t size,
+C mp_limb_t divisor, mp_limb_t inverse,
+C unsigned shift);
+C
+C Algorithm:
+C
+C The method and nomenclature follow part 8 of "Division by Invariant
+C Integers using Multiplication" by Granlund and Montgomery, reference in
+C gmp.texi.
+C
+C The "and"s shown in the paper are done here with "cmov"s. "m" is written
+C for m', and "d" for d_norm, which won't cause any confusion since it's
+C only the normalized divisor that's of any use in the code. "b" is written
+C for 2^N, the size of a limb, N being 32 here.
+C
+C The step "sdword dr = n - 2^N*d + (2^N-1-q1) * d" is instead done as
+C "n-(q1+1)*d"; this rearrangement gives the same two-limb answer. If
+C q1==0xFFFFFFFF, then q1+1 would overflow. We branch to a special case
+C "q1_ff" if this occurs. Since the true quotient is either q1 or q1+1 then
+C if q1==0xFFFFFFFF that must be the right value.
+C
+C For the last and second last steps q1==0xFFFFFFFF is instead handled by an
+C sbbl to go back to 0xFFFFFFFF if an overflow occurs when adding 1. This
+C then goes through as normal, and finding no addback required. sbbl costs
+C an extra cycle over what the main loop code does, but it keeps code size
+C and complexity down.
+C
+C Notes:
+C
+C mpn_divrem_1 and mpn_preinv_divrem_1 avoid one division if the src high
+C limb is less than the divisor. mpn_divrem_1c doesn't check for a zero
+C carry, since in normal circumstances that will be a very rare event.
+C
+C The test for skipping a division is branch free (once size>=1 is tested).
+C The store to the destination high limb is 0 when a divide is skipped, or
+C if it's not skipped then a copy of the src high limb is used. The latter
+C is in case src==dst.
+C
+C There's a small bias towards expecting xsize==0, by having code for
+C xsize==0 in a straight line and xsize!=0 under forward jumps.
+C
+C Alternatives:
+C
+C If the divisor is normalized (high bit set) then a division step can
+C always be skipped, since the high destination limb is always 0 or 1 in
+C that case. It doesn't seem worth checking for this though, since it
+C probably occurs infrequently, in particular note that big_base for a
+C decimal mpn_get_str is not normalized in a 32-bit limb.
+
+
+dnl MUL_THRESHOLD is the value of xsize+size at which the multiply by
+dnl inverse method is used, rather than plain "divl"s. Minimum value 1.
+dnl
+dnl The inverse takes about 50 cycles to calculate, but after that the
+dnl multiply is 17 c/l versus division at 42 c/l.
+dnl
+dnl At 3 limbs the mul is a touch faster than div on the integer part, and
+dnl even more so on the fractional part.
+
+deflit(MUL_THRESHOLD, 3)
+
+
+defframe(PARAM_PREINV_SHIFT, 28) dnl mpn_preinv_divrem_1
+defframe(PARAM_PREINV_INVERSE, 24) dnl mpn_preinv_divrem_1
+defframe(PARAM_CARRY, 24) dnl mpn_divrem_1c
+defframe(PARAM_DIVISOR,20)
+defframe(PARAM_SIZE, 16)
+defframe(PARAM_SRC, 12)
+defframe(PARAM_XSIZE, 8)
+defframe(PARAM_DST, 4)
+
+defframe(SAVE_EBX, -4)
+defframe(SAVE_ESI, -8)
+defframe(SAVE_EDI, -12)
+defframe(SAVE_EBP, -16)
+
+defframe(VAR_NORM, -20)
+defframe(VAR_INVERSE, -24)
+defframe(VAR_SRC, -28)
+defframe(VAR_DST, -32)
+defframe(VAR_DST_STOP,-36)
+
+deflit(STACK_SPACE, 36)
+
+ TEXT
+ ALIGN(32)
+
+PROLOGUE(mpn_preinv_divrem_1)
+deflit(`FRAME',0)
+ movl PARAM_XSIZE, %ecx
+ movl PARAM_DST, %edx
+ subl $STACK_SPACE, %esp FRAME_subl_esp(STACK_SPACE)
+
+ movl %esi, SAVE_ESI
+ movl PARAM_SRC, %esi
+
+ movl %ebx, SAVE_EBX
+ movl PARAM_SIZE, %ebx
+
+ leal 8(%edx,%ecx,4), %edx C &dst[xsize+2]
+ movl %ebp, SAVE_EBP
+ movl PARAM_DIVISOR, %ebp
+
+ movl %edx, VAR_DST_STOP C &dst[xsize+2]
+ movl %edi, SAVE_EDI
+ xorl %edi, %edi C carry
+
+ movl -4(%esi,%ebx,4), %eax C src high limb
+ xor %ecx, %ecx
+
+ C
+
+ C
+
+ cmpl %ebp, %eax C high cmp divisor
+
+ cmovc( %eax, %edi) C high is carry if high<divisor
+ cmovnc( %eax, %ecx) C 0 if skip div, src high if not
+ C (the latter in case src==dst)
+
+ movl %ecx, -12(%edx,%ebx,4) C dst high limb
+ sbbl $0, %ebx C skip one division if high<divisor
+ movl PARAM_PREINV_SHIFT, %ecx
+
+ leal -8(%edx,%ebx,4), %edx C &dst[xsize+size]
+ movl $32, %eax
+
+ movl %edx, VAR_DST C &dst[xsize+size]
+
+ shll %cl, %ebp C d normalized
+ subl %ecx, %eax
+ movl %ecx, VAR_NORM
+
+ movd %eax, %mm7 C rshift
+ movl PARAM_PREINV_INVERSE, %eax
+ jmp L(start_preinv)
+
+EPILOGUE()
+
+
+ ALIGN(16)
+
+PROLOGUE(mpn_divrem_1c)
+deflit(`FRAME',0)
+ movl PARAM_CARRY, %edx
+ movl PARAM_SIZE, %ecx
+ subl $STACK_SPACE, %esp
+deflit(`FRAME',STACK_SPACE)
+
+ movl %ebx, SAVE_EBX
+ movl PARAM_XSIZE, %ebx
+
+ movl %edi, SAVE_EDI
+ movl PARAM_DST, %edi
+
+ movl %ebp, SAVE_EBP
+ movl PARAM_DIVISOR, %ebp
+
+ movl %esi, SAVE_ESI
+ movl PARAM_SRC, %esi
+
+ leal -4(%edi,%ebx,4), %edi C &dst[xsize-1]
+ jmp L(start_1c)
+
+EPILOGUE()
+
+
+ C offset 0xa1, close enough to aligned
+PROLOGUE(mpn_divrem_1)
+deflit(`FRAME',0)
+
+ movl PARAM_SIZE, %ecx
+ movl $0, %edx C initial carry (if can't skip a div)
+ subl $STACK_SPACE, %esp
+deflit(`FRAME',STACK_SPACE)
+
+ movl %esi, SAVE_ESI
+ movl PARAM_SRC, %esi
+
+ movl %ebx, SAVE_EBX
+ movl PARAM_XSIZE, %ebx
+
+ movl %ebp, SAVE_EBP
+ movl PARAM_DIVISOR, %ebp
+ orl %ecx, %ecx C size
+
+ movl %edi, SAVE_EDI
+ movl PARAM_DST, %edi
+ leal -4(%edi,%ebx,4), %edi C &dst[xsize-1]
+
+ jz L(no_skip_div) C if size==0
+ movl -4(%esi,%ecx,4), %eax C src high limb
+ xorl %esi, %esi
+
+ cmpl %ebp, %eax C high cmp divisor
+
+ cmovc( %eax, %edx) C high is carry if high<divisor
+ cmovnc( %eax, %esi) C 0 if skip div, src high if not
+
+ movl %esi, (%edi,%ecx,4) C dst high limb
+ sbbl $0, %ecx C size-1 if high<divisor
+ movl PARAM_SRC, %esi C reload
+L(no_skip_div):
+
+
+L(start_1c):
+ C eax
+ C ebx xsize
+ C ecx size
+ C edx carry
+ C esi src
+ C edi &dst[xsize-1]
+ C ebp divisor
+
+ leal (%ebx,%ecx), %eax C size+xsize
+ cmpl $MUL_THRESHOLD, %eax
+ jae L(mul_by_inverse)
+
+
+C With MUL_THRESHOLD set to 3, the simple loops here only do 0 to 2 limbs.
+C It'd be possible to write them out without the looping, but no speedup
+C would be expected.
+C
+C Using PARAM_DIVISOR instead of %ebp measures 1 cycle/loop faster on the
+C integer part, but curiously not on the fractional part, where %ebp is a
+C (fixed) couple of cycles faster.
+
+ orl %ecx, %ecx
+ jz L(divide_no_integer)
+
+L(divide_integer):
+ C eax scratch (quotient)
+ C ebx xsize
+ C ecx counter
+ C edx scratch (remainder)
+ C esi src
+ C edi &dst[xsize-1]
+ C ebp divisor
+
+ movl -4(%esi,%ecx,4), %eax
+
+ divl PARAM_DIVISOR
+
+ movl %eax, (%edi,%ecx,4)
+ decl %ecx
+ jnz L(divide_integer)
+
+
+L(divide_no_integer):
+ movl PARAM_DST, %edi
+ orl %ebx, %ebx
+ jnz L(divide_fraction)
+
+L(divide_done):
+ movl SAVE_ESI, %esi
+ movl SAVE_EDI, %edi
+ movl %edx, %eax
+
+ movl SAVE_EBX, %ebx
+ movl SAVE_EBP, %ebp
+ addl $STACK_SPACE, %esp
+
+ ret
+
+
+L(divide_fraction):
+ C eax scratch (quotient)
+ C ebx counter
+ C ecx
+ C edx scratch (remainder)
+ C esi
+ C edi dst
+ C ebp divisor
+
+ movl $0, %eax
+
+ divl %ebp
+
+ movl %eax, -4(%edi,%ebx,4)
+ decl %ebx
+ jnz L(divide_fraction)
+
+ jmp L(divide_done)
+
+
+
+C -----------------------------------------------------------------------------
+
+L(mul_by_inverse):
+ C eax
+ C ebx xsize
+ C ecx size
+ C edx carry
+ C esi src
+ C edi &dst[xsize-1]
+ C ebp divisor
+
+ bsrl %ebp, %eax C 31-l
+
+ leal 12(%edi), %ebx C &dst[xsize+2], loop dst stop
+ leal 4(%edi,%ecx,4), %edi C &dst[xsize+size]
+
+ movl %edi, VAR_DST
+ movl %ebx, VAR_DST_STOP
+
+ movl %ecx, %ebx C size
+ movl $31, %ecx
+
+ movl %edx, %edi C carry
+ movl $-1, %edx
+
+ C
+
+ xorl %eax, %ecx C l
+ incl %eax C 32-l
+
+ shll %cl, %ebp C d normalized
+ movl %ecx, VAR_NORM
+
+ movd %eax, %mm7
+
+ movl $-1, %eax
+ subl %ebp, %edx C (b-d)-1 giving edx:eax = b*(b-d)-1
+
+ divl %ebp C floor (b*(b-d)-1) / d
+
+L(start_preinv):
+ C eax inverse
+ C ebx size
+ C ecx shift
+ C edx
+ C esi src
+ C edi carry
+ C ebp divisor
+ C
+ C mm7 rshift
+
+ orl %ebx, %ebx C size
+ movl %eax, VAR_INVERSE
+ leal -12(%esi,%ebx,4), %eax C &src[size-3]
+
+ jz L(start_zero)
+ movl %eax, VAR_SRC
+ cmpl $1, %ebx
+
+ movl 8(%eax), %esi C src high limb
+ jz L(start_one)
+
+L(start_two_or_more):
+ movl 4(%eax), %edx C src second highest limb
+
+ shldl( %cl, %esi, %edi) C n2 = carry,high << l
+
+ shldl( %cl, %edx, %esi) C n10 = high,second << l
+
+ cmpl $2, %ebx
+ je L(integer_two_left)
+ jmp L(integer_top)
+
+
+L(start_one):
+ shldl( %cl, %esi, %edi) C n2 = carry,high << l
+
+ shll %cl, %esi C n10 = high << l
+ movl %eax, VAR_SRC
+ jmp L(integer_one_left)
+
+
+L(start_zero):
+ C Can be here with xsize==0 if mpn_preinv_divrem_1 had size==1 and
+ C skipped a division.
+
+ shll %cl, %edi C n2 = carry << l
+ movl %edi, %eax C return value for zero_done
+ cmpl $0, PARAM_XSIZE
+
+ je L(zero_done)
+ jmp L(fraction_some)
+
+
+
+C -----------------------------------------------------------------------------
+C
+C The multiply by inverse loop is 17 cycles, and relies on some out-of-order
+C execution. The instruction scheduling is important, with various
+C apparently equivalent forms running 1 to 5 cycles slower.
+C
+C A lower bound for the time would seem to be 16 cycles, based on the
+C following successive dependencies.
+C
+C cycles
+C n2+n1 1
+C mul 6
+C q1+1 1
+C mul 6
+C sub 1
+C addback 1
+C ---
+C 16
+C
+C This chain is what the loop has already, but 16 cycles isn't achieved.
+C K7 has enough decode, and probably enough execute (depending maybe on what
+C a mul actually consumes), but nothing running under 17 has been found.
+C
+C In theory n2+n1 could be done in the sub and addback stages (by
+C calculating both n2 and n2+n1 there), but lack of registers makes this an
+C unlikely proposition.
+C
+C The jz in the loop keeps the q1+1 stage to 1 cycle. Handling an overflow
+C from q1+1 with an "sbbl $0, %ebx" would add a cycle to the dependent
+C chain, and nothing better than 18 cycles has been found when using it.
+C The jump is taken only when q1 is 0xFFFFFFFF, and on random data this will
+C be an extremely rare event.
+C
+C Branch mispredictions will hit random occurrences of q1==0xFFFFFFFF, but
+C if some special data is coming out with this always, the q1_ff special
+C case actually runs at 15 c/l. 0x2FFF...FFFD divided by 3 is a good way to
+C induce the q1_ff case, for speed measurements or testing. Note that
+C 0xFFF...FFF divided by 1 or 2 doesn't induce it.
+C
+C The instruction groupings and empty comments show the cycles for a naive
+C in-order view of the code (conveniently ignoring the load latency on
+C VAR_INVERSE). This shows some of where the time is going, but is nonsense
+C to the extent that out-of-order execution rearranges it. In this case
+C there's 19 cycles shown, but it executes at 17.
+
+ ALIGN(16)
+L(integer_top):
+ C eax scratch
+ C ebx scratch (nadj, q1)
+ C ecx scratch (src, dst)
+ C edx scratch
+ C esi n10
+ C edi n2
+ C ebp divisor
+ C
+ C mm0 scratch (src qword)
+ C mm7 rshift for normalization
+
+ cmpl $0x80000000, %esi C n1 as 0=c, 1=nc
+ movl %edi, %eax C n2
+ movl VAR_SRC, %ecx
+
+ leal (%ebp,%esi), %ebx
+ cmovc( %esi, %ebx) C nadj = n10 + (-n1 & d), ignoring overflow
+ sbbl $-1, %eax C n2+n1
+
+ mull VAR_INVERSE C m*(n2+n1)
+
+ movq (%ecx), %mm0 C next limb and the one below it
+ subl $4, %ecx
+
+ movl %ecx, VAR_SRC
+
+ C
+
+ addl %ebx, %eax C m*(n2+n1) + nadj, low giving carry flag
+ leal 1(%edi), %ebx C n2+1
+ movl %ebp, %eax C d
+
+ C
+
+ adcl %edx, %ebx C 1 + high(n2<<32 + m*(n2+n1) + nadj) = q1+1
+ jz L(q1_ff)
+ movl VAR_DST, %ecx
+
+ mull %ebx C (q1+1)*d
+
+ psrlq %mm7, %mm0
+
+ leal -4(%ecx), %ecx
+
+ C
+
+ subl %eax, %esi
+ movl VAR_DST_STOP, %eax
+
+ C
+
+ sbbl %edx, %edi C n - (q1+1)*d
+ movl %esi, %edi C remainder -> n2
+ leal (%ebp,%esi), %edx
+
+ movd %mm0, %esi
+
+ cmovc( %edx, %edi) C n - q1*d if underflow from using q1+1
+ sbbl $0, %ebx C q
+ cmpl %eax, %ecx
+
+ movl %ebx, (%ecx)
+ movl %ecx, VAR_DST
+ jne L(integer_top)
+
+
+L(integer_loop_done):
+
+
+C -----------------------------------------------------------------------------
+C
+C Here, and in integer_one_left below, an sbbl $0 is used rather than a jz
+C q1_ff special case. This make the code a bit smaller and simpler, and
+C costs only 1 cycle (each).
+
+L(integer_two_left):
+ C eax scratch
+ C ebx scratch (nadj, q1)
+ C ecx scratch (src, dst)
+ C edx scratch
+ C esi n10
+ C edi n2
+ C ebp divisor
+ C
+ C mm7 rshift
+
+ cmpl $0x80000000, %esi C n1 as 0=c, 1=nc
+ movl %edi, %eax C n2
+ movl PARAM_SRC, %ecx
+
+ leal (%ebp,%esi), %ebx
+ cmovc( %esi, %ebx) C nadj = n10 + (-n1 & d), ignoring overflow
+ sbbl $-1, %eax C n2+n1
+
+ mull VAR_INVERSE C m*(n2+n1)
+
+ movd (%ecx), %mm0 C src low limb
+
+ movl VAR_DST_STOP, %ecx
+
+ C
+
+ addl %ebx, %eax C m*(n2+n1) + nadj, low giving carry flag
+ leal 1(%edi), %ebx C n2+1
+ movl %ebp, %eax C d
+
+ adcl %edx, %ebx C 1 + high(n2<<32 + m*(n2+n1) + nadj) = q1+1
+
+ sbbl $0, %ebx
+
+ mull %ebx C (q1+1)*d
+
+ psllq $32, %mm0
+
+ psrlq %mm7, %mm0
+
+ C
+
+ subl %eax, %esi
+
+ C
+
+ sbbl %edx, %edi C n - (q1+1)*d
+ movl %esi, %edi C remainder -> n2
+ leal (%ebp,%esi), %edx
+
+ movd %mm0, %esi
+
+ cmovc( %edx, %edi) C n - q1*d if underflow from using q1+1
+ sbbl $0, %ebx C q
+
+ movl %ebx, -4(%ecx)
+
+
+C -----------------------------------------------------------------------------
+L(integer_one_left):
+ C eax scratch
+ C ebx scratch (nadj, q1)
+ C ecx dst
+ C edx scratch
+ C esi n10
+ C edi n2
+ C ebp divisor
+ C
+ C mm7 rshift
+
+ movl VAR_DST_STOP, %ecx
+ cmpl $0x80000000, %esi C n1 as 0=c, 1=nc
+ movl %edi, %eax C n2
+
+ leal (%ebp,%esi), %ebx
+ cmovc( %esi, %ebx) C nadj = n10 + (-n1 & d), ignoring overflow
+ sbbl $-1, %eax C n2+n1
+
+ mull VAR_INVERSE C m*(n2+n1)
+
+ C
+
+ C
+
+ C
+
+ addl %ebx, %eax C m*(n2+n1) + nadj, low giving carry flag
+ leal 1(%edi), %ebx C n2+1
+ movl %ebp, %eax C d
+
+ C
+
+ adcl %edx, %ebx C 1 + high(n2<<32 + m*(n2+n1) + nadj) = q1+1
+
+ sbbl $0, %ebx C q1 if q1+1 overflowed
+
+ mull %ebx
+
+ C
+
+ C
+
+ C
+
+ subl %eax, %esi
+
+ C
+
+ sbbl %edx, %edi C n - (q1+1)*d
+ movl %esi, %edi C remainder -> n2
+ leal (%ebp,%esi), %edx
+
+ cmovc( %edx, %edi) C n - q1*d if underflow from using q1+1
+ sbbl $0, %ebx C q
+
+ movl %ebx, -8(%ecx)
+ subl $8, %ecx
+
+
+
+L(integer_none):
+ cmpl $0, PARAM_XSIZE
+ jne L(fraction_some)
+
+ movl %edi, %eax
+L(fraction_done):
+ movl VAR_NORM, %ecx
+L(zero_done):
+ movl SAVE_EBP, %ebp
+
+ movl SAVE_EDI, %edi
+ movl SAVE_ESI, %esi
+
+ movl SAVE_EBX, %ebx
+ addl $STACK_SPACE, %esp
+
+ shrl %cl, %eax
+ emms
+
+ ret
+
+
+C -----------------------------------------------------------------------------
+C
+C Special case for q1=0xFFFFFFFF, giving q=0xFFFFFFFF meaning the low dword
+C of q*d is simply -d and the remainder n-q*d = n10+d
+
+L(q1_ff):
+ C eax (divisor)
+ C ebx (q1+1 == 0)
+ C ecx
+ C edx
+ C esi n10
+ C edi n2
+ C ebp divisor
+
+ movl VAR_DST, %ecx
+ movl VAR_DST_STOP, %edx
+ subl $4, %ecx
+
+ psrlq %mm7, %mm0
+ leal (%ebp,%esi), %edi C n-q*d remainder -> next n2
+ movl %ecx, VAR_DST
+
+ movd %mm0, %esi C next n10
+
+ movl $-1, (%ecx)
+ cmpl %ecx, %edx
+ jne L(integer_top)
+
+ jmp L(integer_loop_done)
+
+
+
+C -----------------------------------------------------------------------------
+C
+C Being the fractional part, the "source" limbs are all zero, meaning
+C n10=0, n1=0, and hence nadj=0, leading to many instructions eliminated.
+C
+C The loop runs at 15 cycles. The dependent chain is the same as the
+C general case above, but without the n2+n1 stage (due to n1==0), so 15
+C would seem to be the lower bound.
+C
+C A not entirely obvious simplification is that q1+1 never overflows a limb,
+C and so there's no need for the sbbl $0 or jz q1_ff from the general case.
+C q1 is the high word of m*n2+b*n2 and the following shows q1<=b-2 always.
+C rnd() means rounding down to a multiple of d.
+C
+C m*n2 + b*n2 <= m*(d-1) + b*(d-1)
+C = m*d + b*d - m - b
+C = floor((b(b-d)-1)/d)*d + b*d - m - b
+C = rnd(b(b-d)-1) + b*d - m - b
+C = rnd(b(b-d)-1 + b*d) - m - b
+C = rnd(b*b-1) - m - b
+C <= (b-2)*b
+C
+C Unchanged from the general case is that the final quotient limb q can be
+C either q1 or q1+1, and the q1+1 case occurs often. This can be seen from
+C equation 8.4 of the paper which simplifies as follows when n1==0 and
+C n0==0.
+C
+C n-q1*d = (n2*k+q0*d)/b <= d + (d*d-2d)/b
+C
+C As before, the instruction groupings and empty comments show a naive
+C in-order view of the code, which is made a nonsense by out of order
+C execution. There's 17 cycles shown, but it executes at 15.
+C
+C Rotating the store q and remainder->n2 instructions up to the top of the
+C loop gets the run time down from 16 to 15.
+
+ ALIGN(16)
+L(fraction_some):
+ C eax
+ C ebx
+ C ecx
+ C edx
+ C esi
+ C edi carry
+ C ebp divisor
+
+ movl PARAM_DST, %esi
+ movl VAR_DST_STOP, %ecx C &dst[xsize+2]
+ movl %edi, %eax
+
+ subl $8, %ecx C &dst[xsize]
+ jmp L(fraction_entry)
+
+
+ ALIGN(16)
+L(fraction_top):
+ C eax n2 carry, then scratch
+ C ebx scratch (nadj, q1)
+ C ecx dst, decrementing
+ C edx scratch
+ C esi dst stop point
+ C edi (will be n2)
+ C ebp divisor
+
+ movl %ebx, (%ecx) C previous q
+ movl %eax, %edi C remainder->n2
+
+L(fraction_entry):
+ mull VAR_INVERSE C m*n2
+
+ movl %ebp, %eax C d
+ subl $4, %ecx C dst
+ leal 1(%edi), %ebx
+
+ C
+
+ C
+
+ C
+
+ C
+
+ addl %edx, %ebx C 1 + high(n2<<32 + m*n2) = q1+1
+
+ mull %ebx C (q1+1)*d
+
+ C
+
+ C
+
+ C
+
+ negl %eax C low of n - (q1+1)*d
+
+ C
+
+ sbbl %edx, %edi C high of n - (q1+1)*d, caring only about carry
+ leal (%ebp,%eax), %edx
+
+ cmovc( %edx, %eax) C n - q1*d if underflow from using q1+1
+ sbbl $0, %ebx C q
+ cmpl %esi, %ecx
+
+ jne L(fraction_top)
+
+
+ movl %ebx, (%ecx)
+ jmp L(fraction_done)
+
+EPILOGUE()