summaryrefslogtreecommitdiff
path: root/Build/source/libs/gd/libgd-src/src/gd_interpolation.c
diff options
context:
space:
mode:
Diffstat (limited to 'Build/source/libs/gd/libgd-src/src/gd_interpolation.c')
-rw-r--r--Build/source/libs/gd/libgd-src/src/gd_interpolation.c2605
1 files changed, 2605 insertions, 0 deletions
diff --git a/Build/source/libs/gd/libgd-src/src/gd_interpolation.c b/Build/source/libs/gd/libgd-src/src/gd_interpolation.c
new file mode 100644
index 00000000000..84cf92a0b89
--- /dev/null
+++ b/Build/source/libs/gd/libgd-src/src/gd_interpolation.c
@@ -0,0 +1,2605 @@
+/*
+ * The two pass scaling function is based on:
+ * Filtered Image Rescaling
+ * Based on Gems III
+ * - Schumacher general filtered image rescaling
+ * (pp. 414-424)
+ * by Dale Schumacher
+ *
+ * Additional changes by Ray Gardener, Daylon Graphics Ltd.
+ * December 4, 1999
+ *
+ * Ported to libgd by Pierre Joye. Support for multiple channels
+ * added (argb for now).
+ *
+ * Initial sources code is avaibable in the Gems Source Code Packages:
+ * http://www.acm.org/pubs/tog/GraphicsGems/GGemsIII.tar.gz
+ *
+ */
+
+/*
+ Summary:
+
+ - Horizontal filter contributions are calculated on the fly,
+ as each column is mapped from src to dst image. This lets
+ us omit having to allocate a temporary full horizontal stretch
+ of the src image.
+
+ - If none of the src pixels within a sampling region differ,
+ then the output pixel is forced to equal (any of) the source pixel.
+ This ensures that filters do not corrupt areas of constant color.
+
+ - Filter weight contribution results, after summing, are
+ rounded to the nearest pixel color value instead of
+ being casted to ILubyte (usually an int or char). Otherwise,
+ artifacting occurs.
+
+*/
+
+/*
+ Additional functions are available for simple rotation or up/downscaling.
+ downscaling using the fixed point implementations are usually much faster
+ than the existing gdImageCopyResampled while having a similar or better
+ quality.
+
+ For image rotations, the optimized versions have a lazy antialiasing for
+ the edges of the images. For a much better antialiased result, the affine
+ function is recommended.
+*/
+
+/*
+TODO:
+ - Optimize pixel accesses and loops once we have continuous buffer
+ - Add scale support for a portion only of an image (equivalent of copyresized/resampled)
+ */
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif /* HAVE_CONFIG_H */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <math.h>
+#include <assert.h>
+
+#define NDEBUG 1 /* TODO: disable/enable assertions in configure. */
+#include <assert.h>
+
+#include "gd.h"
+#include "gdhelpers.h"
+#include "gd_intern.h"
+
+#ifdef _MSC_VER
+# pragma optimize("t", on)
+# include <emmintrin.h>
+#endif
+
+static gdImagePtr gdImageScaleBilinear(gdImagePtr im,
+ const unsigned int new_width,
+ const unsigned int new_height);
+static gdImagePtr gdImageScaleBicubicFixed(gdImagePtr src,
+ const unsigned int width,
+ const unsigned int height);
+static gdImagePtr gdImageScaleNearestNeighbour(gdImagePtr im,
+ const unsigned int width,
+ const unsigned int height);
+static gdImagePtr gdImageRotateNearestNeighbour(gdImagePtr src,
+ const float degrees,
+ const int bgColor);
+static gdImagePtr gdImageRotateBilinear(gdImagePtr src, const float degrees,
+ const int bgColor);
+static gdImagePtr gdImageRotateBicubicFixed(gdImagePtr src, const float degrees,
+ const int bgColor);
+static gdImagePtr gdImageRotateGeneric(gdImagePtr src, const float degrees,
+ const int bgColor);
+
+
+#define CLAMP(x, low, high) (((x) > (high)) ? (high) : (((x) < (low)) ? (low) : (x)))
+
+/* only used here, let do a generic fixed point integers later if required by other
+ part of GD */
+typedef long gdFixed;
+/* Integer to fixed point */
+#define gd_itofx(x) ((x) << 8)
+
+/* Float to fixed point */
+#define gd_ftofx(x) (long)((x) * 256)
+
+/* Double to fixed point */
+#define gd_dtofx(x) (long)((x) * 256)
+
+/* Fixed point to integer */
+#define gd_fxtoi(x) ((x) >> 8)
+
+/* Fixed point to float */
+# define gd_fxtof(x) ((float)(x) / 256)
+
+/* Fixed point to double */
+#define gd_fxtod(x) ((double)(x) / 256)
+
+/* Multiply a fixed by a fixed */
+#define gd_mulfx(x,y) (((x) * (y)) >> 8)
+
+/* Divide a fixed by a fixed */
+#define gd_divfx(x,y) (((x) << 8) / (y))
+
+typedef struct
+{
+ double *Weights; /* Normalized weights of neighboring pixels */
+ int Left,Right; /* Bounds of source pixels window */
+} ContributionType; /* Contirbution information for a single pixel */
+
+typedef struct
+{
+ ContributionType *ContribRow; /* Row (or column) of contribution weights */
+ unsigned int WindowSize, /* Filter window size (of affecting source pixels) */
+ LineLength; /* Length of line (no. or rows / cols) */
+} LineContribType;
+
+/* Each core filter has its own radius */
+#define DEFAULT_FILTER_BICUBIC 3.0
+#define DEFAULT_FILTER_BOX 0.5
+#define DEFAULT_FILTER_GENERALIZED_CUBIC 0.5
+#define DEFAULT_FILTER_RADIUS 1.0
+#define DEFAULT_LANCZOS8_RADIUS 8.0
+#define DEFAULT_LANCZOS3_RADIUS 3.0
+#define DEFAULT_HERMITE_RADIUS 1.0
+#define DEFAULT_BOX_RADIUS 0.5
+#define DEFAULT_TRIANGLE_RADIUS 1.0
+#define DEFAULT_BELL_RADIUS 1.5
+#define DEFAULT_CUBICSPLINE_RADIUS 2.0
+#define DEFAULT_MITCHELL_RADIUS 2.0
+#define DEFAULT_COSINE_RADIUS 1.0
+#define DEFAULT_CATMULLROM_RADIUS 2.0
+#define DEFAULT_QUADRATIC_RADIUS 1.5
+#define DEFAULT_QUADRATICBSPLINE_RADIUS 1.5
+#define DEFAULT_CUBICCONVOLUTION_RADIUS 3.0
+#define DEFAULT_GAUSSIAN_RADIUS 1.0
+#define DEFAULT_HANNING_RADIUS 1.0
+#define DEFAULT_HAMMING_RADIUS 1.0
+#define DEFAULT_SINC_RADIUS 1.0
+#define DEFAULT_WELSH_RADIUS 1.0
+
+static double KernelBessel_J1(const double x)
+{
+ double p, q;
+
+ register long i;
+
+ static const double
+ Pone[] =
+ {
+ 0.581199354001606143928050809e+21,
+ -0.6672106568924916298020941484e+20,
+ 0.2316433580634002297931815435e+19,
+ -0.3588817569910106050743641413e+17,
+ 0.2908795263834775409737601689e+15,
+ -0.1322983480332126453125473247e+13,
+ 0.3413234182301700539091292655e+10,
+ -0.4695753530642995859767162166e+7,
+ 0.270112271089232341485679099e+4
+ },
+ Qone[] =
+ {
+ 0.11623987080032122878585294e+22,
+ 0.1185770712190320999837113348e+20,
+ 0.6092061398917521746105196863e+17,
+ 0.2081661221307607351240184229e+15,
+ 0.5243710262167649715406728642e+12,
+ 0.1013863514358673989967045588e+10,
+ 0.1501793594998585505921097578e+7,
+ 0.1606931573481487801970916749e+4,
+ 0.1e+1
+ };
+
+ p = Pone[8];
+ q = Qone[8];
+ for (i=7; i >= 0; i--)
+ {
+ p = p*x*x+Pone[i];
+ q = q*x*x+Qone[i];
+ }
+ return (double)(p/q);
+}
+
+static double KernelBessel_P1(const double x)
+{
+ double p, q;
+
+ register long i;
+
+ static const double
+ Pone[] =
+ {
+ 0.352246649133679798341724373e+5,
+ 0.62758845247161281269005675e+5,
+ 0.313539631109159574238669888e+5,
+ 0.49854832060594338434500455e+4,
+ 0.2111529182853962382105718e+3,
+ 0.12571716929145341558495e+1
+ },
+ Qone[] =
+ {
+ 0.352246649133679798068390431e+5,
+ 0.626943469593560511888833731e+5,
+ 0.312404063819041039923015703e+5,
+ 0.4930396490181088979386097e+4,
+ 0.2030775189134759322293574e+3,
+ 0.1e+1
+ };
+
+ p = Pone[5];
+ q = Qone[5];
+ for (i=4; i >= 0; i--)
+ {
+ p = p*(8.0/x)*(8.0/x)+Pone[i];
+ q = q*(8.0/x)*(8.0/x)+Qone[i];
+ }
+ return (double)(p/q);
+}
+
+static double KernelBessel_Q1(const double x)
+{
+ double p, q;
+
+ register long i;
+
+ static const double
+ Pone[] =
+ {
+ 0.3511751914303552822533318e+3,
+ 0.7210391804904475039280863e+3,
+ 0.4259873011654442389886993e+3,
+ 0.831898957673850827325226e+2,
+ 0.45681716295512267064405e+1,
+ 0.3532840052740123642735e-1
+ },
+ Qone[] =
+ {
+ 0.74917374171809127714519505e+4,
+ 0.154141773392650970499848051e+5,
+ 0.91522317015169922705904727e+4,
+ 0.18111867005523513506724158e+4,
+ 0.1038187585462133728776636e+3,
+ 0.1e+1
+ };
+
+ p = Pone[5];
+ q = Qone[5];
+ for (i=4; i >= 0; i--)
+ {
+ p = p*(8.0/x)*(8.0/x)+Pone[i];
+ q = q*(8.0/x)*(8.0/x)+Qone[i];
+ }
+ return (double)(p/q);
+}
+
+static double KernelBessel_Order1(double x)
+{
+ double p, q;
+
+ if (x == 0.0)
+ return (0.0f);
+ p = x;
+ if (x < 0.0)
+ x=(-x);
+ if (x < 8.0)
+ return (p*KernelBessel_J1(x));
+ q = (double)sqrt(2.0f/(M_PI*x))*(double)(KernelBessel_P1(x)*(1.0f/sqrt(2.0f)*(sin(x)-cos(x)))-8.0f/x*KernelBessel_Q1(x)*
+ (-1.0f/sqrt(2.0f)*(sin(x)+cos(x))));
+ if (p < 0.0f)
+ q = (-q);
+ return (q);
+}
+
+static double filter_bessel(const double x)
+{
+ if (x == 0.0f)
+ return (double)(M_PI/4.0f);
+ return (KernelBessel_Order1((double)M_PI*x)/(2.0f*x));
+}
+
+
+static double filter_blackman(const double x)
+{
+ return (0.42f+0.5f*(double)cos(M_PI*x)+0.08f*(double)cos(2.0f*M_PI*x));
+}
+
+/**
+ * Bicubic interpolation kernel (a=-1):
+ \verbatim
+ /
+ | 1-2|t|**2+|t|**3 , if |t| < 1
+ h(t) = | 4-8|t|+5|t|**2-|t|**3 , if 1<=|t|<2
+ | 0 , otherwise
+ \
+ \endverbatim
+ * ***bd*** 2.2004
+ */
+static double filter_bicubic(const double t)
+{
+ const double abs_t = (double)fabs(t);
+ const double abs_t_sq = abs_t * abs_t;
+ if (abs_t<1) return 1-2*abs_t_sq+abs_t_sq*abs_t;
+ if (abs_t<2) return 4 - 8*abs_t +5*abs_t_sq - abs_t_sq*abs_t;
+ return 0;
+}
+
+/**
+ * Generalized cubic kernel (for a=-1 it is the same as BicubicKernel):
+ \verbatim
+ /
+ | (a+2)|t|**3 - (a+3)|t|**2 + 1 , |t| <= 1
+ h(t) = | a|t|**3 - 5a|t|**2 + 8a|t| - 4a , 1 < |t| <= 2
+ | 0 , otherwise
+ \
+ \endverbatim
+ * Often used values for a are -1 and -1/2.
+ */
+static double filter_generalized_cubic(const double t)
+{
+ const double a = -DEFAULT_FILTER_GENERALIZED_CUBIC;
+ double abs_t = (double)fabs(t);
+ double abs_t_sq = abs_t * abs_t;
+ if (abs_t < 1) return (a + 2) * abs_t_sq * abs_t - (a + 3) * abs_t_sq + 1;
+ if (abs_t < 2) return a * abs_t_sq * abs_t - 5 * a * abs_t_sq + 8 * a * abs_t - 4 * a;
+ return 0;
+}
+
+#ifdef FUNCTION_NOT_USED_YET
+/* CubicSpline filter, default radius 2 */
+static double filter_cubic_spline(const double x1)
+{
+ const double x = x1 < 0.0 ? -x1 : x1;
+
+ if (x < 1.0 ) {
+ const double x2 = x*x;
+
+ return (0.5 * x2 * x - x2 + 2.0 / 3.0);
+ }
+ if (x < 2.0) {
+ return (pow(2.0 - x, 3.0)/6.0);
+ }
+ return 0;
+}
+#endif
+
+#ifdef FUNCTION_NOT_USED_YET
+/* CubicConvolution filter, default radius 3 */
+static double filter_cubic_convolution(const double x1)
+{
+ const double x = x1 < 0.0 ? -x1 : x1;
+ const double x2 = x1 * x1;
+ const double x2_x = x2 * x;
+
+ if (x <= 1.0) return ((4.0 / 3.0)* x2_x - (7.0 / 3.0) * x2 + 1.0);
+ if (x <= 2.0) return (- (7.0 / 12.0) * x2_x + 3 * x2 - (59.0 / 12.0) * x + 2.5);
+ if (x <= 3.0) return ( (1.0/12.0) * x2_x - (2.0 / 3.0) * x2 + 1.75 * x - 1.5);
+ return 0;
+}
+#endif
+
+static double filter_box(double x) {
+ if (x < - DEFAULT_FILTER_BOX)
+ return 0.0f;
+ if (x < DEFAULT_FILTER_BOX)
+ return 1.0f;
+ return 0.0f;
+}
+
+static double filter_catmullrom(const double x)
+{
+ if (x < -2.0)
+ return(0.0f);
+ if (x < -1.0)
+ return(0.5f*(4.0f+x*(8.0f+x*(5.0f+x))));
+ if (x < 0.0)
+ return(0.5f*(2.0f+x*x*(-5.0f-3.0f*x)));
+ if (x < 1.0)
+ return(0.5f*(2.0f+x*x*(-5.0f+3.0f*x)));
+ if (x < 2.0)
+ return(0.5f*(4.0f+x*(-8.0f+x*(5.0f-x))));
+ return(0.0f);
+}
+
+#ifdef FUNCTION_NOT_USED_YET
+static double filter_filter(double t)
+{
+ /* f(t) = 2|t|^3 - 3|t|^2 + 1, -1 <= t <= 1 */
+ if(t < 0.0) t = -t;
+ if(t < 1.0) return((2.0 * t - 3.0) * t * t + 1.0);
+ return(0.0);
+}
+#endif
+
+#ifdef FUNCTION_NOT_USED_YET
+/* Lanczos8 filter, default radius 8 */
+static double filter_lanczos8(const double x1)
+{
+ const double x = x1 < 0.0 ? -x1 : x1;
+#define R DEFAULT_LANCZOS8_RADIUS
+
+ if ( x == 0.0) return 1;
+
+ if ( x < R) {
+ return R * sin(x*M_PI) * sin(x * M_PI/ R) / (x * M_PI * x * M_PI);
+ }
+ return 0.0;
+#undef R
+}
+#endif
+
+#ifdef FUNCTION_NOT_USED_YET
+/* Lanczos3 filter, default radius 3 */
+static double filter_lanczos3(const double x1)
+{
+ const double x = x1 < 0.0 ? -x1 : x1;
+#define R DEFAULT_LANCZOS3_RADIUS
+
+ if ( x == 0.0) return 1;
+
+ if ( x < R)
+ {
+ return R * sin(x*M_PI) * sin(x * M_PI / R) / (x * M_PI * x * M_PI);
+ }
+ return 0.0;
+#undef R
+}
+#endif
+
+/* Hermite filter, default radius 1 */
+static double filter_hermite(const double x1)
+{
+ const double x = x1 < 0.0 ? -x1 : x1;
+
+ if (x < 1.0) return ((2.0 * x - 3) * x * x + 1.0 );
+
+ return 0.0;
+}
+
+/* Trangle filter, default radius 1 */
+static double filter_triangle(const double x1)
+{
+ const double x = x1 < 0.0 ? -x1 : x1;
+ if (x < 1.0) return (1.0 - x);
+ return 0.0;
+}
+
+/* Bell filter, default radius 1.5 */
+static double filter_bell(const double x1)
+{
+ const double x = x1 < 0.0 ? -x1 : x1;
+
+ if (x < 0.5) return (0.75 - x*x);
+ if (x < 1.5) return (0.5 * pow(x - 1.5, 2.0));
+ return 0.0;
+}
+
+/* Mitchell filter, default radius 2.0 */
+static double filter_mitchell(const double x)
+{
+#define KM_B (1.0f/3.0f)
+#define KM_C (1.0f/3.0f)
+#define KM_P0 (( 6.0f - 2.0f * KM_B ) / 6.0f)
+#define KM_P2 ((-18.0f + 12.0f * KM_B + 6.0f * KM_C) / 6.0f)
+#define KM_P3 (( 12.0f - 9.0f * KM_B - 6.0f * KM_C) / 6.0f)
+#define KM_Q0 (( 8.0f * KM_B + 24.0f * KM_C) / 6.0f)
+#define KM_Q1 ((-12.0f * KM_B - 48.0f * KM_C) / 6.0f)
+#define KM_Q2 (( 6.0f * KM_B + 30.0f * KM_C) / 6.0f)
+#define KM_Q3 (( -1.0f * KM_B - 6.0f * KM_C) / 6.0f)
+
+ if (x < -2.0)
+ return(0.0f);
+ if (x < -1.0)
+ return(KM_Q0-x*(KM_Q1-x*(KM_Q2-x*KM_Q3)));
+ if (x < 0.0f)
+ return(KM_P0+x*x*(KM_P2-x*KM_P3));
+ if (x < 1.0f)
+ return(KM_P0+x*x*(KM_P2+x*KM_P3));
+ if (x < 2.0f)
+ return(KM_Q0+x*(KM_Q1+x*(KM_Q2+x*KM_Q3)));
+ return(0.0f);
+}
+
+
+
+#ifdef FUNCTION_NOT_USED_YET
+/* Cosine filter, default radius 1 */
+static double filter_cosine(const double x)
+{
+ if ((x >= -1.0) && (x <= 1.0)) return ((cos(x * M_PI) + 1.0)/2.0);
+
+ return 0;
+}
+#endif
+
+/* Quadratic filter, default radius 1.5 */
+static double filter_quadratic(const double x1)
+{
+ const double x = x1 < 0.0 ? -x1 : x1;
+
+ if (x <= 0.5) return (- 2.0 * x * x + 1);
+ if (x <= 1.5) return (x * x - 2.5* x + 1.5);
+ return 0.0;
+}
+
+static double filter_bspline(const double x)
+{
+ if (x>2.0f) {
+ return 0.0f;
+ } else {
+ double a, b, c, d;
+ /* Was calculated anyway cause the "if((x-1.0f) < 0)" */
+ const double xm1 = x - 1.0f;
+ const double xp1 = x + 1.0f;
+ const double xp2 = x + 2.0f;
+
+ if ((xp2) <= 0.0f) a = 0.0f; else a = xp2*xp2*xp2;
+ if ((xp1) <= 0.0f) b = 0.0f; else b = xp1*xp1*xp1;
+ if (x <= 0) c = 0.0f; else c = x*x*x;
+ if ((xm1) <= 0.0f) d = 0.0f; else d = xm1*xm1*xm1;
+
+ return (0.16666666666666666667f * (a - (4.0f * b) + (6.0f * c) - (4.0f * d)));
+ }
+}
+
+#ifdef FUNCTION_NOT_USED_YET
+/* QuadraticBSpline filter, default radius 1.5 */
+static double filter_quadratic_bspline(const double x1)
+{
+ const double x = x1 < 0.0 ? -x1 : x1;
+
+ if (x <= 0.5) return (- x * x + 0.75);
+ if (x <= 1.5) return (0.5 * x * x - 1.5 * x + 1.125);
+ return 0.0;
+}
+#endif
+
+static double filter_gaussian(const double x)
+{
+ /* return(exp((double) (-2.0 * x * x)) * sqrt(2.0 / M_PI)); */
+ return (double)(exp(-2.0f * x * x) * 0.79788456080287f);
+}
+
+static double filter_hanning(const double x)
+{
+ /* A Cosine windowing function */
+ return(0.5 + 0.5 * cos(M_PI * x));
+}
+
+static double filter_hamming(const double x)
+{
+ /* should be
+ (0.54+0.46*cos(M_PI*(double) x));
+ but this approximation is sufficient */
+ if (x < -1.0f)
+ return 0.0f;
+ if (x < 0.0f)
+ return 0.92f*(-2.0f*x-3.0f)*x*x+1.0f;
+ if (x < 1.0f)
+ return 0.92f*(2.0f*x-3.0f)*x*x+1.0f;
+ return 0.0f;
+}
+
+static double filter_power(const double x)
+{
+ const double a = 2.0f;
+ if (fabs(x)>1) return 0.0f;
+ return (1.0f - (double)fabs(pow(x,a)));
+}
+
+static double filter_sinc(const double x)
+{
+ /* X-scaled Sinc(x) function. */
+ if (x == 0.0) return(1.0);
+ return (sin(M_PI * (double) x) / (M_PI * (double) x));
+}
+
+#ifdef FUNCTION_NOT_USED_YET
+static double filter_welsh(const double x)
+{
+ /* Welsh parabolic windowing filter */
+ if (x < 1.0)
+ return(1 - x*x);
+ return(0.0);
+}
+#endif
+
+#if defined(_MSC_VER) && !defined(inline)
+# define inline __inline
+#endif
+
+/* Copied from upstream's libgd */
+static inline int _color_blend (const int dst, const int src)
+{
+ const int src_alpha = gdTrueColorGetAlpha(src);
+
+ if( src_alpha == gdAlphaOpaque ) {
+ return src;
+ } else {
+ const int dst_alpha = gdTrueColorGetAlpha(dst);
+
+ if( src_alpha == gdAlphaTransparent ) return dst;
+ if( dst_alpha == gdAlphaTransparent ) {
+ return src;
+ } else {
+ register int alpha, red, green, blue;
+ const int src_weight = gdAlphaTransparent - src_alpha;
+ const int dst_weight = (gdAlphaTransparent - dst_alpha) * src_alpha / gdAlphaMax;
+ const int tot_weight = src_weight + dst_weight;
+
+ alpha = src_alpha * dst_alpha / gdAlphaMax;
+
+ red = (gdTrueColorGetRed(src) * src_weight
+ + gdTrueColorGetRed(dst) * dst_weight) / tot_weight;
+ green = (gdTrueColorGetGreen(src) * src_weight
+ + gdTrueColorGetGreen(dst) * dst_weight) / tot_weight;
+ blue = (gdTrueColorGetBlue(src) * src_weight
+ + gdTrueColorGetBlue(dst) * dst_weight) / tot_weight;
+
+ return ((alpha << 24) + (red << 16) + (green << 8) + blue);
+ }
+ }
+}
+
+static inline int _setEdgePixel(const gdImagePtr src, unsigned int x, unsigned int y, gdFixed coverage, const int bgColor)
+{
+ const gdFixed f_127 = gd_itofx(127);
+ register int c = src->tpixels[y][x];
+ c = c | (( (int) (gd_fxtof(gd_mulfx(coverage, f_127)) + 50.5f)) << 24);
+ return _color_blend(bgColor, c);
+}
+
+static inline int getPixelOverflowTC(gdImagePtr im, const int x, const int y, const int bgColor)
+{
+ if (gdImageBoundsSafe(im, x, y)) {
+ const int c = im->tpixels[y][x];
+ if (c == im->transparent) {
+ return bgColor == -1 ? gdTrueColorAlpha(0, 0, 0, 127) : bgColor;
+ }
+ return c;
+ } else {
+ register int border = 0;
+
+ if (y < im->cy1) {
+ border = im->tpixels[0][im->cx1];
+ goto processborder;
+ }
+
+ if (y < im->cy1) {
+ border = im->tpixels[0][im->cx1];
+ goto processborder;
+ }
+
+ if (y > im->cy2) {
+ if (x >= im->cx1 && x <= im->cx1) {
+ border = im->tpixels[im->cy2][x];
+ goto processborder;
+ } else {
+ return gdTrueColorAlpha(0, 0, 0, 127);
+ }
+ }
+
+ /* y is bound safe at this point */
+ if (x < im->cx1) {
+ border = im->tpixels[y][im->cx1];
+ goto processborder;
+ }
+
+ if (x > im->cx2) {
+ border = im->tpixels[y][im->cx2];
+ }
+
+processborder:
+ if (border == im->transparent) {
+ return gdTrueColorAlpha(0, 0, 0, 127);
+ } else{
+ return gdTrueColorAlpha(gdTrueColorGetRed(border), gdTrueColorGetGreen(border), gdTrueColorGetBlue(border), 127);
+ }
+ }
+}
+
+#define colorIndex2RGBA(c) gdTrueColorAlpha(im->red[(c)], im->green[(c)], im->blue[(c)], im->alpha[(c)])
+#define colorIndex2RGBcustomA(c, a) gdTrueColorAlpha(im->red[(c)], im->green[(c)], im->blue[(c)], im->alpha[(a)])
+static inline int getPixelOverflowPalette(gdImagePtr im, const int x, const int y, const int bgColor)
+{
+ if (gdImageBoundsSafe(im, x, y)) {
+ const int c = im->pixels[y][x];
+ if (c == im->transparent) {
+ return bgColor == -1 ? gdTrueColorAlpha(0, 0, 0, 127) : bgColor;
+ }
+ return colorIndex2RGBA(c);
+ } else {
+ register int border = 0;
+ if (y < im->cy1) {
+ border = gdImageGetPixel(im, im->cx1, 0);
+ goto processborder;
+ }
+
+ if (y < im->cy1) {
+ border = gdImageGetPixel(im, im->cx1, 0);
+ goto processborder;
+ }
+
+ if (y > im->cy2) {
+ if (x >= im->cx1 && x <= im->cx1) {
+ border = gdImageGetPixel(im, x, im->cy2);
+ goto processborder;
+ } else {
+ return gdTrueColorAlpha(0, 0, 0, 127);
+ }
+ }
+
+ /* y is bound safe at this point */
+ if (x < im->cx1) {
+ border = gdImageGetPixel(im, im->cx1, y);
+ goto processborder;
+ }
+
+ if (x > im->cx2) {
+ border = gdImageGetPixel(im, im->cx2, y);
+ }
+
+processborder:
+ if (border == im->transparent) {
+ return gdTrueColorAlpha(0, 0, 0, 127);
+ } else{
+ return colorIndex2RGBcustomA(border, 127);
+ }
+ }
+}
+
+static int getPixelInterpolateWeight(gdImagePtr im, const double x, const double y, const int bgColor)
+{
+ /* Closest pixel <= (xf,yf) */
+ int sx = (int)(x);
+ int sy = (int)(y);
+ const double xf = x - (double)sx;
+ const double yf = y - (double)sy;
+ const double nxf = (double) 1.0 - xf;
+ const double nyf = (double) 1.0 - yf;
+ const double m1 = xf * yf;
+ const double m2 = nxf * yf;
+ const double m3 = xf * nyf;
+ const double m4 = nxf * nyf;
+
+ /* get color values of neighbouring pixels */
+ const int c1 = im->trueColor == 1 ? getPixelOverflowTC(im, sx, sy, bgColor) : getPixelOverflowPalette(im, sx, sy, bgColor);
+ const int c2 = im->trueColor == 1 ? getPixelOverflowTC(im, sx - 1, sy, bgColor) : getPixelOverflowPalette(im, sx - 1, sy, bgColor);
+ const int c3 = im->trueColor == 1 ? getPixelOverflowTC(im, sx, sy - 1, bgColor) : getPixelOverflowPalette(im, sx, sy - 1, bgColor);
+ const int c4 = im->trueColor == 1 ? getPixelOverflowTC(im, sx - 1, sy - 1, bgColor) : getPixelOverflowPalette(im, sx, sy - 1, bgColor);
+ int r, g, b, a;
+
+ if (x < 0) sx--;
+ if (y < 0) sy--;
+
+ /* component-wise summing-up of color values */
+ if (im->trueColor) {
+ r = (int)(m1*gdTrueColorGetRed(c1) + m2*gdTrueColorGetRed(c2) + m3*gdTrueColorGetRed(c3) + m4*gdTrueColorGetRed(c4));
+ g = (int)(m1*gdTrueColorGetGreen(c1) + m2*gdTrueColorGetGreen(c2) + m3*gdTrueColorGetGreen(c3) + m4*gdTrueColorGetGreen(c4));
+ b = (int)(m1*gdTrueColorGetBlue(c1) + m2*gdTrueColorGetBlue(c2) + m3*gdTrueColorGetBlue(c3) + m4*gdTrueColorGetBlue(c4));
+ a = (int)(m1*gdTrueColorGetAlpha(c1) + m2*gdTrueColorGetAlpha(c2) + m3*gdTrueColorGetAlpha(c3) + m4*gdTrueColorGetAlpha(c4));
+ } else {
+ r = (int)(m1*im->red[(c1)] + m2*im->red[(c2)] + m3*im->red[(c3)] + m4*im->red[(c4)]);
+ g = (int)(m1*im->green[(c1)] + m2*im->green[(c2)] + m3*im->green[(c3)] + m4*im->green[(c4)]);
+ b = (int)(m1*im->blue[(c1)] + m2*im->blue[(c2)] + m3*im->blue[(c3)] + m4*im->blue[(c4)]);
+ a = (int)(m1*im->alpha[(c1)] + m2*im->alpha[(c2)] + m3*im->alpha[(c3)] + m4*im->alpha[(c4)]);
+ }
+
+ r = CLAMP(r, 0, 255);
+ g = CLAMP(g, 0, 255);
+ b = CLAMP(b, 0, 255);
+ a = CLAMP(a, 0, gdAlphaMax);
+ return gdTrueColorAlpha(r, g, b, a);
+}
+
+/**
+ * InternalFunction: getPixelInterpolated
+ * Returns the interpolated color value using the default interpolation
+ * method. The returned color is always in the ARGB format (truecolor).
+ *
+ * Parameters:
+ * im - Image to set the default interpolation method
+ * y - X value of the ideal position
+ * y - Y value of the ideal position
+ * method - Interpolation method <gdInterpolationMethod>
+ *
+ * Returns:
+ * GD_TRUE if the affine is rectilinear or GD_FALSE
+ *
+ * See also:
+ * <gdSetInterpolationMethod>
+ */
+int getPixelInterpolated(gdImagePtr im, const double x, const double y, const int bgColor)
+{
+ const int xi=(int)((x) < 0 ? x - 1: x);
+ const int yi=(int)((y) < 0 ? y - 1: y);
+ int yii;
+ int i;
+ double kernel, kernel_cache_y;
+ double kernel_x[12], kernel_y[4];
+ double new_r = 0.0f, new_g = 0.0f, new_b = 0.0f, new_a = 0.0f;
+
+ /* These methods use special implementations */
+ if (im->interpolation_id == GD_BILINEAR_FIXED || im->interpolation_id == GD_BICUBIC_FIXED || im->interpolation_id == GD_NEAREST_NEIGHBOUR) {
+ return -1;
+ }
+
+ if (im->interpolation_id == GD_WEIGHTED4) {
+ return getPixelInterpolateWeight(im, x, y, bgColor);
+ }
+
+ if (im->interpolation_id == GD_NEAREST_NEIGHBOUR) {
+ if (im->trueColor == 1) {
+ return getPixelOverflowTC(im, xi, yi, bgColor);
+ } else {
+ return getPixelOverflowPalette(im, xi, yi, bgColor);
+ }
+ }
+ if (im->interpolation) {
+ for (i=0; i<4; i++) {
+ kernel_x[i] = (double) im->interpolation((double)(xi+i-1-x));
+ kernel_y[i] = (double) im->interpolation((double)(yi+i-1-y));
+ }
+ } else {
+ return -1;
+ }
+
+ /*
+ * TODO: use the known fast rgba multiplication implementation once
+ * the new formats are in place
+ */
+ for (yii = yi-1; yii < yi+3; yii++) {
+ int xii;
+ kernel_cache_y = kernel_y[yii-(yi-1)];
+ if (im->trueColor) {
+ for (xii=xi-1; xii<xi+3; xii++) {
+ const int rgbs = getPixelOverflowTC(im, xii, yii, bgColor);
+
+ kernel = kernel_cache_y * kernel_x[xii-(xi-1)];
+ new_r += kernel * gdTrueColorGetRed(rgbs);
+ new_g += kernel * gdTrueColorGetGreen(rgbs);
+ new_b += kernel * gdTrueColorGetBlue(rgbs);
+ new_a += kernel * gdTrueColorGetAlpha(rgbs);
+ }
+ } else {
+ for (xii=xi-1; xii<xi+3; xii++) {
+ const int rgbs = getPixelOverflowPalette(im, xii, yii, bgColor);
+
+ kernel = kernel_cache_y * kernel_x[xii-(xi-1)];
+ new_r += kernel * gdTrueColorGetRed(rgbs);
+ new_g += kernel * gdTrueColorGetGreen(rgbs);
+ new_b += kernel * gdTrueColorGetBlue(rgbs);
+ new_a += kernel * gdTrueColorGetAlpha(rgbs);
+ }
+ }
+ }
+
+ new_r = CLAMP(new_r, 0, 255);
+ new_g = CLAMP(new_g, 0, 255);
+ new_b = CLAMP(new_b, 0, 255);
+ new_a = CLAMP(new_a, 0, gdAlphaMax);
+
+ return gdTrueColorAlpha(((int)new_r), ((int)new_g), ((int)new_b), ((int)new_a));
+}
+
+static inline LineContribType * _gdContributionsAlloc(unsigned int line_length, unsigned int windows_size)
+{
+ unsigned int u = 0;
+ LineContribType *res;
+
+ res = (LineContribType *) gdMalloc(sizeof(LineContribType));
+ if (!res) {
+ return NULL;
+ }
+ res->WindowSize = windows_size;
+ res->LineLength = line_length;
+ res->ContribRow = (ContributionType *) gdMalloc(line_length * sizeof(ContributionType));
+
+ for (u = 0 ; u < line_length ; u++) {
+ res->ContribRow[u].Weights = (double *) gdMalloc(windows_size * sizeof(double));
+ }
+ return res;
+}
+
+static inline void _gdContributionsFree(LineContribType * p)
+{
+ unsigned int u;
+ for (u = 0; u < p->LineLength; u++) {
+ gdFree(p->ContribRow[u].Weights);
+ }
+ gdFree(p->ContribRow);
+ gdFree(p);
+}
+
+static inline LineContribType *_gdContributionsCalc(unsigned int line_size, unsigned int src_size, double scale_d, const interpolation_method pFilter)
+{
+ double width_d;
+ double scale_f_d = 1.0;
+ const double filter_width_d = DEFAULT_BOX_RADIUS;
+ int windows_size;
+ unsigned int u;
+ LineContribType *res;
+
+ if (scale_d < 1.0) {
+ width_d = filter_width_d / scale_d;
+ scale_f_d = scale_d;
+ } else {
+ width_d= filter_width_d;
+ }
+
+ windows_size = 2 * (int)ceil(width_d) + 1;
+ res = _gdContributionsAlloc(line_size, windows_size);
+
+ for (u = 0; u < line_size; u++) {
+ const double dCenter = (double)u / scale_d;
+ /* get the significant edge points affecting the pixel */
+ register int iLeft = MAX(0, (int)floor (dCenter - width_d));
+ int iRight = MIN((int)ceil(dCenter + width_d), (int)src_size - 1);
+ double dTotalWeight = 0.0;
+ int iSrc;
+
+ /* Cut edge points to fit in filter window in case of spill-off */
+ if (iRight - iLeft + 1 > windows_size) {
+ if (iLeft < ((int)src_size - 1 / 2)) {
+ iLeft++;
+ } else {
+ iRight--;
+ }
+ }
+
+ res->ContribRow[u].Left = iLeft;
+ res->ContribRow[u].Right = iRight;
+
+ for (iSrc = iLeft; iSrc <= iRight; iSrc++) {
+ dTotalWeight += (res->ContribRow[u].Weights[iSrc-iLeft] = scale_f_d * (*pFilter)(scale_f_d * (dCenter - (double)iSrc)));
+ }
+
+ if (dTotalWeight < 0.0) {
+ _gdContributionsFree(res);
+ return NULL;
+ }
+
+ if (dTotalWeight > 0.0) {
+ for (iSrc = iLeft; iSrc <= iRight; iSrc++) {
+ res->ContribRow[u].Weights[iSrc-iLeft] /= dTotalWeight;
+ }
+ }
+ }
+ return res;
+}
+
+
+static inline void
+_gdScaleOneAxis(gdImagePtr pSrc, gdImagePtr dst,
+ unsigned int dst_len, unsigned int row, LineContribType *contrib,
+ gdAxis axis)
+{
+ unsigned int ndx;
+
+ for (ndx = 0; ndx < dst_len; ndx++) {
+ double r = 0, g = 0, b = 0, a = 0;
+ const int left = contrib->ContribRow[ndx].Left;
+ const int right = contrib->ContribRow[ndx].Right;
+ int *dest = (axis == HORIZONTAL) ?
+ &dst->tpixels[row][ndx] :
+ &dst->tpixels[ndx][row];
+
+ int i;
+
+ /* Accumulate each channel */
+ for (i = left; i <= right; i++) {
+ const int left_channel = i - left;
+ const int srcpx = (axis == HORIZONTAL) ?
+ pSrc->tpixels[row][i] :
+ pSrc->tpixels[i][row];
+
+ r += contrib->ContribRow[ndx].Weights[left_channel]
+ * (double)(gdTrueColorGetRed(srcpx));
+ g += contrib->ContribRow[ndx].Weights[left_channel]
+ * (double)(gdTrueColorGetGreen(srcpx));
+ b += contrib->ContribRow[ndx].Weights[left_channel]
+ * (double)(gdTrueColorGetBlue(srcpx));
+ a += contrib->ContribRow[ndx].Weights[left_channel]
+ * (double)(gdTrueColorGetAlpha(srcpx));
+ }/* for */
+
+ *dest = gdTrueColorAlpha(uchar_clamp(r, 0xFF), uchar_clamp(g, 0xFF),
+ uchar_clamp(b, 0xFF),
+ uchar_clamp(a, 0x7F)); /* alpha is 0..127 */
+ }/* for */
+}/* _gdScaleOneAxis*/
+
+
+static inline int
+_gdScalePass(const gdImagePtr pSrc, const unsigned int src_len,
+ const gdImagePtr pDst, const unsigned int dst_len,
+ const unsigned int num_lines,
+ const gdAxis axis)
+{
+ unsigned int line_ndx;
+ LineContribType * contrib;
+
+ /* Same dim, just copy it. */
+ assert(dst_len != src_len); // TODO: caller should handle this.
+
+ contrib = _gdContributionsCalc(dst_len, src_len,
+ (double)dst_len / (double)src_len,
+ pSrc->interpolation);
+ if (contrib == NULL) {
+ return 0;
+ }
+
+ /* Scale each line */
+ for (line_ndx = 0; line_ndx < num_lines; line_ndx++) {
+ _gdScaleOneAxis(pSrc, pDst, dst_len, line_ndx, contrib, axis);
+ }
+ _gdContributionsFree (contrib);
+
+ return 1;
+}/* _gdScalePass*/
+
+
+static gdImagePtr
+gdImageScaleTwoPass(const gdImagePtr src, const unsigned int new_width,
+ const unsigned int new_height)
+{
+ const unsigned int src_width = src->sx;
+ const unsigned int src_height = src->sy;
+ gdImagePtr tmp_im = NULL;
+ gdImagePtr dst = NULL;
+
+ /* First, handle the trivial case. */
+ if (src_width == new_width && src_height == new_height) {
+ return gdImageClone(src);
+ }/* if */
+
+ /* Convert to truecolor if it isn't; this code requires it. */
+ if (!src->trueColor) {
+ gdImagePaletteToTrueColor(src);
+ }/* if */
+
+ /* Scale horizontally unless sizes are the same. */
+ if (src_width == new_width) {
+ tmp_im = src;
+ } else {
+ tmp_im = gdImageCreateTrueColor(new_width, src_height);
+ if (tmp_im == NULL) {
+ return NULL;
+ }
+ gdImageSetInterpolationMethod(tmp_im, src->interpolation_id);
+
+ _gdScalePass(src, src_width, tmp_im, new_width, src_height, HORIZONTAL);
+ }/* if .. else*/
+
+ /* If vertical sizes match, we're done. */
+ if (src_height == new_height) {
+ assert(tmp_im != src);
+ return tmp_im;
+ }/* if */
+
+ /* Otherwise, we need to scale vertically. */
+ dst = gdImageCreateTrueColor(new_width, new_height);
+ if (dst != NULL) {
+ gdImageSetInterpolationMethod(dst, src->interpolation_id);
+ _gdScalePass(tmp_im, src_height, dst, new_height, new_width, VERTICAL);
+ }/* if */
+
+ if (src != tmp_im) {
+ gdFree(tmp_im);
+ }/* if */
+
+ return dst;
+}/* gdImageScaleTwoPass*/
+
+
+/*
+ BilinearFixed, BicubicFixed and nearest implementations are
+ rewamped versions of the implementation in CBitmapEx
+
+ http://www.codeproject.com/Articles/29121/CBitmapEx-Free-C-Bitmap-Manipulation-Class
+
+ Integer only implementation, good to have for common usages like
+ pre scale very large images before using another interpolation
+ methods for the last step.
+*/
+static gdImagePtr
+gdImageScaleNearestNeighbour(gdImagePtr im, const unsigned int width, const unsigned int height)
+{
+ const unsigned long new_width = MAX(1, width);
+ const unsigned long new_height = MAX(1, height);
+ const float dx = (float)im->sx / (float)new_width;
+ const float dy = (float)im->sy / (float)new_height;
+ const gdFixed f_dx = gd_ftofx(dx);
+ const gdFixed f_dy = gd_ftofx(dy);
+
+ gdImagePtr dst_img;
+ unsigned long dst_offset_x;
+ unsigned long dst_offset_y = 0;
+ unsigned int i;
+
+ dst_img = gdImageCreateTrueColor(new_width, new_height);
+
+ if (dst_img == NULL) {
+ return NULL;
+ }
+
+ for (i=0; i<new_height; i++) {
+ unsigned int j;
+ dst_offset_x = 0;
+ if (im->trueColor) {
+ for (j=0; j<new_width; j++) {
+ const gdFixed f_i = gd_itofx(i);
+ const gdFixed f_j = gd_itofx(j);
+ const gdFixed f_a = gd_mulfx(f_i, f_dy);
+ const gdFixed f_b = gd_mulfx(f_j, f_dx);
+ const long m = gd_fxtoi(f_a);
+ const long n = gd_fxtoi(f_b);
+
+ dst_img->tpixels[dst_offset_y][dst_offset_x++] = im->tpixels[m][n];
+ }
+ } else {
+ for (j=0; j<new_width; j++) {
+ const gdFixed f_i = gd_itofx(i);
+ const gdFixed f_j = gd_itofx(j);
+ const gdFixed f_a = gd_mulfx(f_i, f_dy);
+ const gdFixed f_b = gd_mulfx(f_j, f_dx);
+ const long m = gd_fxtoi(f_a);
+ const long n = gd_fxtoi(f_b);
+
+ dst_img->tpixels[dst_offset_y][dst_offset_x++] = colorIndex2RGBA(im->pixels[m][n]);
+ }
+ }
+ dst_offset_y++;
+ }
+ return dst_img;
+}
+
+static inline int getPixelOverflowColorTC(gdImagePtr im, const int x, const int y, const int color)
+{
+ if (gdImageBoundsSafe(im, x, y)) {
+ const int c = im->tpixels[y][x];
+ if (c == im->transparent) {
+ return gdTrueColorAlpha(0, 0, 0, 127);
+ }
+ return c;
+ } else {
+ register int border = 0;
+ if (y < im->cy1) {
+ border = im->tpixels[0][im->cx1];
+ goto processborder;
+ }
+
+ if (y < im->cy1) {
+ border = im->tpixels[0][im->cx1];
+ goto processborder;
+ }
+
+ if (y > im->cy2) {
+ if (x >= im->cx1 && x <= im->cx1) {
+ border = im->tpixels[im->cy2][x];
+ goto processborder;
+ } else {
+ return gdTrueColorAlpha(0, 0, 0, 127);
+ }
+ }
+
+ /* y is bound safe at this point */
+ if (x < im->cx1) {
+ border = im->tpixels[y][im->cx1];
+ goto processborder;
+ }
+
+ if (x > im->cx2) {
+ border = im->tpixels[y][im->cx2];
+ }
+
+processborder:
+ if (border == im->transparent) {
+ return gdTrueColorAlpha(0, 0, 0, 127);
+ } else{
+ return gdTrueColorAlpha(gdTrueColorGetRed(border), gdTrueColorGetGreen(border), gdTrueColorGetBlue(border), 127);
+ }
+ }
+}
+
+static gdImagePtr gdImageScaleBilinearPalette(gdImagePtr im, const unsigned int new_width, const unsigned int new_height)
+{
+ long _width = MAX(1, new_width);
+ long _height = MAX(1, new_height);
+ float dx = (float)gdImageSX(im) / (float)_width;
+ float dy = (float)gdImageSY(im) / (float)_height;
+ gdFixed f_dx = gd_ftofx(dx);
+ gdFixed f_dy = gd_ftofx(dy);
+ gdFixed f_1 = gd_itofx(1);
+
+ int dst_offset_h;
+ int dst_offset_v = 0;
+ long i;
+ gdImagePtr new_img;
+ const int transparent = im->transparent;
+
+ new_img = gdImageCreateTrueColor(new_width, new_height);
+ if (new_img == NULL) {
+ return NULL;
+ }
+ new_img->transparent = gdTrueColorAlpha(im->red[transparent], im->green[transparent], im->blue[transparent], im->alpha[transparent]);
+
+ for (i=0; i < _height; i++) {
+ long j;
+ const gdFixed f_i = gd_itofx(i);
+ const gdFixed f_a = gd_mulfx(f_i, f_dy);
+ register long m = gd_fxtoi(f_a);
+
+ dst_offset_h = 0;
+
+ for (j=0; j < _width; j++) {
+ /* Update bitmap */
+ gdFixed f_j = gd_itofx(j);
+ gdFixed f_b = gd_mulfx(f_j, f_dx);
+
+ const long n = gd_fxtoi(f_b);
+ gdFixed f_f = f_a - gd_itofx(m);
+ gdFixed f_g = f_b - gd_itofx(n);
+
+ const gdFixed f_w1 = gd_mulfx(f_1-f_f, f_1-f_g);
+ const gdFixed f_w2 = gd_mulfx(f_1-f_f, f_g);
+ const gdFixed f_w3 = gd_mulfx(f_f, f_1-f_g);
+ const gdFixed f_w4 = gd_mulfx(f_f, f_g);
+ unsigned int pixel1;
+ unsigned int pixel2;
+ unsigned int pixel3;
+ unsigned int pixel4;
+ register gdFixed f_r1, f_r2, f_r3, f_r4,
+ f_g1, f_g2, f_g3, f_g4,
+ f_b1, f_b2, f_b3, f_b4,
+ f_a1, f_a2, f_a3, f_a4;
+
+ /* zero for the background color, nothig gets outside anyway */
+ pixel1 = getPixelOverflowPalette(im, n, m, 0);
+ pixel2 = getPixelOverflowPalette(im, n + 1, m, 0);
+ pixel3 = getPixelOverflowPalette(im, n, m + 1, 0);
+ pixel4 = getPixelOverflowPalette(im, n + 1, m + 1, 0);
+
+ f_r1 = gd_itofx(gdTrueColorGetRed(pixel1));
+ f_r2 = gd_itofx(gdTrueColorGetRed(pixel2));
+ f_r3 = gd_itofx(gdTrueColorGetRed(pixel3));
+ f_r4 = gd_itofx(gdTrueColorGetRed(pixel4));
+ f_g1 = gd_itofx(gdTrueColorGetGreen(pixel1));
+ f_g2 = gd_itofx(gdTrueColorGetGreen(pixel2));
+ f_g3 = gd_itofx(gdTrueColorGetGreen(pixel3));
+ f_g4 = gd_itofx(gdTrueColorGetGreen(pixel4));
+ f_b1 = gd_itofx(gdTrueColorGetBlue(pixel1));
+ f_b2 = gd_itofx(gdTrueColorGetBlue(pixel2));
+ f_b3 = gd_itofx(gdTrueColorGetBlue(pixel3));
+ f_b4 = gd_itofx(gdTrueColorGetBlue(pixel4));
+ f_a1 = gd_itofx(gdTrueColorGetAlpha(pixel1));
+ f_a2 = gd_itofx(gdTrueColorGetAlpha(pixel2));
+ f_a3 = gd_itofx(gdTrueColorGetAlpha(pixel3));
+ f_a4 = gd_itofx(gdTrueColorGetAlpha(pixel4));
+
+ {
+ const char red = (char) gd_fxtoi(gd_mulfx(f_w1, f_r1) + gd_mulfx(f_w2, f_r2) + gd_mulfx(f_w3, f_r3) + gd_mulfx(f_w4, f_r4));
+ const char green = (char) gd_fxtoi(gd_mulfx(f_w1, f_g1) + gd_mulfx(f_w2, f_g2) + gd_mulfx(f_w3, f_g3) + gd_mulfx(f_w4, f_g4));
+ const char blue = (char) gd_fxtoi(gd_mulfx(f_w1, f_b1) + gd_mulfx(f_w2, f_b2) + gd_mulfx(f_w3, f_b3) + gd_mulfx(f_w4, f_b4));
+ const char alpha = (char) gd_fxtoi(gd_mulfx(f_w1, f_a1) + gd_mulfx(f_w2, f_a2) + gd_mulfx(f_w3, f_a3) + gd_mulfx(f_w4, f_a4));
+
+ new_img->tpixels[dst_offset_v][dst_offset_h] = gdTrueColorAlpha(red, green, blue, alpha);
+ }
+
+ dst_offset_h++;
+ }
+
+ dst_offset_v++;
+ }
+ return new_img;
+}
+
+static gdImagePtr gdImageScaleBilinearTC(gdImagePtr im, const unsigned int new_width, const unsigned int new_height)
+{
+ long dst_w = MAX(1, new_width);
+ long dst_h = MAX(1, new_height);
+ float dx = (float)gdImageSX(im) / (float)dst_w;
+ float dy = (float)gdImageSY(im) / (float)dst_h;
+ gdFixed f_dx = gd_ftofx(dx);
+ gdFixed f_dy = gd_ftofx(dy);
+ gdFixed f_1 = gd_itofx(1);
+
+ int dst_offset_h;
+ int dst_offset_v = 0;
+ long i;
+ gdImagePtr new_img;
+
+ new_img = gdImageCreateTrueColor(new_width, new_height);
+ if (!new_img){
+ return NULL;
+ }
+
+ for (i=0; i < dst_h; i++) {
+ long j;
+ dst_offset_h = 0;
+ for (j=0; j < dst_w; j++) {
+ /* Update bitmap */
+ gdFixed f_i = gd_itofx(i);
+ gdFixed f_j = gd_itofx(j);
+ gdFixed f_a = gd_mulfx(f_i, f_dy);
+ gdFixed f_b = gd_mulfx(f_j, f_dx);
+ const gdFixed m = gd_fxtoi(f_a);
+ const gdFixed n = gd_fxtoi(f_b);
+ gdFixed f_f = f_a - gd_itofx(m);
+ gdFixed f_g = f_b - gd_itofx(n);
+
+ const gdFixed f_w1 = gd_mulfx(f_1-f_f, f_1-f_g);
+ const gdFixed f_w2 = gd_mulfx(f_1-f_f, f_g);
+ const gdFixed f_w3 = gd_mulfx(f_f, f_1-f_g);
+ const gdFixed f_w4 = gd_mulfx(f_f, f_g);
+ unsigned int pixel1;
+ unsigned int pixel2;
+ unsigned int pixel3;
+ unsigned int pixel4;
+ register gdFixed f_r1, f_r2, f_r3, f_r4,
+ f_g1, f_g2, f_g3, f_g4,
+ f_b1, f_b2, f_b3, f_b4,
+ f_a1, f_a2, f_a3, f_a4;
+ /* 0 for bgColor, nothing gets outside anyway */
+ pixel1 = getPixelOverflowTC(im, n, m, 0);
+ pixel2 = getPixelOverflowTC(im, n + 1, m, 0);
+ pixel3 = getPixelOverflowTC(im, n, m + 1, 0);
+ pixel4 = getPixelOverflowTC(im, n + 1, m + 1, 0);
+
+ f_r1 = gd_itofx(gdTrueColorGetRed(pixel1));
+ f_r2 = gd_itofx(gdTrueColorGetRed(pixel2));
+ f_r3 = gd_itofx(gdTrueColorGetRed(pixel3));
+ f_r4 = gd_itofx(gdTrueColorGetRed(pixel4));
+ f_g1 = gd_itofx(gdTrueColorGetGreen(pixel1));
+ f_g2 = gd_itofx(gdTrueColorGetGreen(pixel2));
+ f_g3 = gd_itofx(gdTrueColorGetGreen(pixel3));
+ f_g4 = gd_itofx(gdTrueColorGetGreen(pixel4));
+ f_b1 = gd_itofx(gdTrueColorGetBlue(pixel1));
+ f_b2 = gd_itofx(gdTrueColorGetBlue(pixel2));
+ f_b3 = gd_itofx(gdTrueColorGetBlue(pixel3));
+ f_b4 = gd_itofx(gdTrueColorGetBlue(pixel4));
+ f_a1 = gd_itofx(gdTrueColorGetAlpha(pixel1));
+ f_a2 = gd_itofx(gdTrueColorGetAlpha(pixel2));
+ f_a3 = gd_itofx(gdTrueColorGetAlpha(pixel3));
+ f_a4 = gd_itofx(gdTrueColorGetAlpha(pixel4));
+ {
+ const unsigned char red = (unsigned char) gd_fxtoi(gd_mulfx(f_w1, f_r1) + gd_mulfx(f_w2, f_r2) + gd_mulfx(f_w3, f_r3) + gd_mulfx(f_w4, f_r4));
+ const unsigned char green = (unsigned char) gd_fxtoi(gd_mulfx(f_w1, f_g1) + gd_mulfx(f_w2, f_g2) + gd_mulfx(f_w3, f_g3) + gd_mulfx(f_w4, f_g4));
+ const unsigned char blue = (unsigned char) gd_fxtoi(gd_mulfx(f_w1, f_b1) + gd_mulfx(f_w2, f_b2) + gd_mulfx(f_w3, f_b3) + gd_mulfx(f_w4, f_b4));
+ const unsigned char alpha = (unsigned char) gd_fxtoi(gd_mulfx(f_w1, f_a1) + gd_mulfx(f_w2, f_a2) + gd_mulfx(f_w3, f_a3) + gd_mulfx(f_w4, f_a4));
+
+ new_img->tpixels[dst_offset_v][dst_offset_h] = gdTrueColorAlpha(red, green, blue, alpha);
+ }
+
+ dst_offset_h++;
+ }
+
+ dst_offset_v++;
+ }
+ return new_img;
+}
+
+static gdImagePtr
+gdImageScaleBilinear(gdImagePtr im, const unsigned int new_width,
+ const unsigned int new_height)
+{
+ if (im->trueColor) {
+ return gdImageScaleBilinearTC(im, new_width, new_height);
+ } else {
+ return gdImageScaleBilinearPalette(im, new_width, new_height);
+ }
+}
+
+static gdImagePtr
+gdImageScaleBicubicFixed(gdImagePtr src, const unsigned int width,
+ const unsigned int height)
+{
+ const long new_width = MAX(1, width);
+ const long new_height = MAX(1, height);
+ const int src_w = gdImageSX(src);
+ const int src_h = gdImageSY(src);
+ const gdFixed f_dx = gd_ftofx((float)src_w / (float)new_width);
+ const gdFixed f_dy = gd_ftofx((float)src_h / (float)new_height);
+ const gdFixed f_1 = gd_itofx(1);
+ const gdFixed f_2 = gd_itofx(2);
+ const gdFixed f_4 = gd_itofx(4);
+ const gdFixed f_6 = gd_itofx(6);
+ const gdFixed f_gamma = gd_ftofx(1.04f);
+ gdImagePtr dst;
+
+ unsigned int dst_offset_x;
+ unsigned int dst_offset_y = 0;
+ long i;
+
+ /* impact perf a bit, but not that much. Implementation for palette
+ images can be done at a later point.
+ */
+ if (src->trueColor == 0) {
+ gdImagePaletteToTrueColor(src);
+ }
+
+ dst = gdImageCreateTrueColor(new_width, new_height);
+ if (!dst) {
+ return NULL;
+ }
+
+ dst->saveAlphaFlag = 1;
+
+ for (i=0; i < new_height; i++) {
+ long j;
+ dst_offset_x = 0;
+
+ for (j=0; j < new_width; j++) {
+ const gdFixed f_a = gd_mulfx(gd_itofx(i), f_dy);
+ const gdFixed f_b = gd_mulfx(gd_itofx(j), f_dx);
+ const long m = gd_fxtoi(f_a);
+ const long n = gd_fxtoi(f_b);
+ const gdFixed f_f = f_a - gd_itofx(m);
+ const gdFixed f_g = f_b - gd_itofx(n);
+ unsigned int src_offset_x[16], src_offset_y[16];
+ long k;
+ register gdFixed f_red = 0, f_green = 0, f_blue = 0, f_alpha = 0;
+ unsigned char red, green, blue, alpha = 0;
+ int *dst_row = dst->tpixels[dst_offset_y];
+
+ if ((m < 1) || (n < 1)) {
+ src_offset_x[0] = n;
+ src_offset_y[0] = m;
+ } else {
+ src_offset_x[0] = n - 1;
+ src_offset_y[0] = m;
+ }
+
+ if (m < 1) {
+ src_offset_x[1] = n;
+ src_offset_y[1] = m;
+ } else {
+ src_offset_x[1] = n;
+ src_offset_y[1] = m;
+ }
+
+ if ((m < 1) || (n >= src_w - 1)) {
+ src_offset_x[2] = n;
+ src_offset_y[2] = m;
+ } else {
+ src_offset_x[2] = n + 1;
+ src_offset_y[2] = m;
+ }
+
+ if ((m < 1) || (n >= src_w - 2)) {
+ src_offset_x[3] = n;
+ src_offset_y[3] = m;
+ } else {
+ src_offset_x[3] = n + 1 + 1;
+ src_offset_y[3] = m;
+ }
+
+ if (n < 1) {
+ src_offset_x[4] = n;
+ src_offset_y[4] = m;
+ } else {
+ src_offset_x[4] = n - 1;
+ src_offset_y[4] = m;
+ }
+
+ src_offset_x[5] = n;
+ src_offset_y[5] = m;
+ if (n >= src_w-1) {
+ src_offset_x[6] = n;
+ src_offset_y[6] = m;
+ } else {
+ src_offset_x[6] = n + 1;
+ src_offset_y[6] = m;
+ }
+
+ if (n >= src_w - 2) {
+ src_offset_x[7] = n;
+ src_offset_y[7] = m;
+ } else {
+ src_offset_x[7] = n + 1 + 1;
+ src_offset_y[7] = m;
+ }
+
+ if ((m >= src_h - 1) || (n < 1)) {
+ src_offset_x[8] = n;
+ src_offset_y[8] = m;
+ } else {
+ src_offset_x[8] = n - 1;
+ src_offset_y[8] = m;
+ }
+
+ if (m >= src_h - 1) {
+ src_offset_x[8] = n;
+ src_offset_y[8] = m;
+ } else {
+ src_offset_x[9] = n;
+ src_offset_y[9] = m;
+ }
+
+ if ((m >= src_h-1) || (n >= src_w-1)) {
+ src_offset_x[10] = n;
+ src_offset_y[10] = m;
+ } else {
+ src_offset_x[10] = n + 1;
+ src_offset_y[10] = m;
+ }
+
+ if ((m >= src_h - 1) || (n >= src_w - 2)) {
+ src_offset_x[11] = n;
+ src_offset_y[11] = m;
+ } else {
+ src_offset_x[11] = n + 1 + 1;
+ src_offset_y[11] = m;
+ }
+
+ if ((m >= src_h - 2) || (n < 1)) {
+ src_offset_x[12] = n;
+ src_offset_y[12] = m;
+ } else {
+ src_offset_x[12] = n - 1;
+ src_offset_y[12] = m;
+ }
+
+ if (m >= src_h - 2) {
+ src_offset_x[13] = n;
+ src_offset_y[13] = m;
+ } else {
+ src_offset_x[13] = n;
+ src_offset_y[13] = m;
+ }
+
+ if ((m >= src_h - 2) || (n >= src_w - 1)) {
+ src_offset_x[14] = n;
+ src_offset_y[14] = m;
+ } else {
+ src_offset_x[14] = n + 1;
+ src_offset_y[14] = m;
+ }
+
+ if ((m >= src_h - 2) || (n >= src_w - 2)) {
+ src_offset_x[15] = n;
+ src_offset_y[15] = m;
+ } else {
+ src_offset_x[15] = n + 1 + 1;
+ src_offset_y[15] = m;
+ }
+
+ for (k = -1; k < 3; k++) {
+ const gdFixed f = gd_itofx(k)-f_f;
+ const gdFixed f_fm1 = f - f_1;
+ const gdFixed f_fp1 = f + f_1;
+ const gdFixed f_fp2 = f + f_2;
+ register gdFixed f_a = 0, f_b = 0, f_d = 0, f_c = 0;
+ register gdFixed f_RY;
+ int l;
+
+ if (f_fp2 > 0) f_a = gd_mulfx(f_fp2, gd_mulfx(f_fp2,f_fp2));
+ if (f_fp1 > 0) f_b = gd_mulfx(f_fp1, gd_mulfx(f_fp1,f_fp1));
+ if (f > 0) f_c = gd_mulfx(f, gd_mulfx(f,f));
+ if (f_fm1 > 0) f_d = gd_mulfx(f_fm1, gd_mulfx(f_fm1,f_fm1));
+
+ f_RY = gd_divfx((f_a - gd_mulfx(f_4,f_b) + gd_mulfx(f_6,f_c) - gd_mulfx(f_4,f_d)),f_6);
+
+ for (l = -1; l < 3; l++) {
+ const gdFixed f = gd_itofx(l) - f_g;
+ const gdFixed f_fm1 = f - f_1;
+ const gdFixed f_fp1 = f + f_1;
+ const gdFixed f_fp2 = f + f_2;
+ register gdFixed f_a = 0, f_b = 0, f_c = 0, f_d = 0;
+ register gdFixed f_RX, f_R, f_rs, f_gs, f_bs, f_ba;
+ register int c;
+ const int _k = ((k+1)*4) + (l+1);
+
+ if (f_fp2 > 0) f_a = gd_mulfx(f_fp2,gd_mulfx(f_fp2,f_fp2));
+
+ if (f_fp1 > 0) f_b = gd_mulfx(f_fp1,gd_mulfx(f_fp1,f_fp1));
+
+ if (f > 0) f_c = gd_mulfx(f,gd_mulfx(f,f));
+
+ if (f_fm1 > 0) f_d = gd_mulfx(f_fm1,gd_mulfx(f_fm1,f_fm1));
+
+ f_RX = gd_divfx((f_a-gd_mulfx(f_4,f_b)+gd_mulfx(f_6,f_c)-gd_mulfx(f_4,f_d)),f_6);
+ f_R = gd_mulfx(f_RY,f_RX);
+
+ c = src->tpixels[*(src_offset_y + _k)][*(src_offset_x + _k)];
+ f_rs = gd_itofx(gdTrueColorGetRed(c));
+ f_gs = gd_itofx(gdTrueColorGetGreen(c));
+ f_bs = gd_itofx(gdTrueColorGetBlue(c));
+ f_ba = gd_itofx(gdTrueColorGetAlpha(c));
+
+ f_red += gd_mulfx(f_rs,f_R);
+ f_green += gd_mulfx(f_gs,f_R);
+ f_blue += gd_mulfx(f_bs,f_R);
+ f_alpha += gd_mulfx(f_ba,f_R);
+ }
+ }
+
+ red = (unsigned char) CLAMP(gd_fxtoi(gd_mulfx(f_red, f_gamma)), 0, 255);
+ green = (unsigned char) CLAMP(gd_fxtoi(gd_mulfx(f_green, f_gamma)), 0, 255);
+ blue = (unsigned char) CLAMP(gd_fxtoi(gd_mulfx(f_blue, f_gamma)), 0, 255);
+ alpha = (unsigned char) CLAMP(gd_fxtoi(gd_mulfx(f_alpha, f_gamma)), 0, 127);
+
+ *(dst_row + dst_offset_x) = gdTrueColorAlpha(red, green, blue, alpha);
+
+ dst_offset_x++;
+ }
+ dst_offset_y++;
+ }
+ return dst;
+}
+
+BGD_DECLARE(gdImagePtr) gdImageScale(const gdImagePtr src, const unsigned int new_width, const unsigned int new_height)
+{
+ gdImagePtr im_scaled = NULL;
+
+ if (src == NULL || src->interpolation_id < 0 || src->interpolation_id > GD_METHOD_COUNT) {
+ return 0;
+ }
+
+ switch (src->interpolation_id) {
+ /*Special cases, optimized implementations */
+ case GD_NEAREST_NEIGHBOUR:
+ im_scaled = gdImageScaleNearestNeighbour(src, new_width, new_height);
+ break;
+
+ case GD_BILINEAR_FIXED:
+ im_scaled = gdImageScaleBilinear(src, new_width, new_height);
+ break;
+
+ case GD_BICUBIC_FIXED:
+ im_scaled = gdImageScaleBicubicFixed(src, new_width, new_height);
+ break;
+
+ /* generic */
+ default:
+ if (src->interpolation == NULL) {
+ return NULL;
+ }
+ im_scaled = gdImageScaleTwoPass(src, new_width, new_height);
+ break;
+ }
+
+ return im_scaled;
+}
+
+static gdImagePtr
+gdImageRotateNearestNeighbour(gdImagePtr src, const float degrees,
+ const int bgColor)
+{
+ float _angle = ((float) (-degrees / 180.0f) * (float)M_PI);
+ const int src_w = gdImageSX(src);
+ const int src_h = gdImageSY(src);
+ const unsigned int new_width = (unsigned int)(abs((int)(src_w * cos(_angle))) + abs((int)(src_h * sin(_angle))) + 0.5f);
+ const unsigned int new_height = (unsigned int)(abs((int)(src_w * sin(_angle))) + abs((int)(src_h * cos(_angle))) + 0.5f);
+ const gdFixed f_0_5 = gd_ftofx(0.5f);
+ const gdFixed f_H = gd_itofx(src_h/2);
+ const gdFixed f_W = gd_itofx(src_w/2);
+ const gdFixed f_cos = gd_ftofx(cos(-_angle));
+ const gdFixed f_sin = gd_ftofx(sin(-_angle));
+
+ unsigned int dst_offset_x;
+ unsigned int dst_offset_y = 0;
+ unsigned int i;
+ gdImagePtr dst;
+
+ /* impact perf a bit, but not that much. Implementation for palette
+ images can be done at a later point.
+ */
+ if (src->trueColor == 0) {
+ gdImagePaletteToTrueColor(src);
+ }
+
+ dst = gdImageCreateTrueColor(new_width, new_height);
+ if (!dst) {
+ return NULL;
+ }
+ dst->saveAlphaFlag = 1;
+ for (i = 0; i < new_height; i++) {
+ unsigned int j;
+ dst_offset_x = 0;
+ for (j = 0; j < new_width; j++) {
+ gdFixed f_i = gd_itofx((int)i - (int)new_height / 2);
+ gdFixed f_j = gd_itofx((int)j - (int)new_width / 2);
+ gdFixed f_m = gd_mulfx(f_j,f_sin) + gd_mulfx(f_i,f_cos) + f_0_5 + f_H;
+ gdFixed f_n = gd_mulfx(f_j,f_cos) - gd_mulfx(f_i,f_sin) + f_0_5 + f_W;
+ long m = gd_fxtoi(f_m);
+ long n = gd_fxtoi(f_n);
+
+ if ((m > 0) && (m < src_h-1) && (n > 0) && (n < src_w-1)) {
+ if (dst_offset_y < new_height) {
+ dst->tpixels[dst_offset_y][dst_offset_x++] = src->tpixels[m][n];
+ }
+ } else {
+ if (dst_offset_y < new_height) {
+ dst->tpixels[dst_offset_y][dst_offset_x++] = bgColor;
+ }
+ }
+ }
+ dst_offset_y++;
+ }
+ return dst;
+}
+
+static gdImagePtr
+gdImageRotateGeneric(gdImagePtr src, const float degrees, const int bgColor)
+{
+ float _angle = ((float) (-degrees / 180.0f) * (float)M_PI);
+ const int src_w = gdImageSX(src);
+ const int src_h = gdImageSY(src);
+ const unsigned int new_width = (unsigned int)(abs((int)(src_w * cos(_angle))) + abs((int)(src_h * sin(_angle))) + 0.5f);
+ const unsigned int new_height = (unsigned int)(abs((int)(src_w * sin(_angle))) + abs((int)(src_h * cos(_angle))) + 0.5f);
+ const gdFixed f_0_5 = gd_ftofx(0.5f);
+ const gdFixed f_H = gd_itofx(src_h/2);
+ const gdFixed f_W = gd_itofx(src_w/2);
+ const gdFixed f_cos = gd_ftofx(cos(-_angle));
+ const gdFixed f_sin = gd_ftofx(sin(-_angle));
+
+ unsigned int dst_offset_x;
+ unsigned int dst_offset_y = 0;
+ unsigned int i;
+ gdImagePtr dst;
+
+ const gdFixed f_slop_y = f_sin;
+ const gdFixed f_slop_x = f_cos;
+ const gdFixed f_slop = f_slop_x > 0 && f_slop_x > 0 ?
+ f_slop_x > f_slop_y ? gd_divfx(f_slop_y, f_slop_x) : gd_divfx(f_slop_x, f_slop_y)
+ : 0;
+
+ if (bgColor < 0) {
+ return NULL;
+ }
+
+ /* impact perf a bit, but not that much. Implementation for palette
+ images can be done at a later point.
+ */
+ if (src->trueColor == 0) {
+ gdImagePaletteToTrueColor(src);
+ }
+
+ dst = gdImageCreateTrueColor(new_width, new_height);
+ if (!dst) {
+ return NULL;
+ }
+ dst->saveAlphaFlag = 1;
+
+ for (i = 0; i < new_height; i++) {
+ unsigned int j;
+ dst_offset_x = 0;
+ for (j = 0; j < new_width; j++) {
+ gdFixed f_i = gd_itofx((int)i - (int)new_height / 2);
+ gdFixed f_j = gd_itofx((int)j - (int)new_width / 2);
+ gdFixed f_m = gd_mulfx(f_j,f_sin) + gd_mulfx(f_i,f_cos) + f_0_5 + f_H;
+ gdFixed f_n = gd_mulfx(f_j,f_cos) - gd_mulfx(f_i,f_sin) + f_0_5 + f_W;
+ long m = gd_fxtoi(f_m);
+ long n = gd_fxtoi(f_n);
+
+ if ((n <= 0) || (m <= 0) || (m >= src_h) || (n >= src_w)) {
+ dst->tpixels[dst_offset_y][dst_offset_x++] = bgColor;
+ } else if ((n <= 1) || (m <= 1) || (m >= src_h - 1) || (n >= src_w - 1)) {
+ register int c = getPixelInterpolated(src, n, m, bgColor);
+ c = c | (( gdTrueColorGetAlpha(c) + ((int)(127* gd_fxtof(f_slop)))) << 24);
+
+ dst->tpixels[dst_offset_y][dst_offset_x++] = _color_blend(bgColor, c);
+ } else {
+ dst->tpixels[dst_offset_y][dst_offset_x++] = getPixelInterpolated(src, n, m, bgColor);
+ }
+ }
+ dst_offset_y++;
+ }
+ return dst;
+}
+
+static gdImagePtr
+gdImageRotateBilinear(gdImagePtr src, const float degrees, const int bgColor)
+{
+ float _angle = (float)((- degrees / 180.0f) * M_PI);
+ const unsigned int src_w = gdImageSX(src);
+ const unsigned int src_h = gdImageSY(src);
+ unsigned int new_width = abs((int)(src_w*cos(_angle))) + abs((int)(src_h*sin(_angle) + 0.5f));
+ unsigned int new_height = abs((int)(src_w*sin(_angle))) + abs((int)(src_h*cos(_angle) + 0.5f));
+ const gdFixed f_0_5 = gd_ftofx(0.5f);
+ const gdFixed f_H = gd_itofx(src_h/2);
+ const gdFixed f_W = gd_itofx(src_w/2);
+ const gdFixed f_cos = gd_ftofx(cos(-_angle));
+ const gdFixed f_sin = gd_ftofx(sin(-_angle));
+ const gdFixed f_1 = gd_itofx(1);
+ unsigned int i;
+ unsigned int dst_offset_x;
+ unsigned int dst_offset_y = 0;
+ unsigned int src_offset_x, src_offset_y;
+ gdImagePtr dst;
+
+ /* impact perf a bit, but not that much. Implementation for palette
+ images can be done at a later point.
+ */
+ if (src->trueColor == 0) {
+ gdImagePaletteToTrueColor(src);
+ }
+
+ dst = gdImageCreateTrueColor(new_width, new_height);
+ if (dst == NULL) {
+ return NULL;
+ }
+ dst->saveAlphaFlag = 1;
+
+ for (i = 0; i < new_height; i++) {
+ unsigned int j;
+ dst_offset_x = 0;
+
+ for (j=0; j < new_width; j++) {
+ const gdFixed f_i = gd_itofx((int)i - (int)new_height / 2);
+ const gdFixed f_j = gd_itofx((int)j - (int)new_width / 2);
+ const gdFixed f_m = gd_mulfx(f_j,f_sin) + gd_mulfx(f_i,f_cos) + f_0_5 + f_H;
+ const gdFixed f_n = gd_mulfx(f_j,f_cos) - gd_mulfx(f_i,f_sin) + f_0_5 + f_W;
+ const unsigned int m = gd_fxtoi(f_m);
+ const unsigned int n = gd_fxtoi(f_n);
+
+ if ((m > 0) && (m < src_h - 1) && (n > 0) && (n < src_w - 1)) {
+ const gdFixed f_f = f_m - gd_itofx(m);
+ const gdFixed f_g = f_n - gd_itofx(n);
+ const gdFixed f_w1 = gd_mulfx(f_1-f_f, f_1-f_g);
+ const gdFixed f_w2 = gd_mulfx(f_1-f_f, f_g);
+ const gdFixed f_w3 = gd_mulfx(f_f, f_1-f_g);
+ const gdFixed f_w4 = gd_mulfx(f_f, f_g);
+
+ if (n < src_w - 1) {
+ src_offset_x = n + 1;
+ src_offset_y = m;
+ }
+
+ if (m < src_h - 1) {
+ src_offset_x = n;
+ src_offset_y = m + 1;
+ }
+
+ if (!((n >= src_w - 1) || (m >= src_h - 1))) {
+ src_offset_x = n + 1;
+ src_offset_y = m + 1;
+ }
+ {
+ const int pixel1 = src->tpixels[src_offset_y][src_offset_x];
+ register int pixel2, pixel3, pixel4;
+
+ if (src_offset_y + 1 >= src_h) {
+ pixel2 = bgColor;
+ pixel3 = bgColor;
+ pixel4 = bgColor;
+ } else if (src_offset_x + 1 >= src_w) {
+ pixel2 = bgColor;
+ pixel3 = bgColor;
+ pixel4 = bgColor;
+ } else {
+ pixel2 = src->tpixels[src_offset_y][src_offset_x + 1];
+ pixel3 = src->tpixels[src_offset_y + 1][src_offset_x];
+ pixel4 = src->tpixels[src_offset_y + 1][src_offset_x + 1];
+ }
+ {
+ const gdFixed f_r1 = gd_itofx(gdTrueColorGetRed(pixel1));
+ const gdFixed f_r2 = gd_itofx(gdTrueColorGetRed(pixel2));
+ const gdFixed f_r3 = gd_itofx(gdTrueColorGetRed(pixel3));
+ const gdFixed f_r4 = gd_itofx(gdTrueColorGetRed(pixel4));
+ const gdFixed f_g1 = gd_itofx(gdTrueColorGetGreen(pixel1));
+ const gdFixed f_g2 = gd_itofx(gdTrueColorGetGreen(pixel2));
+ const gdFixed f_g3 = gd_itofx(gdTrueColorGetGreen(pixel3));
+ const gdFixed f_g4 = gd_itofx(gdTrueColorGetGreen(pixel4));
+ const gdFixed f_b1 = gd_itofx(gdTrueColorGetBlue(pixel1));
+ const gdFixed f_b2 = gd_itofx(gdTrueColorGetBlue(pixel2));
+ const gdFixed f_b3 = gd_itofx(gdTrueColorGetBlue(pixel3));
+ const gdFixed f_b4 = gd_itofx(gdTrueColorGetBlue(pixel4));
+ const gdFixed f_a1 = gd_itofx(gdTrueColorGetAlpha(pixel1));
+ const gdFixed f_a2 = gd_itofx(gdTrueColorGetAlpha(pixel2));
+ const gdFixed f_a3 = gd_itofx(gdTrueColorGetAlpha(pixel3));
+ const gdFixed f_a4 = gd_itofx(gdTrueColorGetAlpha(pixel4));
+ const gdFixed f_red = gd_mulfx(f_w1, f_r1) + gd_mulfx(f_w2, f_r2) + gd_mulfx(f_w3, f_r3) + gd_mulfx(f_w4, f_r4);
+ const gdFixed f_green = gd_mulfx(f_w1, f_g1) + gd_mulfx(f_w2, f_g2) + gd_mulfx(f_w3, f_g3) + gd_mulfx(f_w4, f_g4);
+ const gdFixed f_blue = gd_mulfx(f_w1, f_b1) + gd_mulfx(f_w2, f_b2) + gd_mulfx(f_w3, f_b3) + gd_mulfx(f_w4, f_b4);
+ const gdFixed f_alpha = gd_mulfx(f_w1, f_a1) + gd_mulfx(f_w2, f_a2) + gd_mulfx(f_w3, f_a3) + gd_mulfx(f_w4, f_a4);
+
+ const unsigned char red = (unsigned char) CLAMP(gd_fxtoi(f_red), 0, 255);
+ const unsigned char green = (unsigned char) CLAMP(gd_fxtoi(f_green), 0, 255);
+ const unsigned char blue = (unsigned char) CLAMP(gd_fxtoi(f_blue), 0, 255);
+ const unsigned char alpha = (unsigned char) CLAMP(gd_fxtoi(f_alpha), 0, 127);
+
+ dst->tpixels[dst_offset_y][dst_offset_x++] = gdTrueColorAlpha(red, green, blue, alpha);
+ }
+ }
+ } else {
+ dst->tpixels[dst_offset_y][dst_offset_x++] = bgColor;
+ }
+ }
+ dst_offset_y++;
+ }
+ return dst;
+}
+
+static gdImagePtr
+gdImageRotateBicubicFixed(gdImagePtr src, const float degrees,const int bgColor)
+{
+ const float _angle = (float)((- degrees / 180.0f) * M_PI);
+ const int src_w = gdImageSX(src);
+ const int src_h = gdImageSY(src);
+ const unsigned int new_width = abs((int)(src_w*cos(_angle))) + abs((int)(src_h*sin(_angle) + 0.5f));
+ const unsigned int new_height = abs((int)(src_w*sin(_angle))) + abs((int)(src_h*cos(_angle) + 0.5f));
+ const gdFixed f_0_5 = gd_ftofx(0.5f);
+ const gdFixed f_H = gd_itofx(src_h/2);
+ const gdFixed f_W = gd_itofx(src_w/2);
+ const gdFixed f_cos = gd_ftofx(cos(-_angle));
+ const gdFixed f_sin = gd_ftofx(sin(-_angle));
+ const gdFixed f_1 = gd_itofx(1);
+ const gdFixed f_2 = gd_itofx(2);
+ const gdFixed f_4 = gd_itofx(4);
+ const gdFixed f_6 = gd_itofx(6);
+ const gdFixed f_gama = gd_ftofx(1.04f);
+
+ unsigned int dst_offset_x;
+ unsigned int dst_offset_y = 0;
+ unsigned int i;
+ gdImagePtr dst;
+
+ /* impact perf a bit, but not that much. Implementation for palette
+ images can be done at a later point.
+ */
+ if (src->trueColor == 0) {
+ gdImagePaletteToTrueColor(src);
+ }
+
+ dst = gdImageCreateTrueColor(new_width, new_height);
+
+ if (dst == NULL) {
+ return NULL;
+ }
+ dst->saveAlphaFlag = 1;
+
+ for (i=0; i < new_height; i++) {
+ unsigned int j;
+ dst_offset_x = 0;
+
+ for (j=0; j < new_width; j++) {
+ const gdFixed f_i = gd_itofx((int)i - (int)new_height / 2);
+ const gdFixed f_j = gd_itofx((int)j - (int)new_width / 2);
+ const gdFixed f_m = gd_mulfx(f_j,f_sin) + gd_mulfx(f_i,f_cos) + f_0_5 + f_H;
+ const gdFixed f_n = gd_mulfx(f_j,f_cos) - gd_mulfx(f_i,f_sin) + f_0_5 + f_W;
+ const int m = gd_fxtoi(f_m);
+ const int n = gd_fxtoi(f_n);
+
+ if ((m > 0) && (m < src_h - 1) && (n > 0) && (n < src_w-1)) {
+ const gdFixed f_f = f_m - gd_itofx(m);
+ const gdFixed f_g = f_n - gd_itofx(n);
+ unsigned int src_offset_x[16], src_offset_y[16];
+ unsigned char red, green, blue, alpha;
+ gdFixed f_red=0, f_green=0, f_blue=0, f_alpha=0;
+ int k;
+
+ if ((m < 1) || (n < 1)) {
+ src_offset_x[0] = n;
+ src_offset_y[0] = m;
+ } else {
+ src_offset_x[0] = n - 1;
+ src_offset_y[0] = m;
+ }
+
+ if (m < 1) {
+ src_offset_x[1] = n;
+ src_offset_y[1] = m;
+ } else {
+ src_offset_x[1] = n;
+ src_offset_y[1] = m ;
+ }
+
+ if ((m < 1) || (n >= src_w-1)) {
+ src_offset_x[2] = - 1;
+ src_offset_y[2] = - 1;
+ } else {
+ src_offset_x[2] = n + 1;
+ src_offset_y[2] = m ;
+ }
+
+ if ((m < 1) || (n >= src_w-2)) {
+ src_offset_x[3] = - 1;
+ src_offset_y[3] = - 1;
+ } else {
+ src_offset_x[3] = n + 1 + 1;
+ src_offset_y[3] = m ;
+ }
+
+ if (n < 1) {
+ src_offset_x[4] = - 1;
+ src_offset_y[4] = - 1;
+ } else {
+ src_offset_x[4] = n - 1;
+ src_offset_y[4] = m;
+ }
+
+ src_offset_x[5] = n;
+ src_offset_y[5] = m;
+ if (n >= src_w-1) {
+ src_offset_x[6] = - 1;
+ src_offset_y[6] = - 1;
+ } else {
+ src_offset_x[6] = n + 1;
+ src_offset_y[6] = m;
+ }
+
+ if (n >= src_w-2) {
+ src_offset_x[7] = - 1;
+ src_offset_y[7] = - 1;
+ } else {
+ src_offset_x[7] = n + 1 + 1;
+ src_offset_y[7] = m;
+ }
+
+ if ((m >= src_h-1) || (n < 1)) {
+ src_offset_x[8] = - 1;
+ src_offset_y[8] = - 1;
+ } else {
+ src_offset_x[8] = n - 1;
+ src_offset_y[8] = m;
+ }
+
+ if (m >= src_h-1) {
+ src_offset_x[8] = - 1;
+ src_offset_y[8] = - 1;
+ } else {
+ src_offset_x[9] = n;
+ src_offset_y[9] = m;
+ }
+
+ if ((m >= src_h-1) || (n >= src_w-1)) {
+ src_offset_x[10] = - 1;
+ src_offset_y[10] = - 1;
+ } else {
+ src_offset_x[10] = n + 1;
+ src_offset_y[10] = m;
+ }
+
+ if ((m >= src_h-1) || (n >= src_w-2)) {
+ src_offset_x[11] = - 1;
+ src_offset_y[11] = - 1;
+ } else {
+ src_offset_x[11] = n + 1 + 1;
+ src_offset_y[11] = m;
+ }
+
+ if ((m >= src_h-2) || (n < 1)) {
+ src_offset_x[12] = - 1;
+ src_offset_y[12] = - 1;
+ } else {
+ src_offset_x[12] = n - 1;
+ src_offset_y[12] = m;
+ }
+
+ if (m >= src_h-2) {
+ src_offset_x[13] = - 1;
+ src_offset_y[13] = - 1;
+ } else {
+ src_offset_x[13] = n;
+ src_offset_y[13] = m;
+ }
+
+ if ((m >= src_h-2) || (n >= src_w - 1)) {
+ src_offset_x[14] = - 1;
+ src_offset_y[14] = - 1;
+ } else {
+ src_offset_x[14] = n + 1;
+ src_offset_y[14] = m;
+ }
+
+ if ((m >= src_h-2) || (n >= src_w-2)) {
+ src_offset_x[15] = - 1;
+ src_offset_y[15] = - 1;
+ } else {
+ src_offset_x[15] = n + 1 + 1;
+ src_offset_y[15] = m;
+ }
+
+ for (k=-1; k<3; k++) {
+ const gdFixed f = gd_itofx(k)-f_f;
+ const gdFixed f_fm1 = f - f_1;
+ const gdFixed f_fp1 = f + f_1;
+ const gdFixed f_fp2 = f + f_2;
+ gdFixed f_a = 0, f_b = 0,f_c = 0, f_d = 0;
+ gdFixed f_RY;
+ int l;
+
+ if (f_fp2 > 0) {
+ f_a = gd_mulfx(f_fp2,gd_mulfx(f_fp2,f_fp2));
+ }
+
+ if (f_fp1 > 0) {
+ f_b = gd_mulfx(f_fp1,gd_mulfx(f_fp1,f_fp1));
+ }
+
+ if (f > 0) {
+ f_c = gd_mulfx(f,gd_mulfx(f,f));
+ }
+
+ if (f_fm1 > 0) {
+ f_d = gd_mulfx(f_fm1,gd_mulfx(f_fm1,f_fm1));
+ }
+ f_RY = gd_divfx((f_a-gd_mulfx(f_4,f_b)+gd_mulfx(f_6,f_c)-gd_mulfx(f_4,f_d)),f_6);
+
+ for (l=-1; l< 3; l++) {
+ const gdFixed f = gd_itofx(l) - f_g;
+ const gdFixed f_fm1 = f - f_1;
+ const gdFixed f_fp1 = f + f_1;
+ const gdFixed f_fp2 = f + f_2;
+ gdFixed f_a = 0, f_b = 0, f_c = 0, f_d = 0;
+ gdFixed f_RX, f_R;
+ const int _k = ((k + 1) * 4) + (l + 1);
+ register gdFixed f_rs, f_gs, f_bs, f_as;
+ register int c;
+
+ if (f_fp2 > 0) {
+ f_a = gd_mulfx(f_fp2,gd_mulfx(f_fp2,f_fp2));
+ }
+
+ if (f_fp1 > 0) {
+ f_b = gd_mulfx(f_fp1,gd_mulfx(f_fp1,f_fp1));
+ }
+
+ if (f > 0) {
+ f_c = gd_mulfx(f,gd_mulfx(f,f));
+ }
+
+ if (f_fm1 > 0) {
+ f_d = gd_mulfx(f_fm1,gd_mulfx(f_fm1,f_fm1));
+ }
+
+ f_RX = gd_divfx((f_a - gd_mulfx(f_4, f_b) + gd_mulfx(f_6, f_c) - gd_mulfx(f_4, f_d)), f_6);
+ f_R = gd_mulfx(f_RY, f_RX);
+
+ if ((src_offset_x[_k] <= 0) || (src_offset_y[_k] <= 0) || (src_offset_y[_k] >= src_h) || (src_offset_x[_k] >= src_w)) {
+ c = bgColor;
+ } else if ((src_offset_x[_k] <= 1) || (src_offset_y[_k] <= 1) || (src_offset_y[_k] >= (int)src_h - 1) || (src_offset_x[_k] >= (int)src_w - 1)) {
+ gdFixed f_127 = gd_itofx(127);
+ c = src->tpixels[src_offset_y[_k]][src_offset_x[_k]];
+ c = c | (( (int) (gd_fxtof(gd_mulfx(f_R, f_127)) + 50.5f)) << 24);
+ c = _color_blend(bgColor, c);
+ } else {
+ c = src->tpixels[src_offset_y[_k]][src_offset_x[_k]];
+ }
+
+ f_rs = gd_itofx(gdTrueColorGetRed(c));
+ f_gs = gd_itofx(gdTrueColorGetGreen(c));
+ f_bs = gd_itofx(gdTrueColorGetBlue(c));
+ f_as = gd_itofx(gdTrueColorGetAlpha(c));
+
+ f_red += gd_mulfx(f_rs, f_R);
+ f_green += gd_mulfx(f_gs, f_R);
+ f_blue += gd_mulfx(f_bs, f_R);
+ f_alpha += gd_mulfx(f_as, f_R);
+ }
+ }
+
+ red = (unsigned char) CLAMP(gd_fxtoi(gd_mulfx(f_red, f_gama)), 0, 255);
+ green = (unsigned char) CLAMP(gd_fxtoi(gd_mulfx(f_green, f_gama)), 0, 255);
+ blue = (unsigned char) CLAMP(gd_fxtoi(gd_mulfx(f_blue, f_gama)), 0, 255);
+ alpha = (unsigned char) CLAMP(gd_fxtoi(gd_mulfx(f_alpha, f_gama)), 0, 127);
+
+ dst->tpixels[dst_offset_y][dst_offset_x] = gdTrueColorAlpha(red, green, blue, alpha);
+ } else {
+ dst->tpixels[dst_offset_y][dst_offset_x] = bgColor;
+ }
+ dst_offset_x++;
+ }
+
+ dst_offset_y++;
+ }
+ return dst;
+}
+
+BGD_DECLARE(gdImagePtr) gdImageRotateInterpolated(const gdImagePtr src, const float angle, int bgcolor)
+{
+ /* round to two decimals and keep the 100x multiplication to use it in the common square angles
+ case later. Keep the two decimal precisions so smaller rotation steps can be done, useful for
+ slow animations, f.e. */
+ const int angle_rounded = fmod((int) floorf(angle * 100), 360 * 100);
+
+ if (bgcolor < 0) {
+ return NULL;
+ }
+
+ /* 0 && 90 degrees multiple rotation, 0 rotation simply clones the return image and convert it
+ to truecolor, as we must return truecolor image. */
+ switch (angle_rounded) {
+ case 0: {
+ gdImagePtr dst = gdImageClone(src);
+
+ if (dst == NULL) {
+ return NULL;
+ }
+ if (dst->trueColor == 0) {
+ gdImagePaletteToTrueColor(dst);
+ }
+ return dst;
+ }
+
+ case -2700:
+ case 9000:
+ return gdImageRotate90(src, 0);
+
+ case -18000:
+ case 18000:
+ return gdImageRotate180(src, 0);
+
+ case -9000:
+ case 27000:
+ return gdImageRotate270(src, 0);
+ }
+
+ if (src == NULL || src->interpolation_id < 1 || src->interpolation_id > GD_METHOD_COUNT) {
+ return NULL;
+ }
+
+ switch (src->interpolation_id) {
+ case GD_NEAREST_NEIGHBOUR:
+ return gdImageRotateNearestNeighbour(src, angle, bgcolor);
+ break;
+
+ case GD_BILINEAR_FIXED:
+ return gdImageRotateBilinear(src, angle, bgcolor);
+ break;
+
+ case GD_BICUBIC_FIXED:
+ return gdImageRotateBicubicFixed(src, angle, bgcolor);
+ break;
+
+ default:
+ return gdImageRotateGeneric(src, angle, bgcolor);
+ }
+ return NULL;
+}
+
+/**
+ * Title: Affine transformation
+ **/
+
+/**
+ * Group: Transform
+ **/
+
+ static void gdImageClipRectangle(gdImagePtr im, gdRectPtr r)
+{
+ int c1x, c1y, c2x, c2y;
+ int x1,y1;
+
+ gdImageGetClip(im, &c1x, &c1y, &c2x, &c2y);
+ x1 = r->x + r->width - 1;
+ y1 = r->y + r->height - 1;
+ r->x = CLAMP(r->x, c1x, c2x);
+ r->y = CLAMP(r->y, c1y, c2y);
+ r->width = CLAMP(x1, c1x, c2x) - r->x + 1;
+ r->height = CLAMP(y1, c1y, c2y) - r->y + 1;
+}
+
+void gdDumpRect(const char *msg, gdRectPtr r)
+{
+ printf("%s (%i, %i) (%i, %i)\n", msg, r->x, r->y, r->width, r->height);
+}
+
+/**
+ * Function: gdTransformAffineGetImage
+ * Applies an affine transformation to a region and return an image
+ * containing the complete transformation.
+ *
+ * Parameters:
+ * dst - Pointer to a gdImagePtr to store the created image, NULL when
+ * the creation or the transformation failed
+ * src - Source image
+ * src_area - rectangle defining the source region to transform
+ * dstY - Y position in the destination image
+ * affine - The desired affine transformation
+ *
+ * Returns:
+ * GD_TRUE if the affine is rectilinear or GD_FALSE
+ */
+BGD_DECLARE(int) gdTransformAffineGetImage(gdImagePtr *dst,
+ const gdImagePtr src,
+ gdRectPtr src_area,
+ const double affine[6])
+{
+ int res;
+ double m[6];
+ gdRect bbox;
+ gdRect area_full;
+
+ if (src_area == NULL) {
+ area_full.x = 0;
+ area_full.y = 0;
+ area_full.width = gdImageSX(src);
+ area_full.height = gdImageSY(src);
+ src_area = &area_full;
+ }
+
+ gdTransformAffineBoundingBox(src_area, affine, &bbox);
+
+ *dst = gdImageCreateTrueColor(bbox.width, bbox.height);
+ if (*dst == NULL) {
+ return GD_FALSE;
+ }
+ (*dst)->saveAlphaFlag = 1;
+
+ if (!src->trueColor) {
+ gdImagePaletteToTrueColor(src);
+ }
+
+ /* Translate to dst origin (0,0) */
+ gdAffineTranslate(m, -bbox.x, -bbox.y);
+ gdAffineConcat(m, affine, m);
+
+ gdImageAlphaBlending(*dst, 0);
+
+ res = gdTransformAffineCopy(*dst,
+ 0,0,
+ src,
+ src_area,
+ m);
+
+ if (res != GD_TRUE) {
+ gdImageDestroy(*dst);
+ dst = NULL;
+ return GD_FALSE;
+ } else {
+ return GD_TRUE;
+ }
+}
+
+/**
+ * Function: gdTransformAffineCopy
+ * Applies an affine transformation to a region and copy the result
+ * in a destination to the given position.
+ *
+ * Parameters:
+ * dst - Image to draw the transformed image
+ * src - Source image
+ * dstX - X position in the destination image
+ * dstY - Y position in the destination image
+ * src_area - Rectangular region to rotate in the src image
+ *
+ * Returns:
+ * GD_TRUE if the affine is rectilinear or GD_FALSE
+ */
+BGD_DECLARE(int) gdTransformAffineCopy(gdImagePtr dst,
+ int dst_x, int dst_y,
+ const gdImagePtr src,
+ gdRectPtr src_region,
+ const double affine[6])
+{
+ int c1x,c1y,c2x,c2y;
+ int backclip = 0;
+ int backup_clipx1, backup_clipy1, backup_clipx2, backup_clipy2;
+ register int x, y, src_offset_x, src_offset_y;
+ double inv[6];
+ int *dst_p;
+ gdPointF pt, src_pt;
+ gdRect bbox;
+ int end_x, end_y;
+ gdInterpolationMethod interpolation_id_bak = GD_DEFAULT;
+
+ /* These methods use special implementations */
+ if (src->interpolation_id == GD_BILINEAR_FIXED || src->interpolation_id == GD_BICUBIC_FIXED || src->interpolation_id == GD_NEAREST_NEIGHBOUR) {
+ interpolation_id_bak = src->interpolation_id;
+
+ gdImageSetInterpolationMethod(src, GD_BICUBIC);
+ }
+
+
+ gdImageClipRectangle(src, src_region);
+
+ if (src_region->x > 0 || src_region->y > 0
+ || src_region->width < gdImageSX(src)
+ || src_region->height < gdImageSY(src)) {
+ backclip = 1;
+
+ gdImageGetClip(src, &backup_clipx1, &backup_clipy1,
+ &backup_clipx2, &backup_clipy2);
+
+ gdImageSetClip(src, src_region->x, src_region->y,
+ src_region->x + src_region->width - 1,
+ src_region->y + src_region->height - 1);
+ }
+
+ if (!gdTransformAffineBoundingBox(src_region, affine, &bbox)) {
+ if (backclip) {
+ gdImageSetClip(src, backup_clipx1, backup_clipy1,
+ backup_clipx2, backup_clipy2);
+ }
+ gdImageSetInterpolationMethod(src, interpolation_id_bak);
+ return GD_FALSE;
+ }
+
+ gdImageGetClip(dst, &c1x, &c1y, &c2x, &c2y);
+
+ end_x = bbox.width + (int) fabs(bbox.x);
+ end_y = bbox.height + (int) fabs(bbox.y);
+
+ /* Get inverse affine to let us work with destination -> source */
+ gdAffineInvert(inv, affine);
+
+ src_offset_x = src_region->x;
+ src_offset_y = src_region->y;
+
+ if (dst->alphaBlendingFlag) {
+ for (y = bbox.y; y <= end_y; y++) {
+ pt.y = y + 0.5;
+ for (x = 0; x <= end_x; x++) {
+ pt.x = x + 0.5;
+ gdAffineApplyToPointF(&src_pt, &pt, inv);
+ gdImageSetPixel(dst, dst_x + x, dst_y + y, getPixelInterpolated(src, src_offset_x + src_pt.x, src_offset_y + src_pt.y, 0));
+ }
+ }
+ } else {
+ for (y = 0; y <= end_y; y++) {
+ pt.y = y + 0.5 + bbox.y;
+ if ((dst_y + y) < 0 || ((dst_y + y) > gdImageSY(dst) -1)) {
+ continue;
+ }
+ dst_p = dst->tpixels[dst_y + y] + dst_x;
+
+ for (x = 0; x <= end_x; x++) {
+ pt.x = x + 0.5 + bbox.x;
+ gdAffineApplyToPointF(&src_pt, &pt, inv);
+
+ if ((dst_x + x) < 0 || (dst_x + x) > (gdImageSX(dst) - 1)) {
+ break;
+ }
+ *(dst_p++) = getPixelInterpolated(src, src_offset_x + src_pt.x, src_offset_y + src_pt.y, -1);
+ }
+ }
+ }
+
+ /* Restore clip if required */
+ if (backclip) {
+ gdImageSetClip(src, backup_clipx1, backup_clipy1,
+ backup_clipx2, backup_clipy2);
+ }
+
+ gdImageSetInterpolationMethod(src, interpolation_id_bak);
+ return GD_TRUE;
+}
+
+/**
+ * Function: gdTransformAffineBoundingBox
+ * Returns the bounding box of an affine transformation applied to a
+ * rectangular area <gdRect>
+ *
+ * Parameters:
+ * src - Rectangular source area for the affine transformation
+ * affine - the affine transformation
+ * bbox - the resulting bounding box
+ *
+ * Returns:
+ * GD_TRUE if the affine is rectilinear or GD_FALSE
+ */
+BGD_DECLARE(int) gdTransformAffineBoundingBox(gdRectPtr src, const double affine[6], gdRectPtr bbox)
+{
+ gdPointF extent[4], min, max, point;
+ int i;
+
+ extent[0].x=0.0;
+ extent[0].y=0.0;
+ extent[1].x=(double) src->width;
+ extent[1].y=0.0;
+ extent[2].x=(double) src->width;
+ extent[2].y=(double) src->height;
+ extent[3].x=0.0;
+ extent[3].y=(double) src->height;
+
+ for (i=0; i < 4; i++) {
+ point=extent[i];
+ if (gdAffineApplyToPointF(&extent[i], &point, affine) != GD_TRUE) {
+ return GD_FALSE;
+ }
+ }
+ min=extent[0];
+ max=extent[0];
+
+ for (i=1; i < 4; i++) {
+ if (min.x > extent[i].x)
+ min.x=extent[i].x;
+ if (min.y > extent[i].y)
+ min.y=extent[i].y;
+ if (max.x < extent[i].x)
+ max.x=extent[i].x;
+ if (max.y < extent[i].y)
+ max.y=extent[i].y;
+ }
+ bbox->x = (int) min.x;
+ bbox->y = (int) min.y;
+ bbox->width = (int) floor(max.x - min.x) - 1;
+ bbox->height = (int) floor(max.y - min.y);
+ return GD_TRUE;
+}
+
+BGD_DECLARE(int) gdImageSetInterpolationMethod(gdImagePtr im, gdInterpolationMethod id)
+{
+ if (im == NULL || id < 0 || id > GD_METHOD_COUNT) {
+ return 0;
+ }
+
+ switch (id) {
+ case GD_DEFAULT:
+ id = GD_BILINEAR_FIXED;
+ /* Optimized versions */
+ case GD_BILINEAR_FIXED:
+ case GD_BICUBIC_FIXED:
+ case GD_NEAREST_NEIGHBOUR:
+ case GD_WEIGHTED4:
+ im->interpolation = NULL;
+ break;
+
+ /* generic versions*/
+ case GD_BELL:
+ im->interpolation = filter_bell;
+ break;
+ case GD_BESSEL:
+ im->interpolation = filter_bessel;
+ break;
+ case GD_BICUBIC:
+ im->interpolation = filter_bicubic;
+ break;
+ case GD_BLACKMAN:
+ im->interpolation = filter_blackman;
+ break;
+ case GD_BOX:
+ im->interpolation = filter_box;
+ break;
+ case GD_BSPLINE:
+ im->interpolation = filter_bspline;
+ break;
+ case GD_CATMULLROM:
+ im->interpolation = filter_catmullrom;
+ break;
+ case GD_GAUSSIAN:
+ im->interpolation = filter_gaussian;
+ break;
+ case GD_GENERALIZED_CUBIC:
+ im->interpolation = filter_generalized_cubic;
+ break;
+ case GD_HERMITE:
+ im->interpolation = filter_hermite;
+ break;
+ case GD_HAMMING:
+ im->interpolation = filter_hamming;
+ break;
+ case GD_HANNING:
+ im->interpolation = filter_hanning;
+ break;
+ case GD_MITCHELL:
+ im->interpolation = filter_mitchell;
+ break;
+ case GD_POWER:
+ im->interpolation = filter_power;
+ break;
+ case GD_QUADRATIC:
+ im->interpolation = filter_quadratic;
+ break;
+ case GD_SINC:
+ im->interpolation = filter_sinc;
+ break;
+ case GD_TRIANGLE:
+ im->interpolation = filter_triangle;
+ break;
+
+ default:
+ return 0;
+ break;
+ }
+ im->interpolation_id = id;
+ return 1;
+}
+
+
+/* Return the interpolation mode set in 'im'. This is here so that
+ * the value can be read via a language or VM with an FFI but no
+ * (portable) way to extract the value from the struct. */
+BGD_DECLARE(gdInterpolationMethod) gdImageGetInterpolationMethod(gdImagePtr im)
+{
+ return im->interpolation_id;
+}
+
+#ifdef _MSC_VER
+# pragma optimize("", on)
+#endif